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Abstract. The current European risk assessment for chemicals considers only tap water, 

while in reality other beverages play an important role. A good part of beverages are 

made from fruits, for example apple juice and vine. A mathematical model was 

developed to predict uptake of neutral organic chemicals from soil and air into fruits. 

The new fruit tree model considers eight compartments, i.e. two soil compartments, fine 

roots, thick roots, stem, leaves, fruits and air. Chemical equilibrium, advective transport 

in xylem and phloem, diffusive exchange to soil and air and growth dilution are the 

main processes. The parameterization is for a square-meter of an apple orchard. The 

model predicts that polar, non-volatile compounds will effectively be transported from 

soil to fruits, while lipophilic compounds will preferably accumulate from air into fruits. 

Results from various experiments show no disagreement with the model predictions.  
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1 Introduction  

 

Current exposure and risk assessment for chemicals in the EU, as described in the 

Technical Guidance Documents TGD [1] and implemented in the European Union 

System for the Evaluation of Substances EUSES [2] considers drinking of humans by 

consumption of 2 L water per day. This does not reflect our daily reality. For example, 

the consumption pattern of the Bavarian population was studied recently [3]. In mass 

units (g/day), tap water is the major consume, followed by beer (male population), 

bread, juice and other beverages (Figure 1). Among the top 12 of consumed food items 

are 5 made of fruits (beer, bread, juice, some of the vegetables and wine). The majority 

of consumption is clearly beverages. If these are summed up, they make up 74% (mass) 

of daily consumption, hereof 35% tap water and 39% other beverages (coffee and tea 

not counted). Maximum residue limits (MRLs) in drinking water are available for a 

long list of pollutants [4], including heavy metals, inorganic and organic chemicals. For 

pesticides in drinking water, a common MRL was set to 0.0001 mg L-1 [5]. Legal 

standards for environmental chemicals in fruits, juice or wine have rarely been set. Only 

for pesticides, MRLs are available for fruits. However, they are orders of amounts 

higher than for tap water. MRLs for processed fruits, such as beverages like juice or 

wine, were not set. This is despite the fact that pesticide residues in fruit and vegetables 

are EU citizen's major food concern [6]. During the latest German national study on 

pesticides in food [7], 15 491 food samples were taken and measured on up to 634 

pesticides (in total 2 122 267 analysis). Pesticide residues were found in 60% of 

samples, hereof 7.4% of samples were above the maximum residue level (MRL). For 

wine grapes, in total 1068 samples were taken. Hereof, 224 (21%) were without 

detectable pesticide residues, 138 (12.9%) were with pesticides above MRL, and 64.5% 

of the samples contained more than one pesticide residue. For apples, the respective 
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numbers were 794 samples, hereof 217 (27.3%) without detectable pesticide residues, 

43 (5.4%) with pesticides above MRL and 38.4% with multiple pesticide residues.  

The exposure of the European population to chemicals in fruits is thus of concern and 

deserves further attention. This work will establish a mathematical model to predict the 

uptake pathways and the accumulation of chemicals from soil and/or air into fruits. 

Direct application (e.g. as pesticide spray), is not considered here.   

 

[Please place here Figure 1] 

 

2 Methods  

 

2.1 Model development  

 

The mathematical model for uptake of contaminants from air and soil into fruits is 

based on earlier model approaches [8-15]. The structure of the model is shown in Figure 

2. It consists of eight compartments (soil 1, soil 2, fine roots, thick roots, stem, leaves, 

fruit, air). For four compartments (thick roots, stem, leaves, fruits), the mass balances 

were formulated as differential equations. Transport processes are advection (with 

xylem and phloem sap) and diffusive loss or gain. Dilution by growth and metabolism 

can be considered.  

  

[Please place here Figure 2] 

 

2.1.1 Chemical equilibrium between fine roots and soil. The natural bulk soil consists 

of soil matrix, soil solution and soil gas. This is considered in the calculation of the 

chemical equilibrium between soil water and wet bulk soil KWS.   

 4



 

AWSSdryOC

wet
WS

S

W

KGWKOC
K

C
C

×++××
==

ρ
ρ

  (kg L-1) 

  

where CW (mg L-1) is the concentration of the chemical in soil water and CS (mg kg-1) in 

wet bulk soil; ρ is the density of wet or dry soil (kg L-1), OC is the fraction of organic 

carbon (kg kg-1), ρdry is the density of the dry soil, and WS and GS are the volume 

fractions of water and gas in soil (L L-1). KAW is the partition coefficient between air 

and water. The air phase can usually be neglected, except for high KAW.  KOC (L kg-1) is 

the partition coefficient between organic carbon and water and can be estimated from 

the octanol-water partition coefficient KOW [1]: 

 

1.0log81.0log +×= OWOC KK  

 

Fine roots. The very high surface to volume ratio of fine roots is favoring diffusive 

transfer. It is thus assumed that fine roots are in chemical equilibrium with the 

surrounding soil.  Briggs et al. [16] mazerated barley roots and measured the 

concentration ratio to solution for chemicals with different KOW. They expressed their 

result as “root concentration factor” RCF (L kg-1):  

 

)/(
)/(

Lmgwaterinionconcentrat
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RCF =  

 

The fit curve between RCF and KOW gave   

 

52.1log77.0)82.0log( −×=− OWKRCF  
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or  77.003.082.0 OWKRCF ×+=

 

The RCF can be considered as chemical equilibrium KRW (L kg-1) between root 

concentration CR (mg per kg fresh weight) and water CW (mg L-1). The partitioning is 

due to sorption to root lipids and dissolution into the aqueous solution of root cells: 

 

b
OWRRRW KaLWK ××+=  

 

where WR (L kg-1) and LR (kg kg-1) are water and lipid content of the root, 'b' for roots is 

0.77 and ‘a' = 1/ρOctanol = 1.22 L kg-1. The concentration in fine roots, CR1, is thus  

 

1111111 WSWRSSRSR KKCKCC ××=×=  

 

where the index 1 denotes the lowest compartment (fine root R1 and surrounding soil 

S1). The concentration in the xylem (aqueous solution) leaving from fine root and 

entering thicker parts of the root, CXy1 (mg L-1), would thus be identical to the 

concentration in soil water:  

 

1
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R
Xy C
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2.1.2 Thick roots. For thick roots, index R2, a dynamic flux model is applied [13].  

The change of chemical mass in roots is + flux in with water – flux out with water – 

metabolism.    
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where mR2 is the mass of chemical in thick roots, Q is the transpiration stream (L d-1) 

and CXy2 is the concentration in the xylem out of roots 2 (thick roots) = CR2 / KR2W; km is 

a first-order metabolism rate (d-1). Diffusive uptake from/to soil is added by applying 

Fick's 1st Law of diffusion:  
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where A is the surface area (m2) and P is the permeability (m d-1) of the root. The factor 

thousand is a unit conversion factor (m3 to L).  

 

From mass to concentration. The chemicals' concentration C (mg kg-1) is derived from 

its mass m (mg) by dividing through the mass of the medium M (kg).  

 

C = m/M 

 

It follows that d(C M)/dt = dm/dt. The difficulty of non-constant plant mass M due to 

growth can be handled in the following way: If growth is exponential, and the ratio of 

transpiration to plant mass Q/M is constant, the dilution by exponential growth can be 

considered by adding the first-order growth rate kR (d-1) to the first-order loss rate, k = 

kR + km. This gives the differential equation for the change of concentration in thick 

roots R2:  
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Setting dCR/dt = 0 gives the steady-state solution for the concentration in thick roots 

CR2:  
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S2 is the index for the soil surrounding the thick roots.  

 

The equations for calculating permeability P for roots are described in detail in 

appendix 1.  

 

2.1.3 Stem. The transpiration water is translocated upwards in the xylem. Dissolved 

chemicals can flow with the water and enter the stem. The chemical can flow further 

with the water; or absorb to the stem; it can be metabolised or volatilize into air; but a 

chemical can also be taken up from air, if present there. The whole system is similar to a 

river, with water, sediment and air. Therefore, the same approach as for a river is used, 

namely the model RIVER in Cemos [11]. The basic equation is common to many river 

models, e.g., the BOD term in the well-known old Streeter-Phelps model:  

 

kt
dt
dC

−=  

 

with the common solution  
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kteCtC −×= )0()(  

 

The time coordinate t (d) is transferred to stem height z (m) via t = z /u, where u is the 

flow velocity (m d-1). Interestingly, this solution is identical to the solution provided by 

Ma and Burken [17]. Only flow velocity of the chemical is treated differently, and 

uptake from air can be considered here (see below).  

The initial concentration in xylem, when it enters the stem, is identical to the outflow 

concentration from thick root CXy2. The concentration in stem at height z = 0 is assumed 

to be in chemical equilibrium with that:  

 

StemWaterXyStem KCC ×= 2)0(  

 

where K is the partition coefficient. The concentration at height z is  

 

cukz
StemStem eCzC /)0()( −×=  

 

where uc is the flow velocity of the chemical, and k is the sum of the loss rates 

(metabolism and volatilization) plus the rate of growth dilution. The concentration of 

the chemical in the xylem, when it leaves stem at height h, CXy3, is  

 

StemWater

stem
Xy K

hC
C

)(
3 =  

 

The loss rate via volatilization from stem is  
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V P

M
A

k ρ××=     

 

or, easier, because for a cylinder of height h and radius r, volume V = M/ρ = π r2 h  and 

outside area A = 2 π r h:  

 

r
PkV

2
=  

 

The flow velocity of the chemical uC is the flow velocity of water uW multiplied with 

the fraction of chemical present in water,  uC = uW x fW, where fW = WStem / KStemWater. 

 

Partition coefficient. Different from herbs, trees have a big wood compartment. The 

ratio between a chemical’s concentration in wood and its concentration in the water was 

named "KWood" (mg chemical per g dry wood to mg chemical per mL water). Log KWood 

was significantly correlated to the log KOW of the chemical and the following 

regressions were established [12]:  

 

OWWood KK log632.027.0log ×+−=   (oak) 

OWWood KK log668.028.0log ×+−=   (willow) 

 

The concentration ratio in chemical equilibrium between stem (wood + water + air) and 

water (such as xylem sap) is thus  

 

AWStStwood
wet

dry
StemWater KGWKK ×++=

ρ
ρ
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where W and G are the fractions of water and gas in the stem (L kg-1). 

 

Input from air. While the xylem flow moves upwards, chemicals from air can enter the 

stem and the xylem. This is treated in the differential equation as a constant input I (mg 

kg-1 d-1) 

 

AirStemWater
AW

CK
KV

PAI ××
××

×
=

1000
 

 

where 1000 is a conversion factor for CAir from mg m-3 (the usual unit for air) to mg L-1 

(the usual unit for water) ; or, easier, replacing A/V   

 

AirStemWater
AW

CK
Kr

PI ××
××

×
=

1000
2  

 

Adding input from air to the mass balance yields 

 

IkC
dt
dC

+−=  

 

with the common solution  

 

)1()0()( // ukzukz e
k
IeCzC −− −×+×=  

 

This means that due to input from air, the concentration can increase along the stem 

from z = 0 to z = h (height).  
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Sapwood and flow velocity. Measured flow velocities of water in trees range from 0.4 

m h-1 to 44 m h-1 [18]. This is far above the filter velocity, which would be yielded from 

dividing transpired water Q by stem cross-area Across. The reason is that the water flows 

only in the outer rings of the tree (the "sapwood"). The volume of the sapwood can thus 

be calculated by comparing the measured water flow velocity uW with the filter velocity.  

 

Filter velocity = 
Stcross

F WA
Qu
×

=  

 

The cross area of the sapwood ring is  

 

)( 22 rRARing −×= π  

 

where R is the outer stem radius and r the inner radius of the sapwood. For ARing/Across = 

umeas / uF follows:  

 

meas

F

u
uRRr ×−= 22   

and R - r is the thickness of the sapwood.   

 

Permeability for exchange between stem and air. The model assumes a two-sides-

resistance model, with one resistance being the wood and bark of the tree, the other 

being a stagnant air layer around the bark. The permeability of the stem is calculated 

analogously to the root. KStemWater is used instead of KRW, WSt and GSt replace WR and 

GR. The diffusion path-length is taken as R - r + dBark, where dBark is the thickness of the 

bark (default 0.01 m). The permeability of the air layer is calculated as 
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dx
D

P G
Air =  where dx is the thickness of the stagnant air layer, by default 0.01 m.  

 

The total permeability follows from Kirchhoff's Law:  

 

AWAirStem

total
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P

×
+

=
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1   

 

2.1.4 Leaves. The leaf compartment is treated as in the model PlantX [19], with the 

steady-state solution as in [9]. It gives the same result, if the input data are identical. 

Input is from stem via the xylem and from air (as before), loss is by metabolism and to 

air. The change of mass in leaves = + translocation from stem + uptake from air - loss to 

air - metabolism 

 

LmL
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L MkC
K
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K
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××
−×

×
+×+=

1000
3  

 

where L is the index for leaves. QL is the part of the transpiration stream that flows into 

leaves. with a = 1.22 and b = 0.95 for leaves. For the 

concentration follows (including growth with k

b
OWLLLW KaLWK ××+=

L = km + kg):  

 

LLL
LLW

LL
Air

LAW

LL
Xy

L

LL CkC
MK

APC
MK
APC

M
Q

dt
dC

×−×
×

××
−×

×
×

+×+=
1000

3  

 

In steady-state:  
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Permeability for diffusive exchange between leaves and air. Chemicals in air come 

onto/into/out of leaves by various ways: gaseous through the cuticles; gaseous through 

stomata; by dry particulate deposition; by wet particulate deposition. The deposition 

velocities for all these uptake pathways depend crucially on chemical and 

environmental properties. A rough estimate is that the deposition velocity from leaves to 

air, the conductance g, is about 10-3 m s-1 for gaseous and particulate deposition [9]. 

Hereby, conductance g (m s-1) is related to concentrations in the gas phase. It is identical 

to P/KAW, where P is the permeability related to concentrations in water. The 

contributions of the various resistances to the overall permeability are described in 

appendix 2.  

 

2.1.5 Fruits. The mass balance for chemicals in fruits is handled similar to the mass 

balance in leaves. Uptake is from stem (via phloem and xylem) or from air, and loss is 

by metabolism and to air. The concentration in fruits is calculated by  
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In steady-state:  
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where F is the index for fruits. QF is the sum of phloem and xylem flow (L d-1), KFW (L 

kg-1) is the partition coefficient between fruits and water, calculated as for leaves but 

with other water and lipid content. PF is the permeability for exchange between fruits 

and air (m d-1).  

 

Phloem and xylem flow. In young (green) apples, the flow of xylem and phloem to 

fruits occurs at approximately same rates [20]. Later, phloem flow dominates. While the 

phloem is loaded in leaves, the xylem has its origin in the roots. In the model, currently 

no difference is made between chemical concentration in phloem and in xylem. This is 

because both streams are neighbored within branches and stem, and a diffusive 

exchange may occur. Xylem flow is orders of amounts larger, so it is likely that the 

mixture will have a concentration close to the original xylem sap. Phloem transport 

downwards (in opposite direction to the xylem) is relevant for weak acids, due to the 

ion trap effect [21]. All other compounds do not accumulate in phloem, compared to the 

xylem. Transport in opposite direction of the xylem may also occur for neutral 

compounds, which are very polar and thus leave the phloem sieve tubes very slowly 

[22]. For the less polar neutral compounds, xylem and phloem concentrations will 

equilibrate within short distance, as it is handled in the model. The xylem flow to leaves 

QL (L d-1) and fruits QFX (L d-1) is calculated from the total xylem flow out of the stem 

QSt by averaging with the respective surface areas:  

 

St
LF

F
FX Q

AA
A

Q ×
+

=    
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and QL + QFX = QSt

 

The phloem flux into fruits is calculated as in the first Fruit Tree Model [14]: Fruits are 

"fed" via phloem. Phloem sap has high dry matter content, about 10%. This dry matter 

remains in the fruit. Therefore, it may be assumed that the total phloem flow into fruits, 

Sum QFP (L) is about 10 times the dry matter content: 

  

Sum QFP = (1 - WF) × MF × 10  

 

, where (1 - WF) × MF is the dry mass of the fruit. The daily phloem sap flow into fruits, 

QFP (L d-1), is calculated by dividing Sum QFP with 60 days, QFP = Sum QFP / 60 d. The 

total water flux into fruits QF is the sum of xylem and phloem flux:  

 

 QF = QFX + QFP  

 

Permeability. Loss via stomata and cuticles is considered, as before, by PS and PC. PS is 

calculated from QFX (xylem flow) and AF. For PC of the fruit, the same value as for 

leaves is used. The resistance of the fruit tissue Ptissue is added, calculated in the same 

way as for roots, but with water and gas fraction of the fruit and with a default diffusion 

length of 1 cm. The total permeability for the exchange between fruits and air is then  

 

tissueSC

F

PPP

P 11
1

+
+

=  

 

2.2 Input Data  
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An example data set for 1 m2 apple orchard is given in Tables 1 to 3. The data is not for 

a special situation or from one single experiment, but taken from textbooks, nutrition 

tables, former model versions, or based on experience. Furthermore, the data does not 

consider changes with time, because it is input to a steady-state calculation. 

 

[Please place here Table 1] 

[Please place here Table 2] 

[Please place here Table 3] 

 

3 Discussion 

 

3.1 Sensitivity study for chemical input parameters 

 

The model requires four chemical input data, namely KOW, KAW, molar mass M and 

metabolism rate(s) km. Metabolism rates for chemicals in apple trees are largely 

unknown and set to km = 0 by default. Molar mass M has only marginal influence via 

diffusion constants DW and DG. The octanol-water partition coefficient KOW is a 

common measure for lipophilicity. Values may range from < 2 for hydrophilic to > 6 for 

very lipophilic compounds. KAW, the dimensionless Henry's Law constant, may range 

from > 10 for very volatile to < 10-9 for non-volatile compounds. The ratio KOW / KAW 

is also known as octanol-air partition coefficient KOA. In Figure 3 abc, the chemical 

space made up by KOW and KAW is plotted (log-scale, z-axis crosses at 0.01) versus 

simulated concentrations in stem (z = 5 m), leaves and fruits for the scenario uptake 

from soil layer 1 by fine roots (CSoil1 = 1 mg kg-1). Accumulation in stem is relatively 

homogenous and requires a low KAW (≤ 0.1) and medium to low log KOW (≤ 4). 
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Accumulation in leaves occurs preferably at smaller KAW (≤ 10-5) and for the more polar 

compounds (log KOW ≤ 2). Absolute values can be rather high (CL / CSoil > 100). 

Accumulation in apples from soil occurs for chemicals with the same properties, but is 

generally lower. Figure 4 abc shows the chemical space versus simulated concentrations 

for uptake from air (CAir = 1 µg m-3). Contrary to the uptake from soil, a high log KOW is 

required for high accumulation, but still a low KAW. Or, with KOW/KAW = KOA, the 

uptake from air increases with the octanol-air partition coefficient. The relation is not 

directly proportional: for very high log KOA-values, the uptake into leaves and fruits is 

kinetically limited and reduced by growth dilution. The highest accumulation is 

predicted for stem. However, in reality, an accumulation of very lipophilic compounds 

is restricted to the outer bark [25], where the lipophilics are retained [12]. This effect 

cannot be simulated in a 1-D model. The accumulation in apples is comparatively low, 

both due to the low lipid content and the slow transfer due to the low surface-to-volume 

ratio. 

 

[Please place here Figures 3 a b c] 

[Please place here Figures 4 a b c] 

 

Time scale. The model is based on a steady-state solution, so the dynamics of the 

concentration change cannot be considered. It is also the question whether steady-state 

is reached at all within one growth season or the life-span of a tree. Of all 

compartments, stem has the biggest volume and the smallest surface-to-volume ratio. It 

has thus the longest exchange and travel times for all compounds. Characteristic times 

can be defined. One is the travel time tstem (d), which is the time needed for a compound 

to flow with the transpiration stream from the bottom of the stem to the top:  
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c
stem u

zt =  

 

where z is the stem height and uc is the flow velocity of the chemical.  

 

Another characteristic time is the half-time of loss from the stem, t12 (d), which is  

 

k
t 2ln
12 =  

 

where k is the sum of the stem's growth rate and the loss rate (via volatilization) from 

stem.  

 

Figure 5 shows the travel time in the stem. It grows exponentially with the log KOW, 

from 0.125 days for a very polar chemical (that does not adsorb to the stem) to > 1000 

days for a chemical with log KOW = 6. Figure 6 shows the half-time for loss from stem. 

The minimum, which is less than 0.2 days, is for volatile compounds (KAW = 10) with 

intermediate lipophilicity (log KOW = 2). The half-time for loss increases to values > 10 

000 days for very non-volatile compounds (KAW = 10-9) and very lipophilic compounds 

(log KOW = 6). Note that the loss-rate to air is also related to the uptake from air. As a 

general rule, a system is close to steady-state after 3 to 4 half-times. This means, that for 

the very non-volatile and lipophilic compounds, the concentrations in the tree do 

probably never reach steady-state.   

 

[Please place here Figure 5] 

[Please place here Figure 6] 
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3.2 Limitations  

 

Limitations of the model stem from underlying assumptions, process consideration and 

formulation, data selection and from the type of solution. First of all, the model is 

strictly limited to neutral compounds; it is not applicable to ions or dissociating 

compounds, for which the Nernst-Planck equation describes diffusion [26]. If 

metabolism of the compound in planta occurs, this may be of a Michaelis-Menten type, 

leading to non-linear relations between outside and inside concentrations. This means 

that for low exposure, the concentrations inside plants are near zero. At higher exposure, 

the enzyme system of the plant is overloaded, and accumulation occurs [27]. The 

transformation of chemicals by plant enzymes is hard to forecast, but enzymatic 

reactions occur in solution, and thus, transformation is generally more likely for soluble 

compounds (small KOW). A process not formulated in the model is particle deposition. It 

is well known that for strongly sorbed compounds, particle resuspension from soil may 

be the dominating transport process from soil to leaves [28, 29]. However, this process 

is only relevant for plant parts near the soil surface. Particle deposition from atmosphere 

is the dominating transport process to leaves for chemicals with high log KOA [30]. 

Whether this is also the case for fruits is unknown, but likely. If wet and dry particulate 

deposition are added (method described in [11]), uptake from air is higher for chemicals 

with very low vapour pressure (high KOA).  

Branches have a much smaller diameter than stems, and their bark is very thin. This 

means the diffusion pathway for exchange with air is rather small, too, and the diffusive 

exchange is thus high, even though the time the chemical resides in the branches is 

comparatively low. The loss (or gain) might be far higher than from stems. If 

experiments validate these considerations, it would be necessary to add a branch 

compartment to the model, in order to yield realistic results for volatile compounds.  
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The differential equations were, for the sake of a compact model with low data needs, 

solved for the steady-state. Growth is considered as exponential. Deviations to reality 

may occur for these reasons.    

 

The model is a deterministic model, strictly simplified in an attempt to describe a 

complex (living) environmental system. The purpose is not to predict exactly the 

concentration of a given compound for a given situation (soil, crop, climate, 

application) - this might be better done by more simple empirical models. The purpose 

is to gain an insight into the processes, their relevance in connection with other 

parameters and for the wide variety of chemicals. This is helpful in understanding the 

complex processes occurring simultaneously in reality and thus gives a guide at hand 

for designing experimental studies and interpreting their results. It may also help in 

finding more simple (reduced) empirical relations, which may hold only for a limited 

scope, but may be precise within a certain range.  

 

3.3 Validity of the model 

 

A greenhouse-study with radio-labeled trichloroethene (TCE) and apple and peach trees 

was undertaken by Chard et al. [31]. Even though TCE could not directly be detected in 

apples, it was concluded from 14C-measurements that the concentration ratio to soil 

(BCF) was between 0.01 and 0.07 fresh fruit / wet soil. The result with the Fruit Tree 

Model for TCE (log KOW ~ 3, KAW ~ 0.2) is 0.04. Another experiment was done with 

the chemical sulfolane (log KOW = -0.8, KAW ~ 10-9). The concentration ratio fruit to soil 

was 2.8, while the model would give a value of 8.2 (scenario: input via soil 1 and soil 

2). For leaves, a BCF of 652 was found, which seems rather high. However, the model, 
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too, gave a BCF of 286. This means that the model is well able to identify compounds 

with very high uptake from soil.  

 

No other full-scale study for uptake of organic environmental chemicals from soil into 

apples is available, but several aspects of the model can be compared to experimental 

results. The diffusion coefficient of TCE in poplar stem was determined [17] and ranged 

from 5 x 10-7 to 2 x 10-6 cm2 s-1, while the model gives 1.2 x 10-6 cm2 s-1.  The 

movement of TCE in tree trunks was determined [32]. The loss with height was 

between 70% and 53% for 17 to 18.6 m height. The model gives a loss of 64% with 17 

m height. PCDD/F uptake from air was the major pathway for contamination of pear 

and apple fruits [33]. This is in accordance with the model predictions for lipophilic 

semivolatile compounds (Figs. 3 and 4). The transport velocity of lipophilic compounds 

in soybean stems, compared to water, is reduced, as predicted by the model [34].  

 

TSCF. In 1974, Shone et al. [35] introduced the transpiration stream concentration 

factor TSCF, which is the ratio of the concentration in xylem to that in external solution 

and is a measure for translocation upwards. Briggs et al. fitted the characteristic bell-

shaped (Gaussian) curve to the log KOW [16]: 

 

⎭
⎬
⎫

⎩
⎨
⎧

×=
2.44

1.78) - K (log-exp0.784  TSCF
2

OW  

 

This curve was confirmed [36] and used frequently in plant uptake models 

[1,2,8,9,10,11,12,14,15,19 and others]. The TSCF does not appear in the equations of 

the new fruit tree model. The model can nonetheless reproduce this optimum curve. If 

uptake is only from thick roots (CSoil1 = 0), the calculated concentration ratio of xylem 

(CXy2, out of thick roots) to soil water (CW2) is rather similar to the TSCF-regression of 
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Briggs et al. (Figure 7). This is due to slow uptake of very polar compounds (resistance 

of the root biomembrane), and to growth dilution of the very non-polar compounds. 

However, if uptake from fine roots is added (CSoil1 ≠ 0), the TSCF of polar compounds 

is high. Interestingly, plants produce root hairs (fine roots) only in soil or in water 

vapour, but never in hydroponic solution (own observation). The experiments of Briggs 

et al. [16] and of Burken and Schnoor [36] were done in hydroponic solution, and the 

optimum curve was observed. For experiments done in soil [31] or fine sand [27], no 

reduced uptake of polar compounds could be observed. A sensitivity study shows that 

many parameters influence the TSCF (and thus the translocation upwards). For polar 

compounds, transpiration stream and a couple of root parameters, such as water- and 

gas pores, radius (and subsequently surface area), mass and permeability (mainly of the 

biomembrane) are sensitive for the TSCF. For lipophilic compounds, transpiration, lipid 

content, root mass and growth rate influence the TSCF most. It can thus be expected 

that the TSCF is not a constant, but varies largely with the conditions.  

 

To summarize, so far there have not been conflicting experimental results that would 

falsify the model output.  

 

[Please place here Figure 7] 

 

3.4 Comparison of new and former fruit tree model 

 

The first fruit tree model was published in 2003 [14]. It was purely based on advection 

and did not consider diffusive exchange processes. This made the mass balance 

equations easy, as geometry and permeabilities could be ignored. On the other hand, the 

model was limited to non-volatile compounds and could not consider uptake from air. 
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Another difference is that the concept of TSCF was omitted in the new model version. 

Indeed, this yields more accurate results [31].  

 

4 Conclusions and outlook  

 

A new fruit tree model was developed, considering eight compartments and using 

equilibrium, advective transport, diffusive exchanges and growth dilution as main 

processes. The model predicts that polar, non-volatile compounds will effectively be 

transported from soil to fruits, while lipophilic, non-volatile compounds will accumulate 

from air into fruits. Measured results show no disagreement with the model predictions. 

The model might assist in designing and interpreting experimental studies, and be useful 

for human exposure assessment.  

 

The new model concept might furthermore be the base of a series of models for other 

food crops, such as wheat, maize, rice and other types of fruits and fruit vegetables. 

Only minor adaptions will be necessary, and other input data.  

 

Please contact the author for a free spread-sheet version of the Fruit Tree Model.  
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Appendix 1: The permeability P for roots 

The basis to describe the exchange across boundaries between different compartments is Fick's 1st Law 

of diffusion:  

( )21
12 CC

x
DA

dt
dm

−×
∆

×−=  

where m is the mass of chemical (mg), t is the time (d), dm12/dt is the flux of chemical from compartment 

1 to compartment 2 (mg d-1), A is the exchange area (m2), D is the diffusion coefficient (m2 d-1), ∆x is the 

diffusion length (m), C is the concentration (mg m-3) and 1 and 2 are indicating phase 1 and 2. It is 

common to name the ratio D/∆x "permeability" P (m d-1), synonyms are exchange velocity, transfer 

velocity or conductivity. If the concentration ratio between phase 1 and 2 in equilibrium is not 1, the 

partition coefficient K needs to adjust this.  

( )2121
12 / KCCPA

dt
dm

−××=  

Now, P is phase-specific. The following definitions are made:  

1st: All diffusive fluxes are related to the water phase. 

2nd: The term "permeability" P (unit m d-1) is used for all diffusive exchanges.  

3rd: For solids (plants and soil), concentrations are expressed in the unit mg kg-1. For liquids (soil 

solution, xylem sap), the unit mg L-1 is used. For gas (air), the unit mg m-3 is used. This requires scaling 

factors. For roots, Fick's 1st Law of Diffusion is  

)/(1000 RWRWRR
RW KCCPA

dt
dm

−×××=  

where A is the surface area of root R (m2), P is the permeability (m d-1), CW is the concentration of the 

chemical in soil solution (water, mg L-1), CR is the concentration in root (mg kg-1), and KRW is the 

partition coefficient between root and water (L kg-1). The factor 1000 is the scaling factor from m3 d-1 to L 

d-1.  

Permeability of the root. It is assumed that the major resistance to diffusive exchange is within the root 

tissue. P is estimated in the following way: Only the dissolved fraction of chemical, fW, and the gaseous 

fraction of chemical, fG, are mobile and can diffuse, while the adsorbed fraction of the chemical is 

considered immobile. The fraction of chemical fW (-) dissolved in the water WR of the root is 
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R

totalRoot

Rootwater
W K

W
C
C

f ==  



The fraction of chemical fG (-) present in gas pores GR (L kg-1) of the root is   

RWK
AWR

G
KG

f
×

=  

The diffusion coefficients of chemicals are related to the square root of the molar mass M (g mol-1). The 

diffusion coefficient of the chemical in pure water DW related to the diffusion coefficient of oxygen in 

water DO2 is [11] 

M
DD 32

×= OW 2  

where DO2 is the diffusion coefficient of oxygen O2 (M = 32 g mol-1) in water = 1.728 x 10-4 m2 d-1. For 

the estimation of the diffusion coefficient in gas DG, the diffusion coefficient of water vapour DH2O in air 

is used: 

MOHG 2DD 18
×=  

, with DH2O = 2.22 m2 d-1. In porous solids (such as plant tissue), the diffusion is hampered by a "labyrinth 

factor", named tortuosity T. This tortuosity is estimated by the method of Millington and Quirk [37], for 

diffusion in root water and gas pores:  

2W

3/10

)( RR

R

GW
W

T
+

=  

2

3/10

)( RR

R
G GW

G
T

+
=  

The effective diffusion coefficient in the water pores of the roots is then  

WT  WWeffW fDD ××=,

and in the gas pores it is  

GGGeffG TfDD ××=,  

The sum of both gives the diffusion coefficient of the chemical in root tissue DR (m2 d-1) 

effGeffWR DDD ,, +=  

and by division by the diffusion length (m), the permeability of the root tissue, Ptissue (m d-1), is found 

x∆
DP R

tissue =  
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The diffusion length, ∆x (m), is set to 1/2 radius of the root. For polar compounds, the root biomembrane 

provides an additional resistance. The permeability of the root biomembrane, PM, is estimated with [26] 

7.6log1086400 −×= OWKP  M

The total permeability of the roots, P  (m d-1), is then  R

R 11
+

Mtissue PP

P 1
=    

 

 

ndix 2: Permeability of leaves Appe

Stomata. If the water loss Q (L d-1) by transpiration and the leaf surface area A (m2) of the plant are 

known, there is an easy way to estimate the resistance of the stomatal pathway. It requires furthermore 

temperature and relative humidity. The loss of water from leaves is assumed to follow Fick's 1st Law: 

( )AirOHLeafOH
OH

dt
dm

,2,2
2 CCgA −××=   

The loss of water, dmH2O/dt (kg water d-1), is identical to the transpiration Q (L d-1), if the density of water 

is assumed to be 1 kg L-1. The equation can be rearranged to  

)( ,2,2
2

AirOHLeafOH
OH CCA

Q
−×

g =  

where g (m d-1) is the conductance of the stomatal pathway for water. The (gas-phase) concentration of 

water inside the leaves, CH2O,Leaf (kg m-3) can be calculated from the temperature, assuming that the 

interior of the leaf is water-saturated. The saturation vapour pressure of water pH2O,sat (Pa) at given 

temperature Temp (°C) may be calculated by the empirical Magnus-equation:  

Temp+×= 237
Temp

satOHp
×5.7

,2 107.610    (note: it is really 237 and not 273).  

The Ideal Law of Gases states that  

V
n

TR
p

=  
×

where p is the vapour pressure (of water), R is the universal gas constant (8.314 J mol-1 K-1), T is the 

absolute temperature (K) = Temp (°C) + 273.15, n is the amount of water molecules (mol) and V is the 
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volume (m3). Remains to recalculate from mol H2O m-3 to kg H2O m-3, (1 mol H2O = 0.018 kg), which 

gives the saturation water concentration at leaf temperature:  

T
p

C OH

×
=

9.461
2

satOH ,2  

The concentration of water vapour in air is simply the saturation water concentration times the relative 

humidity rh (-). To be exact, the leaf temperature and the air temperature should be used, which may 

differ to some degrees. However, for humidities << 1, this would not play a major role. We receive the 

equation  

)( ,2,2
2

satOHsatOH
OH CrhCA ×−×

Qg =  

To come from the conductance of water to that of the chemical, we use the fact that  

x∆
D

g G=  

The diffusion pathway does not change with the chemical, while the diffusion coefficient does, and so  

MOHS 2gg 18
×=  

where gS (m d-1) is the conductance for the stomatal exchange between leaves and air for a chemical with 

molar mass M (g mol-1). The permeability PS (m d-1) of the stomatal pathway, related to water, is then 

conductance times partition coefficient air-water KAW:  

AWSS KgP ×=  

 

Cuticles. The cuticle is a waxy layer all around the leaf. A regression equation derived for the 

permeability PC of citrus cuticles is [38]  

2.11log704.010 −×= Kow
CP   (m s-1) 

 

Air boundary layer. After the chemical has crossed the cuticle, the next resistance is provided by the air 

boundary layer around the leaf. It plays a role for compounds with low KAW. A resistance of 200 m s-1 

was estimated as typical for a chemical with molar weight M = 300 g mol-1 [39]. The conductance of the 

air boundary layer, gAir, for a chemical with molar mass M is thus  

MAir
300

200
1 -1g ×=   (m s ) 

 28



 

The total permeability of the cuticle pathway (m d-1) is   

86400
11

1
, ×=totalC  P

×
+

KgP AWAirC

The exchanges of the chemical through c  stomata occur in parallel, and thus the permeabilities uticle and

are added to derive the total permeability for the exchange between leaf and air, PL (m d-1):  

totalCSL PPP .+=  

Chemicals with very low vapour pressure (high KOA) are predominantly bound to particles. It is 

recommended to consider dry and wet particle deposition. A methodology is given in the CemoS 

handbook [11]. For chemicals with very low KAW  10(< ant.  -6), wet gaseous deposition becomes relev

 

 29



References  

 

[1] European Commission. Technical Guidance Document in Support of Commission 

Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission 

Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances. European 

Commission, Office for Official Publications of the European Communities, 

Luxemburg, Luxemburg (1996). 

 

[2] European Commission: EUSES, the European Union System for the Evaluation of 

Substances. National Institute of Public Health and the Environment (RIVM), The 

Netherlands (1996). 

  

[3] S. Himmerich, H. Seiler, K. Gedrich, J. Linseisen. Bayrische Verzehrsstudie (BVS 

II) Abschlussbericht. Report im Auftrag des Bayerischen Staatsministeriums für 

Umwelt, Gesundheit und Verbraucherschutz (2003). 

 

[4] G. Rippen. Handbuch Umweltchemikalien. ecomed, Landsberg a.L., D (2006).  

 

[5] European Commission: Council Directive 98/83/EC of 3 November 1998, on the 

quality of water intended for human consumption. Official Journal of the European 

Communities, L 330/32 (1998). 

 

[6] European Food Safety Authority. Pesticides are EU citizens' top food-related health 

concern. Available online at http://www.euractiv.com (accessed 17 March 2006).  

 

 30



[7] Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. National report on 

pesticide residues in foodstuff.  Available online at www.bvl.bund.de/berichtpsm 

(accessed 17 March 2006). 

 

[8] S. Trapp, J.C. Mc Farlane, M. Matthies. Environ. Toxicol. Chem. 13, 413 (1994). 

 

[9] S. Trapp, M. Matthies. Environ. Sci. Technol. 29, 2333-2338; erratum 30, 360 

(1995). 

 

[10] S. Trapp, J.C. Mc Farlane (Eds.). Plant Contamination. Modeling and Simulation 

of Organic Chemical Processes. Lewis Pub., Boca Raton, FL (1995). 

 

[11] S. Trapp, M. Matthies. Chemodynamics and Environmental Modeling. Springer, 

Heidelberg, D (1998). 

 

[12] S. Trapp, K.S.B. Miglioranza, H. Mosbæk. Environ. Sci. Technol. 35, 1561 (2001). 

 

[13] S. Trapp. Environ. Toxicol. Chem. 21, 203 (2002). 

 

[14] S. Trapp, D. Rasmussen, L. Samsøe-Petersen. SAR - QSAR Environ. Res. 14, 17 

(2003). 

 

[15] S. Trapp, M. Matthies, I. Scheunert, E.M. Topp. Environ. Sci. Technol. 24, 1246 

(1990). 

 

[16] G.G. Briggs, R.H. Bromilow, A.A. Evans Pestic. Sci. 13, 495 (1982). 

 31



 

[17] X. Ma, J. Burken. Environ. Sci. Technol. 38, 4580 (2004). 

 

[18] B. Huber. Die Saftströme der Pflanzen, p. 42, Springer, Berlin, D (1956).  

 

[19] S. Trapp. In Plant Contamination. Modeling and Simulation of Organic Chemical 

Processes, S. Trapp, J.C. Mc Farlane (Eds.), pp. 107-151, Lewis Pub., Boca Raton, FL 

(1995). 

 

[20] A. Lang. J. Exp. Bot. 41, 645 (1990).  

 

[21] D.A. Kleier. Plant Physiol. 86, 803 (1988).  

 

[22] R.H. Bromilow, K. Chamberlain. In Plant Contamination. Modeling and 

Simulation of Organic Chemical Processes, S. Trapp, J.C. Mc Farlane (Eds.), pp. 37-68, 

Lewis Pub., Boca Raton, FL (1995). 

 

[23] I. Elmadfa, W. Aign, E. Muskat, D. Fritsche, H.-D. Cremer. Die grosse GU 

Nährwert Tabelle. Gräfe und Unzer, Giessen, D (1991). 

 

[24] L.C. Davis, L.E. Erickson, C.T. Jones. Rev. Biotech. 7, 43 (1987).  

 

[25] M.L. Meredith, R.A. Hites. Environ. Sci. Technol. 21, 709 (1987).  

 

[26] S. Trapp. Environ. Sci. & Pollut. Res. 11, 33 (2004). 

 

 32



[27] M. Larsen, A. Ucisik, S. Trapp. Environ. Sci. Technol. 39, 2135 (2005). 

 

[28] J.G. Li, M.H. Gerzabek, K. Mück. Die Bodenkultur 45, 15 (1994). 

 

[29] S. Trapp, S. Schwartz. Chemosphere 41, 965 (2000). 

 

[30] M. Horstmann, M. McLachlan. Atmos. Environ. 32, 1799 (1998). 

 

[31] B.K. Chard, W.J. Doucette, J.K. Chard, B. Bugbee, K. Gorder. Trichloroethylene 

uptake by apple and peach trees: greenhouse study. Environ. Sci. Technol. 40, 4788.  

 

[32] D.A. Vroblesky, C.T. Nietch, J.T. Morris. Environ. Sci. Technol. 33, 510 (1999). 

 

[33] J.F. Müller, A. Hülster, O. Päpke, M. Ball, H. Marschner. Chemosphere 27, 195 

(1993).  

 

[34] J.K. McCrady, C. McFarlane, F.T. Lindstrom. J. Exp. Bot. 38, 1875 (1987). 

 

[35] M.G.T. Shone, O.B. Bartlett, A.V. Wood J. Exp. Bot. 25, 401 (1974). 

 

[36] J.G. Burken, J.L. Schnoor. Environ. Sci. Technol. 32, 3379 (1998). 

 

[37] W.A. Jury, W.F. Spencer, W.J. Farmer. J. Environ. Qual. 12, 558 (1983); erratum 

16, 448.  

 

[38] F. Kerler, J. Schönherr. Arch. Environ. Contam. Toxicol. 17, 7 (1988). 

 33



 

[39] N. Thompson. Pestic. Sci. 14, 33 (1983). 

 

 34



 

Table 1. Soil data (assumed identical for soil layer 1 and 2). 

Parameter Symbol Value Unit Reference 

Soil wet density  ρwet 1.95 kg L-1 Standard soil  

Organic carbon content  OC 0.02 g g-1 [2] 

Soil pore water  WS  0.35 L L-1 Standard soil  

Soil gas pores  GS  0.1 L L-1 Standard soil  

Soil dry density  ρdry = ρwet - WS   kg L-1 Standard soil  
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Table 2. Plant parameters, independent of size.  

Parameter Symbol Value Unit Reference 

Root water content  WR 0.89 L kg-1 [23] 

Root lipid content (1) LR 0.025 g g-1 [13] 

Root gas pores  GR 0.1 L kg-1 [13] 

Growth rate root  kR 0.1 d-1 [13] 

Growth rate stem  kSt 2.74 x 10-5 d-1 [12] 

Stem water fraction WSt 0.38 L kg-1 [12] 

Stem gas pores  GSt 0.2 L kg-1 [12]  

Leaves water content  WL 0.8 L kg-1 [9] 

Leaves lipid content (1) LL 0.02  g g-1 [9]  

Growth rate leaves kL 0.035 d-1 [9] 

Relative humidity  rh 0.5 (-) generic 

Temperature  Temp 20 °C generic 

Apple fruit water 

content 

WF 0.844 L kg-1 [23]  

Apple fruit air pores  GF 0.25 L kg-1 [24] 

Apple fruit lipid 

content 

LF 0.006 g g-1 [23] 

Growth rate fruits kF 0.035 d-1 see leaves 

Diffusion length fruits x 0.01 m generic 

(1) This lipid content includes all lipid-like compounds, not only fat and oil, but also 

waxes like suberin and cutin.  
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Table 3. Size-dependent plant parameters.  

Parameter Symbol Value Unit Reference 

Transpiration  Q 0.822 L d-1 [14] 

Water flow velocity  uW 40  m d-1 [18] 

Mass of thick roots MR 1  kg [12] 

Radius of thick roots  RR 0.01 m generic 

Stem height  z 5 m generic 

Stem radius RSt 0.1 m generic 

Leaf area  AL 2 m2 [9] for 0.4 kg 

Leaf mass ML 0.4 kg [12] 

Fruit radius  RF 0.04 m generic 

Fruit mass MF 0.4 kg same as leaves 

Bark thickness dBark 0.01 m  generic 
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Figure Captions 

 

Figure 1. Average consumption data of Bavarians, age class 25 - 50 years [3], tap water 

[2]; "Cola" refers to all softdrinks with caffeine.  

 

Figure 2. Model structure. 

 

Figure 3. Chemical space (x-axis log KOW and y-axis log KAW) plotted versus calculated 

concentrations  (mg/kg) in top stem (a), leaves (b) and fruits (c); input scenario: CSoil 1 = 

1 mg kg-1. 

 

Figure 4. Chemical space (x-axis log KAW and y-axis log KOW) plotted versus calculated 

concentrations (mg/kg) in top stem (a), leaves (b) and fruits (c); input scenario: CAir = 1 

µg m-3. 

 

Figure 5. Travel time (days) from the bottom to the top of the stem for compounds with 

varying log KOW. 

 

Figure 6. Chemical space (x-axis log KOW and y-axis log KAW) plotted versus half-time 

for loss from stem (days).  

 

Figure 7. Transpiration stream concentration factor TSCF (CXy2 / CW) calculated by the 

model with/out fine roots compared to the regression of Briggs et al. [15]. 
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Trapp Figure 2 

 40



-2 0 2 4 6
1

-3
-7

0.0001

0.001

0.01

0.1

1

10

100

C Stem 

log Kow

log Kaw

1
-1
-3
-5
-7
-9

 

-2 0 2 4 6
1

-3
-7

0.0001

0.001

0.01

0.1

1

10

100

1000

C Leaves

log Kow

log Kaw

1
-1
-3
-5
-7
-9

 

-2 0 2 4 6
1

-3
-7

0.0001

0.001

0.01

0.1

1

10

C Fruit

log Kow

log Kaw

1
-1
-3
-5
-7
-9

 

Trapp Figure 3 a b c  
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