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Abstract

Creating accurate meta-embeddings from pre-

trained source embeddings has received at-

tention lately. Methods based on global and

locally-linear transformation and concatena-

tion have shown to produce accurate meta-

embeddings. In this paper, we show that the

arithmetic mean of two distinct word embed-

ding sets yields a performant meta-embedding

that is comparable or better than more com-

plex meta-embedding learning methods. The

result seems counter-intuitive given that vector

spaces in different source embeddings are not

comparable and cannot be simply averaged.

We give insight into why averaging can still

produce accurate meta-embedding despite the

incomparability of the source vector spaces.

1 Introduction

Distributed vector representations of words,

henceforth referred to as word embeddings, have

been shown to exhibit strong performance on a

variety of NLP tasks (Turian et al., 2010; Zou

et al., 2013). Methods for producing word em-

bedding sets exploit the distributional hypothesis

to infer semantic similarity between words within

large bodies of text, in the process they have been

found to additionally capture more complex lin-

guistic regularities, such as analogical relation-

ships (Mikolov et al., 2013c). A variety of meth-

ods now exist for the production of word embed-

dings (Collobert and Weston, 2008; Mnih and Hin-

ton, 2009; Huang et al., 2012; Pennington et al.,

2014; Mikolov et al., 2013a). Comparative work

has illustrated a variation in performance between

methods across evaluative tasks (Chen et al., 2013;

Yin and Schütze, 2016).

Methods of “meta-embedding”, as first pro-

posed by Yin and Schütze (2016), aim to con-

duct a complementary combination of informa-

tion from an ensemble of distinct word embedding

sets, each trained using different methods, and re-

sources, to yield an embedding set with improved

overall quality.

Several such methods have been proposed.

1TON (Yin and Schütze, 2016), takes an ensem-

ble of K pre-trained word embedding sets, and

employs a linear neural network to learn a set of

meta-embeddings along with K global projection

matrices, such that through projection, for every

word in the meta-embedding set, we can recover

its corresponding vector within each source word

embedding set. 1TON+ (Yin and Schütze, 2016),

extends this method by predicting embeddings for

words not present within the intersection of the

source word embedding sets. An unsupervised lo-

cally linear meta-embedding approach has since

been taken (Bollegala et al., 2017), for each source

embedding set, for each word; a representation

as a linear combination of its nearest neighbours

is learnt. The local reconstructions within each

source embedding set are then projected to a com-

mon meta-embedding space.

The simplest approach considered to date, has

been to concatenate the word embeddings across

the source sets (Yin and Schütze, 2016). Despite

its simplicity, concatenation has been used to pro-

vide a good baseline of performance for meta-

embedding.

A method which has not yet been proposed is

to conduct a direct averaging of embeddings. The

validity of this approach may perhaps not seem ob-

vious, owing to the fact that no correspondence ex-

ists between the dimensions of separately trained

word embedding sets. In this paper we first pro-

vide some analysis and justification that, despite

this dimensional disparity, averaging can provide

an approximation of the performance of concate-

nation without increasing the dimension of the em-

beddings. We give empirical results demonstrat-

ing the quality of average meta-embeddings. We
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make a point of comparison to concatenation since

it is the most comparable in terms of simplicity,

whilst also providing a good baseline of perfor-

mance on evaluative tasks. Our aim is to highlight

the validity of averaging across distinct word em-

bedding sets, such that it may be considered as a

tool in future meta-embedding endeavours.

2 Analysis

To evaluate semantic similarity between word em-

beddings we consider the Euclidean distance mea-

sure. For ℓ2 normalised word embeddings, Eu-

clidean distance is a monotonically decreasing

function of the cosine similarity, which is a popu-

lar choice in NLP tasks that use word embeddings

such as semantic similarity prediction and analogy

detection (Levy et al., 2015; Levy and Goldberg,

2014). We defer the analysis of other types of

distance measures to future work. By evaluating

the relationship between the Euclidean distances

of pairs of words in the source embedding sets

and their corresponding Euclidean distances in the

meta-embedding space we can obtain a view as

to how the meta-embedding procedure is combin-

ing semantic information. We begin by examining

concatenation through this lens, before moving on

to averaging.

2.1 Concatenation

We can express concatenation by first zero-

padding our source embeddings, before combin-

ing them through addition.

Without loss of generality, we consider both

concatenation and averaging over only two source

word embedding sets for ease of exposition. Let

S1 and S2 be unique embedding sets of real-valued

continuous embeddings. We make no assumption

that S1 and S2 were trained using the same method

or resources. Consider two semantically similar

words u and v such that u,v ∈ S1 ∩ S2. Let uS1

and vS1 , and uS2 and vS2 denote the specific word

embeddings of u and v within the embeddings S1,

and S2 respectively.

Let the dimensions of embeddings S1, and S2

be denoted dS1 , and dS2 respectively. We zero-

pad embeddings from S1 by front-loading dS2 zero

entries to each word embedding vector. In con-

trast, we zero-pad embeddings from S2 by adding

dS1 zero entries to the end of each embedding vec-

tor. The resulting embeddings from S1 and S2 now

share a common dimension of dS1 + dS2 . Denote

the resulting embeddings of any word u ∈ S1∩S2,

as uzero
S1

and u
zero
S2

respectively. Now, combining

our source embeddings through addition we obtain

equivalency to concatenation.
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Note that the zero-padded vectors are orthogonal.

Let the Euclidean distance between these words

in each embedding be denoted by ES1 and ES2 .

Note that for any vector u ∈ R
n the addition of

zero-valued dimensions does not affect the value

of its ℓ2-norm. So we have
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Consider the Euclidean distance between u and v

after concatenation.
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For any two words belonging to the resultant em-

bedding obtained by concatenation, the distance

between these words in the resultant space is the

root of the sum of squares of Euclidean distances

between these words in S1 and S2.

2.2 Average word embeddings

Here we now make the assumption that S1 and S2

have common dimension d.1

1Without loss of generality, source embeddings with dif-
ferent dimensionality can be appropriately padded to have the
same dimensionality.
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Despite there being no obvious correspondence

between dimensions of S1 and S2 we can show

that the average embedding set retains semantic

information through preservation of the relative

distances between words.

Consider the positioning of words u, and v af-

ter performing a word-wise average between the

source embedding sets. The Euclidean distance

between u and v in the resultant meta-embedding

is given by

EAV G

=

∣
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2
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∝
√

(ES1)
2 + (ES2)

2 − 2ES1ES2 cos(θ)

Now in this case, unlike concatenation, we have

not designed our source embedding sets such that

they are orthogonal to each other, and so it seems

we are left with a term dependant on the angle be-

tween (uS1−vS1) and (vS2−uS2). However, Cai

et al. (2013) showed that, if X is a set of random

points ∈ R
n with cardinality |X |, then the limit-

ing distribution of angles, as |X | → ∞, between

pairs of elements from X , is Gaussian with mean

π/2. In addition, Cai et al. (2013) showed that the

variance of this distribution shrinks as the dimen-

sionality increases.

Word embedding sets typically contain in the

order of ten thousand or more points, and are typ-

ically of relatively high dimension. Moreover,

assuming the difference vector between any two

words in an embedding set is sufficiently random,

we may approximate the limiting Gaussian distri-

bution described by Cai et al. (2013). In such a

case the expectation would then be that the vec-

tors (uS1 − vS1) and (vS2 −uS2) are orthogonal,

leading to the following result.

E[EAV G] =
1

2

√

(ES1)
2 + (ES2)

2 ∝ ECONC

(4)

To summarise, if word embeddings can be shown

to be approximately orthogonal, then averaging

will approximate the same information as concate-

nation, without increasing the dimensionality of

the embeddings.

3 Experiments

We first empirically test our theory that word

embeddings are sufficiently random and high di-

mensional, such that they are approximately all

orthogonal to each other. We then present an

empirical evaluation of the performance of the

meta-embeddings produced through averaging,

and compare against concatenation.

3.1 Datasets

We use the following pre-trained embedding sets

that have been used in prior work on meta-

embedding learning (Yin and Schütze, 2016; Bol-

legala et al., 2017) for experimentation.

• GloVe (Pennington et al., 2014). 1,917,494

word embeddings of dimension 300.

• CBOW (Mikolov et al., 2013b). Phrase em-

beddings discarded, leaving 929,922 word

embeddings of dimension 300.

• HLBL (Turian et al., 2010). 246,122 hierar-

chical log-bilinear (Mnih and Hinton, 2009)

word embeddings of dimension 100.

Note that the purpose of this experiment is not

to compare against previously proposed meta-

embedding learning methods, but to empirically

verify averaging as a meta-embedding method and

validate the assumptions behind the theoretical

analysis. By using three pre-trained word em-

beddings with different dimensionalities and em-

pirical accuracies, we can evaluate the averaging-

based meta-embeddings in a robust manner.

We pad HLBL embeddings to the rear with 200

zero-entries to bring their dimension up to 300.

For GloVe, we ℓ2 normalise each dimension of

the embedding across the vocabulary, as recom-

mended by the authors. Every individual word

embedding from each embedding set is then ℓ2-

normalised. The proposed averaging operation, as

well as concatenation, operate only on the inter-

section of these embeddings. The intersectional

vocabularies GloVe ∩ CBOW, GloVe ∩ HLBL,

and CBOW ∩ HLBL contain 154,076; 90,254; and

140,479 word embeddings respectively.

3.2 Empirical distribution analysis

We conduct an empirical analysis of the distribu-

tion of the angle ∢[(uS1 − vS1), (vS2 − uS2)]
for each pair of datasets. Table 1 shows the

mean and variance of these distributions, obtained
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Figure 1: Distribution of angles between embeddings

within GloVe ∩ CBOW.

from samples of 200,000 random pairs of words

from each intersectional vocabulary. We find that

the angles are approximately normally distributed

around π/2.

Embeddings µ σ
2

GloVe & CBOW 1.5609 0.0121
GloVe & HLBL 1.5709 0.0129
CBOW & HLBL 1.5740 0.0126

Table 1: Observed distribution parameters.

Figure 1 shows a normalised histogram of the

results for GloVe ∩ CBOW, along with a nor-

mal distribution characterised by the sample mean

and variance. GloVe ∩ HLBL, and CBOW ∩
HLBL plots are not shown due to space limita-

tions, but are similarly normally distributed. This

result shows that the pre-trained word embeddings

approximately satisfy the predictions made by Cai

et al. (2013), thereby empirically justifying the as-

sumption made in the derivation of (4).

3.3 Evaluation Tasks

3.3.1 Semantic Similarity

We measure the similarity between words by cal-

culating the cosine similarity between their em-

beddings; we then calculate Spearman correlation

against human similarity scores. The following

datasets are used: RG (Rubenstein and Goode-

nough, 1965), MC (Miller and Charles, 1991),

WS (Finkelstein et al., 2001), RW (Luong et al.,

2013), and SL (Hill et al., 2015).

3.3.2 Word Analogy

Using the Google dataset GL (Mikolov et al.,

2013b) (19544 analogy questions), we solve ques-

tions of the form a is to b as c is to what?, using

Embeddings RG MC WS RW SL GL

sources
HLBL 100 35.3 49.3 35.7 19.1 22.1 15.0
CBOW 300 76.0 82.2 69.8 53.4 44.2 67.1
GloVe 300 82.9 87.0 75.4 48.7 45.3 68.7

AVG
CBOW+HLBL 300 69.2 81.0 60.1 48.7 37.3 49.4
GloVe+CBOW 300 82.2 87.0 74.5 52.9 46.5 73.8
GloVe+HLBL 300 73.7 74.1 64.2 44.6 38.8 49.5

CONC
CBOW+HLBL 400 68.7 80.2 62.9 49.1 39.6 53.2
GloVe+CBOW 600 83.0 88.8 76.4 54.8 46.3 75.5
GloVe+HLBL 400 73.7 80.1 65.5 46.4 40.0 53.8

Table 2: Results on word similarity, and analogical

tasks. Best performances bolded per task. Dimension-

ality of the meta embedding is shown next to the source

embedding names.

the CosAdd method (Mikolov et al., 2013c) shown

in (5). Specifically, we determine a fourth word d

such that the similarity between (b− a+ c) and d
is maximised.

CosAdd(a : b, c : d) = cos(b− a+ c, d) (5)

3.4 Discussion of results

Table 2 shows task performance for each source

embedding set, and for both methods on every pair

of datasets. In our experiments concatenation ob-

tains better overall performance. However, aver-

aging offers improvements over the source embed-

ding sets for semantic similarity task SL and word

analogy task GL, on the combination of CBOW

and GloVe. HLBL has a negative effect on CBOW

and GloVe, but the performance of averaging is

close to that of concatenation. An advantage of

averaging when compared against concatenation,

is that the dimensionality of the produced meta-

embedding is not increased beyond the maximum

dimension present within the source embeddings,

resulting in a meta-embedding which is easier to

process and store.

4 Conclusion

We have presented an argument for averaging as

a valid meta-embedding technique, and found ex-

perimental performance to be close to, or in some

cases better than that of concatenation, with the

additional benefit of reduced dimensionality. We

propose that when conducting meta-embedding,

both concatenation and averaging should be con-

sidered as methods of combining embedding

spaces, and their individual advantages consid-

ered.

197



References

Danushka Bollegala, Kohei Hayashi, and Ken-ichi
Kawarabayashi. 2017. Think globally, embed
locally—locally linear meta-embedding of words.
arXiv preprint arXiv:1709.06671 .

Tony Cai, Jianqing Fan, and Tiefeng Jiang. 2013.
Distributions of angles in random packing on
spheres. The Journal of Machine Learning Research
14(1):1837–1864.

Yanqing Chen, Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. 2013. The expressive power of word
embeddings. arXiv preprint arXiv:1301.3226 .

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning. ACM, pages 160–167.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2001. Placing search in context: The con-
cept revisited. In Proceedings of the 10th interna-
tional conference on World Wide Web. ACM, pages
406–414.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics 41(4):665–695.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1. Association for Com-
putational Linguistics, pages 873–882.

Omer Levy and Yoav Goldberg. 2014. Linguistic reg-
ularities in sparse and explicit word representations.
In CoNLL.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of Association
for Computational Linguistics 3:211–225.

Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with
recursive neural networks for morphology. In
CoNLL. pages 104–113.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Hlt-naacl. volume 13,
pages 746–751.

George A Miller and Walter G Charles. 1991. Contex-
tual correlates of semantic similarity. Language and
cognitive processes 6(1):1–28.

Andriy Mnih and Geoffrey E Hinton. 2009. A scal-
able hierarchical distributed language model. In
Advances in neural information processing systems.
pages 1081–1088.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Herbert Rubenstein and John B Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM 8(10):627–633.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for compu-
tational linguistics. Association for Computational
Linguistics, pages 384–394.

Wenpeng Yin and Hinrich Schütze. 2016. Learning
word meta-embeddings. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 1351–1360.

Will Y Zou, Richard Socher, Daniel M Cer, and
Christopher D Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
EMNLP. pages 1393–1398.

198


