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scalars residing at the boundary of dS4 at future timelike infinity [5]. For further develop-

ments in this direction, see [6–12]. These studies mostly exploit the higher spin symmetries.

On the other hand, a detailed bulk description of the early universe physics, including the

inflationary era, requires understanding of accelerating solutions of Vasiliev theory and cos-

mological perturbations around them. Such solutions have isometries forming a subgroup

of the de Sitter spacetime symmetries.

Higher spin gauge symmetries can be broken by quantum [13] as well as classical

effects. In the latter case, a simple mechanism is to replace the maximally symmetric

vacuum by vacua with six Killing symmetries forming a Lie algebra g6, as summarized

in table 1.1 These correspond to the isometries of domain walls, FRW-like solutions and

quasi-instantons.2 While we shall leave to a future work an analysis of the the holographic

aspects of the exact solutions that we present here, we propose to interpret the domain

walls as bulk duals of vacua of three-dimensional massive quantum field theories arising

through spontaneous breaking of conformal (higher spin) symmetries; for a relatively recent

study of spontaneous breaking of scale invariance in certain CFTs in D = 3, see [16].

In this paper, we shall use a solution generating technique [17–19] to build g6-invariant

solutions to Vasiliev’s bosonic theory with non-vanishing (positive or negative) cosmological

constant from gauge functions, representing large gauge transformations that alter the

asymptotics of the gauge fields, and g6-invariant scalar field profiles in the maximally

symmetric background. Solutions of Vasiliev’s equations with g3, g4 and g6 symmetries,

which are subgroups of the AdS4 symmetry group, were constructed only at the linearized

level in [14] (see [19] for a review) by using a different technique. The fully non-linear

solutions presented in this paper are instead obtained by using a different method based

on a holomorphic factorization ansatz, and in what we refer to as the holomorphic and

L-gauges, described in section 3. In furnishing an interpretation of the solution in terms

of Fronsdal-type fields in spacetime, however, a higher spin transformation needs to be

implemented order by order in weak fields to reach what we refer to as the Vasiliev gauge,

also discussed in section 3. We have implemented this gauge transformation only at leading

order in this paper, leaving the computation of higher order terms to a future work. As we

shall see in section 5, an important advantage of the method we have used to obtain the

exact solutions in the holomorphic gauge is the validity of linear superposition principle

in constructing solutions, thus facilitating the description of fluctuations around an exact

solution. Even though we leave to future work the analysis of a cosmological perturbation

theory around our solutions, an inspection of the star product algebra among the master

field will lead us to propose that the nonlinear completion of particle excitations over FRW

and domain wall solutions requires black hole-like states (see [18] for the study of scalar

particle fluctuations over higher-spin black hole modes).
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Among all solutions we have found, we shall, in particular, take a closer look at the

FRW-like solution with iso(3) symmetry and positive cosmological constant. We will pro-

vide a perturbative procedure for obtaining the solutions in the Vasiliev gauge mentioned

above, to any order in a suitable perturbation parameter that breaks the de Sitter sym-

metry to iso(3). On the solutions, the scalar field, whose value is vanishing in de Sitter

vacuum, is turned on at first order in the symmetry-breaking parameter, and the metric

gets corrected at the second order. Moreover, at linear order the fields with spins s > 2

vanish in the background solution. Whether they arise in higher orders remains to be de-

termined. At linear order the scalar field behaves similarly to a conformally coupled scalar

field in dS4. In section 5, we shall compare its behaviour with that of the inflaton in the

standard cosmological scenarios.

The FRW-like solutions are intriguing because if higher spin fluctuation fields are

suppressed by the background, then they may yield cosmologically viable models based on

Vasiliev’s theory, opening up a new window for embedding the standard models of particles

and cosmology into higher spin theory, which may be viewed as the unbroken phase of string

theory in which the string is tensionless [2, 21–24]. This setting will inevitably involve the

coupling of an infinite number of (massive) higher spin multiplets. One may envisage a

scenario in which their presence will play a role in the resolution of the initial singularity,

and near the end or after the inflation when the breaking of higher spin symmetry is

expected to take place. A much bolder proposal would be the consideration of only massless

higher spin theory with its matter couplings furnished through the Konstein-Vasiliev or

supersymmetric extension of Vasiliev theory (see [26] for a survey). Such a proposal is

motivated by the high degree of symmetry that may yield a UV finite theory, and by

the availability of a mechanism [13] for breaking of higher spin symmetries by quantum

effects without the need to introduce fields other than those present in the theory, whose

spectrum consists of the two-fold product of the singleton representation of the AdS4

group. Thus it is natural to consider the (matter coupled) higher spin theory as the

candidate for a tensionless limit of string theory, in which all the massive trajectories are

decoupled completely, and to investigate its consequences for the early universe physics.

There are very powerful no-go theorems that forbid accelerating spacetimes in string theory

in its tensile phase (see [27] and references therein), inviting the considerations of non-

perturbative and string loop effects in a full-fledged formulation of string field theory, and

finding its vacuum solutions. On the other hand, higher spin theory can be viewed as a

much simpler version of string field theory, in which finding asymptotically de Sitter vacua

is a more amenable problem.

The introduction of matter and higher spin symmetry breaking remain a largely un-

charted terrain. These aspects are expected to play key roles either for reheating in an

inflationary scenario or an analogous mechanisms in non-inflationary scenarios. In the sim-

plest inflation model in standard cosmology, Einstein gravity and a single real scalar field

with a suitable potential dominate the early inflationary phase. Here we instead envisage

a scenario in which the Einstein plus scalar system is replaced by the bosonic Vasiliev

higher spin theory, which consists of a coupled set of massless fields with all integer spins

s = 0, 1, 2, 3, . . .∞. One can then try to employ the well-known mechanism whereby

– 3 –
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rapidly inflated fluctuation modes with wavelengths larger than the Hubble length freeze

and subsequently re-enter the cosmological horizon after inflation has ended. Assuming

that higher spin symmetry breaking and reheating take place at around the same time,

one can compute the effects of higher spin fluctuations on the CMB observations at large

scales. In these scenarios, it is important to keep in mind that while the higher spin modes

may dissipate in time, their couplings to and mixing with the gravitational field may have

observable effects. Some studies have already been done along these lines, see e.g. [28–30],

but based on assumptions on higher spin dynamics not born out of Vasiliev’s theory. Let

us also note that the analog of the so(1, 3) invariant solution, referred to as the “instanton”

solution in table 1, was obtained as an exact solution for Λ < 0 in [15] and for Λ > 0 as

well in [20]. In the case of Λ < 0, a cosmological implications of the solution has been

discussed in [15] where it has been argued that it leads to a bouncing cosmology, in some

respects reminiscent of the work of [31] based on supergravity considerations.3

This paper is organized as follows: in section 2, we review Vasiliev’s higher spin gravity

equations. They are formulated in terms of master one-form A and master Weyl zero-form

Φ which live on a base manifold X4 × Z4 with coordinates (xµ, Zα
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2 Bosonic Vasiliev model

In what follows, we review the basic properties of Vasiliev’s equations [35] and their classical

solution spaces, including boundary conditions in spacetime and twistor space suitable for

asymptotically (anti-)de Sitter solutions. For a recent review of the exact solutions see [19].

2.1 Review of the full equations of motion

2.1.1 Non-commutative space

Vasiliev’s theory is formulated in terms of horizontal forms on a non-commutative fibered

space C with four-dimensional non-commutative symplectic fibers and eight-dimensional

base manifold equipped with a non-commutative differential Poisson structure. On the

total space, the differential form algebra Ω(C) is assumed to be equipped with an associative

degree preserving product ⋆, a differential d, and an Hermitian conjugation operation †,
that are assumed to be mutually compatible in the sense that if f, g, h ∈ Ω(C), then

(f ⋆ g) ⋆ h = f ⋆ (g ⋆ h) , (2.1)

d(df) = 0 , d(f ⋆ g) = (df) ⋆ g + (−1)|f |f ⋆ (dg) , (2.2)

(df)† = d(f †) , (f ⋆ g)† = (−1)|f ||g|(g†) ⋆ (f †) , (2.3)

where |f | denotes the form degree of f . We shall also assume that4

(f †)† = f . (2.4)

It is furthermore assumed that Ω(C) contains a horizontal subalgebra, Ωhor(C), consisting
of equivalence classes defined using a globally defined closed and central hermitian top-form

on the fiber space, and whose product, differential and hermitian conjugation operation we

shall denote by ⋆, d and † as well.

The base manifold is assumed to be the direct product of a commuting real four-

manifold X4 with coordinates xµ, and a non-commutative real four-manifold Z4 with co-

ordinates Zα
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where the complex doublets obey

[yα
′

, yβ
′

]⋆ = 2iǫα
′β′

, [zα, zβ ]⋆ = −2iǫαβ . (2.9)

The horizontal forms can be represented as sets of locally defined forms on X4 ×Z4 valued

in oscillator algebras A(Y4) generated by the fiber coordinates glued together by transition

functions. Assuming the latter to be defined locally on X4 yields a bundle over X4 with

fibers given by the differential graded associative algebra Ω(Z4) ⊗A(Y4), whose elements

can be given represented using symbols defined using various ordering schemes, which

correspond to choosing different bases for the operator algebra. In what follows, we shall

assume that it is possible to describe the field configurations using symbols defined in the

Weyl ordered basis, which is manifestly Sp(4;R)×Sp(4;R)′ invariant, as well as the normal

ordered basis consisting of monomials in5

aα
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are inner Klein operators obeying

κy ⋆ f ⋆ κy = πy(f) , κz ⋆ f ⋆ κz = πz(f) , (2.14)

for any zero-form f , where πy and πz are the automorphisms of Ω(Z4)⊗A(Y4) defined in

Weyl order by

πy : (x; z, z̄; y, ȳ) 7→ (x; z, z̄;−y, ȳ) , πz : (x; z, z̄; y, ȳ) 7→ (x;−z, z̄; y, ȳ) , (2.15)

and πy ◦ d = d ◦ πy and πz ◦ d = d ◦ πz. It follows that

dJ = 0 , J ⋆ f = π(f) ⋆ J , π(J) = J , π := πy ◦ πz , (2.16)

for any form f , idem



J
H
E
P
0
3
(
2
0
1
8
)
1
5
3

which are compatible with the kinematic conditions and the Bianchi identities, implying

that the classical solution space is invariant under the following infinitesimal gauge trans-

formations:

δA = Dǫ := dǫ+ [A, ǫ]⋆ , δΦ = −[ǫ,Φ]π , (2.22)

for parameters obeying the same kinematic conditions as the connection, viz.

ππ̄(ǫ) = ǫ , ρ(ǫ†) = −ǫ . (2.23)

2.1.5 Component form

Decomposition of the equations of motion under the coordinate basis (~∂µ, ~∂α
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conditions and integer-spin conditions as follows:

ππ̄(Sα, Sα̇) = (−Sα,−Sα̇) , (2.35)

(Sα, Sα̇)
† =

{
(−Sα̇,−Sα) for Λ < 0 ,

(−π(Sα̇),−π̄(Sα)) for Λ > 0 .
(2.36)

Besides being useful in constructing exact solutions, observables and exhibiting certain dis-

crete symmetries, the deformed oscillators facilitate the casting of the equations of motion

into a manifestly Lorentz covariant form.

2.1.7 Discrete symmetries

The equations of motion and the gauge transformations exhibit the following discrete sym-

metries:

i) Holomorphic parity transformation

(Φ, A; ǫ) 7→ (π(Φ), π(A);π(ǫ)) ; (2.37)

ii) Deformed oscillator parity transformation

(Φ, Aµ, Sα
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2.1.8 Manifest Lorentz covariance

To cast the equations on a manifestly Lorentz covariant form, one introduces the field-

dependent generators [35, 36]

M
(tot)
αβ := y(α⋆yβ)−z(α⋆zβ)+S(α⋆Sβ) , M

(tot)

α̇β̇
:= ȳ(α̇⋆ȳβ̇)− z̄(α̇⋆z̄β̇)+S(α̇⋆Sβ̇) , (2.44)

and redefines

Aµ = Wµ +
1
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that we shall refer to as vacuum connections, as they preserve higher symmetries with rigid

parameters

ǫ = L−1 ⋆ ǫ′ ⋆ L , dǫ′ = 0 , ǫ′ ∈ A(Y4) ; (2.56)

the space Ω(Z4) ⊗ A(Y4), on the other hand, contains flat connections constructed from

projector algebras that cannot be described using gauge functions and that break some of

the vacuum symmetries [14].

Maximally symmetric spaces. The (A)dS4 vacua are described by gauge functions

valued in the real form G10 of Sp(4;C) selected by the reality condition introduced above.

Thus, G10 refers to AdS group for λ2 > 0 and dS group for λ2 < 0, with the commutation

rules for the g10 algebra given by

[MAB ,MCD] = 4iη[C|[BMA]|D] , ηAB :=
(
ηab,−sign(λ2)

)
, ηab = diag(−+++) .

(2.57)

and they can be realized in terms of the Y -oscillators as

− ℓ−1Ma5 ≡ Pa =
λ
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that is

dΩαα̇ − Ωα
β ∧ Ωβα̇ − Ωα̇

β̇ ∧ Ωαβ̇ = 0 , (2.67)

Rαβ −Ωα
α̇ ∧ Ωα̇β = 0 , Rα̇β̇ − Ωα̇

α ∧ Ωαβ̇ = 0 , (2.68)

or

dΩa +Ωa
b ∧ Ωb = 0 , Rab + λ2Ωa ∧Ωb = 0 , (2.69)

where the Riemann two-form

Rαβ := dΩαβ − Ωαγ ∧ Ωγ
β = −1
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From the Bianchi identities, it follows that the remaining equations, that is, Fµν = 0

and DµΦ = 0, are perturbatively equivalent to Fµν |Z=0 = 0 and DµΦ|Z=0 = 0, which form

a perturbatively defined Cartan integrable system on X4 for C and aµ.

To Lorentz covariantize, one imposes

W |Z=0 = w , (2.74)

and substitutes

aµ = wµ +
1
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choice that yields a formulation of higher spin gravity in X-space that lends itself to a

standard path integral formulation remains an open problem.8

2.4 Gauge function method

2.4.1 Topological field theory approach

Alternatively, one may treat the system as an infinite set of topological fields on X4 × Z4

packaged into master fields valued in A(Y4) represented by symbols in Weyl order, that is,

as expansions in terms of the generators of A(Y4) star multiplied by differential forms on

Ω(X4 ×Z4), referred to as mode forms.

The field configurations are assigned a bundle structure, whereby a projection of A is

assumed to define a connection valued in a Lie subalgebra of A(Y4). The complementary

projection of A, referred to as the generalized frame field, together with the Weyl zero-form

Φ are taken to belong to adjoint and twisted adjoint sections, respectively, over X4 × Z4,

which is treated as a base manifold; the two-forms J and
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The above geometries can be characterized by functionals, playing the role of clas-

sical observables (including on-shell actions), given by combined traces over A(Y4) and

integrations over X4 ×Z4 (possibly with insertions of delta functions localized to subman-

ifolds). These gauge transformations that leave these functionals invariant are referred to

as proper, or small, gauge transformations, as opposed to large gauge transformations that

alter the asymptotics of the fields and hence the value of the observables. The resulting

moduli space is thus sliced into (proper) gauge orbits labelled by the observables, each of

which defines a microstate of the theory.9

2.4.2 Gauge functions

In the topological field theory approach, solution spaces are obtained starting from a refer-

ence solution (Φ′, A′) ∈ Ω({p0}×Z4)⊗A(Y4) at a base point p0 ∈ X4, constructed from an

integration constant C ′ for Φ′ at, say, Z = 0, and an flat connection on Z4, that we shall

trivialize in most of what follows. Moduli associated to the connection and generalized

frame field on X4 are then introduced by means of a large gauge transformation

A(G) = G−1 ⋆ (A′ + d) ⋆ G , Φ(G) = G−1 ⋆ Φ′ ⋆ π(G) , G = L ⋆ H , (2.82)

where L is the vacuum gauge function, andH is a gauge function determined perturbatively

by the requirements that

a) in Weyl order, Φ(G) and the twisted open Wilson lines V (M) := exp⋆(iM
α
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ii) the Weyl ordered symbols of (Φ(G), V (M)) to be traceable over Ω(Z4) ⊗ A(Y4), for

there to exist higher spin invariants playing the role of classical observables;

iii) Perturbatively stable asymptotic Fronsdal fields in weak-coupling regions of X4

(where the Weyl zero-form goes to zero), for the classical observables to admit per-

turbative expansions in terms of parameters related to sources for weakly coupled

higher spin gauge fields.

The following additional remarks are in order:

1. Zig-zagging self-consistency: at nth order, the quantity Φ(G,n) is a functional of

H(n′) with 1 6 n′ 6 n − 1 and initial data C ′(n′) with 1 6 n′ 6 n, which means

that condition (a), which must hold for finite Z, is in effect a non-trivial admissibility

condition on the Y -dependence of the initial data C ′, i.e. on A(Y4).

2. Residual small gauge transformations: the above conditions do not determine the

hs1(4) part of H
(n), which is real analytic in Y , and which can thus be used for small

gauge transformations inside the bulk.

3. Deformed oscillators: although the master fields S(G) are not sections, one can require

that Φ(G) and the twisted open Wilson loops V (M)) form an associative algebra

with traces, which can be use to construct a complete set of higher spin invariant

observables that one may think of as substitutes for the standard ADM-like charges

that can be used to define higher spin ensembles in unbroken phases; for further

details, see [18].

4. Residual symmetries: the full solution (Φ(G), A(G)) is left invariant under gauge trans-

formations with parameters

ǫ(G) = G−1 ⋆ ǫ′ ⋆ G , (2.83)

where ǫ′ are constant parameters stabilizing Ψ, viz.

[ǫ′,Ψ]⋆ = 0 . (2.84)

Conversely, given a set of symmetries forming a Lie algebra g, spaces of g-invariant

solutions can be found by solving the linear constraint (2.84) on Ψ together with the

conditions that Ψ belongs to an associative algebra that is left invariant under star

multiplication by the inner Klein operators, i.e. Ψ ⋆ κy and Ψ ⋆ Ψ should belong to

the algebra, which is the approach that we shall employ.

In summary, the dual boundary conditions are physically well-motivated and non-

trivial; in this paper, we shall focus on their implementation at the linearized level, leaving

higher orders, starting with the issue of whether Φ(G,2) obeys (a), for a forthcoming publi-

cation including various types of boundary conditions.

– 16 –
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2.4.3 A universal particular solution in holomorphic gauge

For all vector fields ~v tangent to X-space, we have ı~vA
′ = 0, and hence ı~vdA

′ = 0 and

ı~vdΦ
′ = 0, i.e.

A′ = dzαA′
α + dz̄α̇A′

α̇ , ∂µΦ
′ = 0 = ∂µA

′
α , (2.85)

and

F ′
αβ +

ib
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and z± is defined in (A.4). The introduction of this frame is required in order to integrate

the delta function in Weyl order without choosing any specific basis for Ψ(Y ).

It is worth noting that, in the holomorphic gauge, the separation of the dependence on

Y and Z of the twistor space connection Aα leads to a non-analytic z-dependent coefficient

aα(z), as given in eq. (2.93). Indeed, the separated deformed oscillator problem on Y ×Z
reduces to one on Z only, with oscillators sα(z), as given in eq. (2.92), deformed by the delta

function κz. As a consequence, the perturbative expansion of aα starts with an abelian

connection in two dimensions given by a distribution in Z whose curl is proportional to

κz . In the holomorphic gauge, it is given by eq. (2.93) with the hypergeometric function

replaced by a constant; the resulting distribution is discussed in appendix E. On the other

hand, as we shall show later, once the star products between aα, the zero-form initial data

Ψ(Y ) and the gauge function G = L ⋆ H are performed (in normal order), the resulting

form of Aα is real analytic on Z already in the intermediate L-gauge to all orders in

perturbation theory, and on Y × Z for generic spacetime points in the Vasiliev gauge at

first order in perturbation theory. Thus, in the latter gauge, we recover the standard

generating functions for gauge fields and Weyl tensors, at least at the linearized level. The

issue of what constitutes a physically meaningful gauge at higher orders will be discussed

in the Conclusions, and left for future work.

Thus, in order to construct solution spaces with desired physical properties, we need

to expand Ψ over suitable subalgebras of A(Y4); for the cases of particle fluctuation modes

and black hole-like generalized Type D modes, see [17, 18]. In what follows, we shall

examine a new type of subalgebras related to solutions with six Killing symmetries inside

the isometry algebra of (A)dS4.

3 Construction of the exact solutions with six symmetries

In this section, we shall begin by describing the factorization method that will be used to

construct the solutions. We shall than construct domain walls (DW), instantons13 (I) and

FRW-like solutions (FRW) given by foliations of a four-dimensional spacetime M4 with

three-dimensional foliates M3 that are maximally symmetric metric spaces, we shall first

choose embeddings of the corresponding six-dimensional isometry algebras g6 into the ten-

dimensional isometry algebra g10 of the vacuum solution. We then switch on g6-invariant

Weyl zero-forms and gauge functions.

3.1 Initial data for Weyl zero-form with six Killing symmetries

3.1.1 Unbroken symmetries

In order to describe foliations with maximally symmetric foliates, we embed g6 into g10 as

follows [14]:

Mrs = Lr
aLs

bMab , Tr = Lr
a
(
αMabL

b + βPa

)
, (3.1)
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where14

α, β ∈ R , α, β > 0 , (α, β) 6= (0, 0) , (3.2)

and the representatives of the cosets so(3, 1)/so(2, 1) for ǫ = 1, and the coset so(3, 1)/so(3)

for ǫ = −1 obey

Lr
aLs

bηab = ηrs , LaLa = ǫ , Lr
aLa = 0 ,

ηab = diag(− +++) , ηrs = diag(++,−ǫ) , ǫ = ±1
(3.3)

where we have introduced the parameter ǫ. The resulting symmetry algebra reads as

follows:15

[Mrs,Mpq] = iηspMrq + 3 more , [Mrs, Tp] = 2iηp[sTr] , (3.4)

[Tr, Ts] = −i(ǫα2 − λ2β2)Mrs , (3.5)

giving rise to the cases listed in table 1.

3.1.2 Invariant Weyl-zero form integration constant

Imposing g6-invariance of zero-form initial data, viz.

[Mrs,Φ
′]π = 0 , [Tr,Φ

′]π = 0 , (3.6)

it follows from the first condition that

Φ′ = Φ′(P ) , P := LaPa ,

and from the second condition that
(
−ǫβλ2
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that are either real or purely imaginary. Thus, for β > 0 we have

so(1, 3) : Φ̃′(η) =
ν+
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which suffices to handle the cases with k 6= 0. In the case of g6 = iso(3), we have

Ψ ⋆Ψ|iso(3)
∣∣∣
reg

=
[(
ν + ν̃λ−1P

)
e4λ

−1P
]
⋆
[(
ν − ν̃λ−1P

)
e−4λ−1P

]

=

∮

−1

∮

−1

dηdξ
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Thus, expanding in powers of the deformation parameters, we find that all odd terms are

linear in Ψ, while all even terms are (yα, ȳα̇)-independent, viz.

(
A′

α

)(2k−1)
=

−iΓ(2k − 3
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which is convergent for all real w. For w > 0, we can integrate by parts and rewrite it as

I>2 (w) = −ew
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Substituting Φ′ = Ψ ⋆ κy according to the ansatz (2.88) we get

Φ(L)(y, ȳ) = ΨL ⋆ κy , ΨL := L−1 ⋆Ψ ⋆ L . (3.42)

We first compute

Ψ ≡ Φ′ ⋆ κy =
(
Oe−4ηλ−1P

)
⋆ κy = 2πOδ2 (yα − ba(σ

aȳ)α) , ba := iηLa , (3.43)

where we have used (3.10). The L-conjugate of Ψ is given by

ΨL = 2πOδ2
(
yLα − ba(σ

aȳL)α
)
, (3.44)

where [
yLα
ȳLα̇

]
= L−1 ⋆

[
yα
ȳα̇

]
⋆ L =

[
Lα

β Kα
β̇
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3.3.2 Twistor space connection at even orders

The even order terms are the same in the holomorphic gauge and the L-gauge, as they are

independent of Y . From (3.27), the sum of all even orders is given by

(A(L)
α )(even) = − ib C
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where the generating function

Vα(η) =
ib
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Since A
(L,1)
α
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3.4.3 Spacetime connection

In the Vasiliev gauge, the linearized spacetime connection

dxµA(G,1)
µ = L−1dL+D(0)H(1) ≡ L−1dL+ U (G,1) , (3.81)

where the background covariant derivative

D(0) = d+
1
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The factorization method implies, however, that the linearized master gauge fields

are not real analytic in (yα, ȳα̇) in L-gauge, but as we have seen, these singularities can

be removed by going to Vasiliev gauge by means of a large gauge transformation. It

remains to be shown whether this procedure can be imposed to order by order in weak field

perturbative expansion by imposing dual boundary conditions as discussed in section 2.4.2.

We conclude this section by explaining technically the reason for being able to impose

equally the first of the conditions (3.6) via the full Lorentz generator (2.44). First, defining

ǫ
(tot)
L := 1
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which can be re-written as

φη =
1
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4.2 (Ir)regularity of Weyl zero-form

As the description of the solutions in terms of Fronsdal fields is reliable only at weak

coupling, we resort to the full master fields close to the surfaces S±(∞). The Weyl zero-

form (see (3.42), (3.44) and (3.49)) is given by

Φ(L) = 2πO δ2(Ay +Bȳ) ⋆ κy , (4.13)

which is regular on M
(0)
4 for ǫk = −1, and degenerates on the cones in eq. (4.12) for

ǫk = 0, 1. From (A.4) and (C.12), at the apexes and for ǫk = 1, we have

Aα
β|x̃a

±=0, η=η± = h−1
±

(
δα

β + (/b± /̄R(b±))α
β
)
= h−1

±

(
1− b2±



J
H
E
P
0
3
(
2
0
1
8
)
1
5
3

which provides a normalization of the real analytic delta function in two variables, corre-

sponding to the delta sequence

lim
a→∞

a exp(iast) = 2πδ(s)δ(t) , (4.21)

and staying away from the apex, i.e. taking τ 6= 0, we find that

Φ
(L)
± |x̃2

±=0 , τ 6=0 = ν±h
2
±

∫
dξ(+)dξ(−)ei(y

(−)ξ(+)−y(+)ξ(−))δ

(
−iǫ

(
η±τξ

(+)−
(
η± +

1
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where Z2 = {e, γ} is defined by

(X0,Xi,X5)(γ(p)) = (−X0,Xi,−X5)(p) , p ∈ dS4 , (4.28)

using embedding space coordinates, and S(∞) is the surface where the Weyl zero-form

blows up. As S(∞) coincides with the set of fixed points of γ, it follows that M4 is a

smooth manifold, on which thus the Weyl zero-form is well-defined. Whether there exists

a similar construction for the k = 0 domain wall when Λ < 0, remains to be analyzed.

5 The iso(3) invariant solution and cosmology

5.1 The solution at linear order in deformation parameter

In this section we take a closer look at the iso(3) invariant solution and compare it

with those which arise in standard inflationary cosmologies. Cosmological aspects will

be discussed further in the conclusions. The linearized solution for the scalar field

φ(x) = Φ(x, y, ȳ)|y=ȳ=0, can be obtained from (3.66) by setting y = ȳ = 0, and us-

ing (3.10), (3.12b) and (C.12). One thus finds

φ(x) =
1 + x2
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5.2 Comparison with standard cosmological backgrounds

In order to compare with standard inflationary models, let us quickly summarize the be-

havior of the inflaton. In standard slow roll inflation, one studies a solution for which the

metric is close to de Sitter, with deviations parametrised by the slow-roll parameters18

ǫ := − Ḣ



J
H
E
P
0
3
(
2
0
1
8
)
1
5
3

Sitter. The time-dependent deformation away from de Sitter may in principle lead to an

end of the accelerated phase. This would require ä < 0 which is far from de Sitter, and

may in principle be achieved by summing all orders in the deformation parameter.

Though the calculation of the fluctuations in higher spin gravity is beyond the scope

of this paper, let us discuss their expected behavior by considering fluctuations of a con-

formally coupled scalar field around de Sitter. CMB observations have fixed primordial

fluctuations sourced by scalar fluctuations, to be nearly scale-invariant (in this context

this is defined as their 2-point function in Fourier space behaving as 1/k3). They are also

observed to have a larger amplitude than fluctuations sourced by the graviton. This is dif-

ferent from what would be generated by a conformally coupled scalar field: the behaviour

of its 2-point function in Fourier space in the limit τ → 0 goes like 1/k. Furthermore, the

amplitude of this 2-point function is suppressed by positive powers of τ , so one can say

that they are “short lived” and suppressed with respect to the fluctuations of a massless

graviton (which go as τ0 in that limit, and are thus “long lived”). We expect that the

corrections to this behaviour of the scalar field during inflation will be suppressed by the

deformation parameter.

We can envisage two mechanisms by which the behavior of the scalar in higher spin

theory may be “long lived”. One possibility is that an exact FRW-like solution, i.e. to all

orders in the deformation parameter, may lead to a behavior of the metric for which it

takes an infinite proper time to reach a critical value of the conformal time. Whether this

leads to long-lived scalar fluctuations remains to be seen. Another possible mechanism is

to consider a coupling with a massive higher spin multiplet that contains a massive scalar

with conformal dimension zero. Indeed, this arises in 6-fold product of the fundamental

representation of de Sitter group. A long-lived scalar field would arise in this scenario even

though the coupling of massive higher spin multiplets with Vasiliev higher spin gravity is

a formidable task which has hardly been studied so far. We should also require the scalar

two-point function to be approximately, but not exactly, scale invariant. Since our solution

is close to de Sitter, but not exactly, such behaviour can emerge.

Assuming that one resolves the problem described above, the amplitude of fluctuations

produced should agree with observations, in particular the CMB data. Clearly, since

observations are made at very late times, when the characteristic energy scales are small,

higher spin symmetry should be broken. In a conservative scenario, one may assume that

at such low energies physics is well described by the Standard Model coupled to gravity in a

gravitational background inherited from inflation. However, it remains to be seen whether

the details of the higher spin symmetry breaking gives rise to novel interactions in the

effective action. For inflation to be described by the unbroken phase of higher spin gravity,

the symmetry breaking should happen at energy scales smaller than ∼ 1015 GeV according

to the upper bounds on graviton (tensor mode) fluctuations19 [41]. If the dependence of

the graviton two-point function deviates from the H2/M2
pl behavior significantly, this scale

will change accordingly.
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5.3 Towards perturbation theory around exact solutions

Given the g6-invariant solutions constructed above, it is natural to study fluctuations

around them. This can be facilitated using the factorization method, with zero-form ini-

tial data

Ψ = Ψbg +Ψfl , (5.8)

and treating Ψbg exactly while keeping only the first order in Ψfl. In what follows, we shall

make the stronger assumption that Ψbg,Ψfl ∈ A(Y4), i.e. we assume that both background

and fluctuations belong to the same algebra, such that Ψ⋆n ∈ A(Y4), which can then be

expanded separately in background as well as fluctuation parameters.

Thus, in order to construct a concrete model, we need to choose A(Y4) in accordance

with the dual boundary conditions in twistor space and spacetime. As a concrete example,

let us take Λ < 0, and consider fluctuations around

Ψbg = Ψ
FRW

(AdS)
−

, (5.9)

i.e. the (unique) FRW-like solution in the case of negative cosmological constant. On

physical grounds, we take A(Y4) to consists of deformations of the cosmological background,

which correspond to spacetime mode functions that cannot be localized,20 and particle and

black hole-like states, corresponding to localizable spacetime mode functions. Thus,

A(Y4) = Anl ⊕Apt(Y4)⊕Abh(Y4) , (5.10)

given, respectively, by the orbits of the higher spin algebra hs1(4) (obtained by repeated

action with constant hs1(4) parameters) of Ψ
FRW

(AdS)
−

, denoted by Anl, and the identity

operator; the massless scalar particle ground state (with anti-de Sitter energies ±1 and

vanishing spin); and the black hole-like solution with vanishing anti-de Sitter energy and

spin [17, 48]. The higher spin algebra hs1(4) is simply the algebra of even order polynomials

in Y α
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subalgebra of Apt⊕Abh spanned by projectors and twisted projectors. Put into equations,

letting E denote the energy operator, one has

Ψpt :=
∑

µ=±1,±2,...

µnPn ⋆ κy , µ−n = µ∗
n , (5.13)

Ψbh :=
∑

µ=±1,±2,...

νnPn , νn = ν∗n , (5.14)

where

Pn(E) = 2(−1)n−1ε

∮

C(ε)

dη
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A comment on the qualitative nature of the fusion rules is in order. The solutions found

in this paper are organized in a perturbative expansion in star-power series of the initial

datum Ψ(Y ) starting from specific choice of basis functions on Y. Clearly, sufficiently large

changes of twistor-space basis, by means of large gauge transformations or redefinitions

of Ψ, may affect the perturbative organization of the master fields, and, consequently, the

description of the solutions in terms of master field configurations on correspondence space,

or component field configurations on spacetime. In particular, as already discussed in [18]

for solutions involving particle and black hole modes, the fusion rules (5.11)-(5.12), which

are direct consequences of working with star-product interactions on the correspondence

space, translate into a choice of frame for the effective spacetime field theory with highly

non-local vertices. It was recently shown in [50], however, that, at least at the quadratic

order (in the equations of motion), there exists a different frame, corresponding to imposing

specific gauges and boundary conditions on Z, that leads to vertices that are quasi-local

in the sense that they involve finitely many derivatives for a fixed set of Lorentz spins.

Whether there exists a quasi-local frame beyond this order (within the context of a Noether-

like procedure for obtaining a classical theory), remains an open problem. If it does, then

the particle modes should form a closed subsystem within this frame at any finite order

in perturbation theory, leaving the possibility that the original star product interactions

of master fields in the correspondence space actually describe a quantum effective theory

including effects that are non-perturbative in the quasi-local frame. To this extent, it is

important that the actual observables of the theory are not the master fields themselves,

but rather higher spin invariant functionals thereof, and it is only at the level of such

observables that we may expect an agreement between the two schemes.

6 Conclusions

We have constructed classes of exact solutions of Vasiliev’s bosonic higher spin gravities

with Killing symmetries given the enveloping of six-dimensional subalgebras of the (anti-

)de Sitter symmetry algebras. In order to construct the solutions we have used the fact

that Vasiliev’s equations form a integrable system on an enlargement of spacetime by an

internal non-commutative twistor space. As the integrability is of Cartan type, we can solve

the integrable system transforming a particular holomorphic solution (Φ′, A′
α
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are real analytic in the twistor Z space. The latter property permits the perturbative

construction of H, whose role is to create asymptotic Fronsdal fields. The symmetries of

the solution are encoded into the particular solution, which is chosen to be invariant under

parameters in the enveloping algebra generated from the six-dimensional symmetry Lie

algebra g6, viz.

D′ǫ′ = 0 , [ǫ′,Φ′]π = 0 , (6.3)

where ǫ′ are constants built from star products of the generators of g6. As a result, the

solutions in L-gauge and the physical gauge are invariant under gauge transformations

generated by the rigid gauge parameters ǫ(L) = L−1 ⋆ ǫ′ ⋆ L and ǫ(G) = H−1 ⋆ ǫ(L) ⋆ H,

respectively. In the holomorphic and L-gauges, we have given the master fields to all

orders, involving an expression for the twistor space connection given by two parametric

integrals. In the physical gauge, we have given the solution to first order, and proposed

a perturbative scheme for continuing to higher orders based on dual boundary conditions

in spacetime and twistor space. It remains to push the gauge function method to higher

orders of perturbation theory in the physical gauge, which we hope to report on in a future

work. We expect this to generate physically interesting domain wall solutions and FRW-like

solutions.

A strong motivation for this work has been the prospects for a higher spin cosmology by

a direct approach based on finding its accelerating solutions and studying the cosmological

perturbations around them. As a first step in this direction, we have constructed the

FRW-like solutions and described a framework for studying the fluctuations around them,

with the unusual feature that they involve black hole like states as well. Our solutions

are exact in holomorphic and L-gauges. While the higher spin transformations that put

these solutions in Vasiliev gauge are implemented at the leading order here, nontrivial

consequences can still be extracted by studying the cosmological perturbations around

solution, just as the study of such perturbations in standard cosmology where slow roll

approximation is made for the background.

In a realistic higher spin cosmology, matter couplings and internal symmetry will need

to be introduced. The requirement of higher spin symmetry puts severe constraints in doing

so. The Vasiliev higher spin theory we have considered here is a universal sector of any

higher spin theory, just as the graviton, dilaton and Kalb-Ramond two-form potential form

a universal sector of any string theory. Assuming that the universal higher spin gravity

sector dominates the physics of the inflation, it has the advantage of being unique, thereby

avoiding the excessive freedom in choosing field content, interactions and parameters. For

example, in the favored approach to standard inflationary scenario, Einstein gravity is

coupled to a real scalar with a potential that is picked by hand to satisfy suitable ‘slow-roll’

conditions. Moreover, the origin of the scalar field in a fundamental theory is not known.

In the higher spin theory based inflation scenario envisaged here, however, the scalar field

is necessarily part of the spectrum for the consistency of the higher spin theory, and the

inflation is not driven solely by the energy stored in a slowly varying scalar field. Indeed,

there is a frame in which the only contact term for the scalar field is a mass term [4]. Note,

however, that the theory comes with infinite derivative couplings even at a given order in

– 40 –
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weak fields. Given that there is no mass scale at our disposal to argue that those couplings

will be suppressed, they are all equally important. Thus, the inflationary solution to the

higher spin theory will be driven by the higher spin invariant, higher derivative couplings.

While the problem of matter couplings and breaking of higher spin symmetry will need

to be ultimately attended to, at present the more pressing problems to tackle seem to be

the determination of the higher order terms in the FRW background in Vasiliev gauge,

carrying out the cosmological perturbation theory along the line described in section 5.3

and seeking possible holographic interpretation of the results.
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A Conventions and definitions

Using conventions in which (zα)
† = −z̄α̇, the star product can be realized using a normal

ordering scheme as follows:

f(y, ȳ, z, z̄) ⋆ g(y, ȳ, z, z̄) (A.1)

=

∫
d2ξd2ηd2ξ̄d2η̄



J
H
E
P
0
3
(
2
0
1
8
)
1
5
3

Frequently used quantities in the body of the paper are defined as follows:

z± = u±αzα , w = iz+z− , ξ = (1− τ)/(1 + τ) ,

uαβ = 2u+(αu−β) , ba = iηLa , /b = ba (σa)αα̇ .

h =
√
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with Lie bracket induced from the Schouten bracket, and a well-defined action on the ring

of equivalence classes [Φ] =
{
Φ′ ∈ C∞(R5) : (Φ′ −Φ) ◦ f ≡ 0

}
with product [Φ1][Φ2] :=

[Φ1Φ2], given by ~L[Φ] := [~LΦ]. This ring is isomorphic to C∞(M
(0)
4 ) via φ[Φ] := Φ ◦ f .

Thus, each ~L ∈ l10 induces an intrinsic Killing vector field ~K~L on M
(0)
4 defined by ~K~Lφ[Φ] :=

φ~L[Φ] ≡ (~LΦ)◦f . Hence, letting p ∈ M
(0)
4 and assuming that Φ is smooth close to f(M

(0)
4 )),

we have the Killing vector relation

f∗( ~K~L
|p)Φ ≡ ~K~L

|p(Φ ◦ f) = ~K~L
|pφ[Φ] = [~LΦ]|f(p) = (~LΦ)|f(p) , (B.5)

where f∗ denotes the push-forward operation, that is

f∗( ~K~L|p) = ~L|f(p) , (B.6)

or Kµ
~L
|pf∗(~∂µ|p) = LM ~∂M |f(p), in terms of an intrinsic coordinate xµ at p. In the global

coordinate basis,
~LMN = XM

~∂N −XN
~∂M , (B.7)

inducing the intrinsic Killing vectors fields

~KMN = Kµ
MN

~∂µ , Kµ
MN∂µX

P = 2X[MδPN ] , (B.8)

with components

Kµ
MN = 2gµνX[M∂νXN ] . (B.9)

It follows that the intrinsic Killing vector fields associated with the g6 generators Mrs and

Tr defined in (3.1) are given by

Kµ
rs = 2gµνL[r

aLs]
bXa∂νXb , (B.10)

Kµ
r = gµνLr

a
(
αLbXa∂νXb − αLbXb∂νXa − βℓ−1Xa∂νX5 + βℓ−1X5∂νXa

)
. (B.11)

Thus, under the g6 transformations defined in (3.1), we have

δxµ = ξrsKµ
rs + ξrKµ

r , (B.12)

with constant parameters (ξrs, ξr).

B.3 Global dS4/S
3 and AdS4/AdS3 foliations (iso-scalar leafs for ǫk = −1)

Coordinates adapted to the solutions with ǫk = −1, that is, the FRW
(dS)
+ and DW

(AdS)
−

solutions, can be obtained by foliating dS4 and AdS4 with S3 and AdS3 iso-scalar leafs,

respectively,viz.

dS4 : ηAB = (−, δIJ) , X0 ≈ ℓτ , XI ≈ ℓ
√
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B.4 Bifurcating (A)dS4/{dS3,H3} foliations (iso-scalar leafs for instantons)

Coordinates adapted to the instanton solutions can be obtained by decomposing dS4 and

AdS4 into subregions foliated by dS3 and H3 leafs as follows:

dS4 : Xa ≈ ℓξ±n
a , nanbηab = ±1 , |X5| ≈ ℓ

√
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In the case of dS4, each Poincaré patch provide a geodesically complete spacetime,

with time flowing in the direction of X0 and −X0 on U+,± and U−,±, respectively. If one

introduces conformal time

τ = −e−t ∈ R− , (B.29)

then τ → 0− at the future (or past) boundary, and the metric takes the form

dS4 : (ds24)
(0)|Uσ,σ′ = ℓ2

−dτ2 + dy2
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outside, i.e. λ2x2±(R(p)) > 1. Thus, one may cover all of (A)dS4 using a single stereographic

coordinate, that we shall take to be xa ≡ xa+, defined on four-dimensional Minkowski space

minus the subspace λ2x2 = 1. The boundary is given two copies of the surface λ2x2 = 1;

an outer sheet with normal pointing inwards and an inner sheet with normal pointing

outwards.

In the AdS4 case, the surface λ2x2± = 1 has the topology of dS3
∼= R × S2, while its

two-sheeted counterpart can be glued together using the reflection map into a single surface

with S1 × S2 topology, i.e.

∂(AdS4) ∼= S1 × S2 , (B.39)

as can be seen by taking a tour around the boundary using reflection maps as follows:

start at a point p1 on the outer sheet at large negative (stereographic) time; move up to a

point p2 on the same sheet at large positive times; cross over to R(p2), which is a point at

the inner sheet at large negative times; move up to a point p3 on the same sheet at large

positive times; finally, cross back to R(p3) = p1, thereby closing a time-like curve.

In the dS4 case, the boundary consists of two two-sheeted surfaces; one with x0 > 0

and another one with x0 < 0. Using the reflection map, these four sheets, each of which

thus has the topology of an hyperbolic three-plane, form two pairs, each of which can be

glued together into a three-sphere, i.e.

∂(dS4) ∼= S3
− ∪ S3

+ , (B.40)

where x0 < 0 on S3
− and x0 > 0 on S3

+.

In stereographic coordinates, the metric takes the form

(ds24)
(0) =

4dx2
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C Gauge functions

C.1 Stereographic coordinates

Given the Lie algebra so(p, q) in the basis over R spanned by PI , I = 1, . . . , p+ q − 1, and

MIJ = −MJI obeying

[MIJ ,MKL]⋆ = 4iη[K|[JMI]|L] , [MIJ , PK ]⋆ = 2ηK[JPI] , [PI , PJ ] = iλ2MIJ , (C.1)

where ηIJ has signature (p′, q′) and λ2 ∈ R \ {0}, the gauge function

L := exp⋆(iξ
IPI) , ξI ∈ R , (C.2)

yields a Maurer-Cartan form

L−1 ⋆ dL = ieIPI +
1
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i.e. the procedure of gluing together U+ and U− into (A)dS4 does not refer to any choice

of structure group.

From (3.45) one finds

[
Lα

β Kα
β̇
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gives rise to the Maurer-Cartan form

L−1 ⋆ dL = iℓ(−ǫdtP + β−1etdyrTr) , (C.20)

with components

ea = ℓ(−ǫLadt+ etLa
rdy

r) , ωab = 2ℓetL[aLb]
r dy

r . (C.21)

As for the corresponding adjoint action, we have

L−1 ⋆ Yα
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D Analysis of integrability condition on H
(1)|Z=0

From D(0)V
(0)
α (η) = 0 it follows that

(
D(0) 1
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where ∂
(Z)
[δ
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The linearized equations of motion require

∂±I
± = κz . (E.4)

In order to differentiate I±(z), we must first rewrite it as a distribution that is differentiable

at z∓ = 0, for which we use

∂±I
± = ∂±

(∫ z±

0
dz′± lim

ǫ→0+

1
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