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Cosmological perturbations of Friedmann-Robertson-Walker solutions in ghost free massive bigravity,
including also a second matter sector, are studied in detail. At early time, we find that subhorizon
exponential instabilities are unavoidable and they lead to a premature departure from the perturbative
regime of cosmological perturbations.
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I. INTRODUCTION

Dark energy is the dominant component of our Universe;
if future observations will establish that its equation of state
differs from the one of a cosmological constant contribu-
tion, then we have a case for modifying general relativity
(GR) at large distances and massive gravity can be a
compelling candidate. Great effort was devoted to extend at
the nonlinear level [1,2] the seminal work of Fierz-Pauli [3]
and recently a Boulware-Deser (BD) ghost free theory was
found [4,5]. Unfortunately, cosmological solutions of the
ghost free De Rham-Gabadaze-Tolley theory are rather
problematic: spatially flat homogenous Friedmann-
Robertson-Walker (FRW) solutions simply do not exist
[6] and even allowing for open FRW solutions [7], strong
coupling [8] and ghostlike instabilities [9,10] develop. In
addition, the cutoff of the theory is rather low [11], namely
Λ3 ¼ ðm2MPlÞ1=3. For a recent review see [12,13].
A possible way out is giving up Lorentz invariance

which requires only rotational invariance [14–16]. Within
the general class of theories that propagate 5 degrees of
freedom (DoF) found in [17,18], in the Lorentz breaking
case most of the theories have a much safer cutoff Λ2 ¼
ðmMPlÞ1=2 ≫ Λ3 and also avoid all of the phenomenologi-
cal difficulties mentioned above, including troubles with
cosmology [19]. Another option is to promote the non-
dynamical metric entering in the construction of massive
gravity theory to a dynamical one [20,21] entering in the
realm of bigravity originally introduced by Isham, Salam,
and Strathdee [22].
In the bigravity formulation, FRW homogenous solu-

tions do exist [23–25]; however, cosmological perturba-
tions, for modes inside the horizon, start to grow too early
and too fast when compared with GR, and as a result the

linear regime becomes problematic already during the
radiation and matter era [26]. The reason of such peculiar
behavior of the scalar perturbations could be naively traced
back to the FRW background solution that is controlled by
the parameter ξ (the ratio of the conformal factors of the
two metrics) and to the absence of matter coupled to the
second metric whose pressure could support inside horizon
gravitational perturbations.
In the presence of only ordinary matter, coupled with the

first metric, only small values of the parameter ξ give an
acceptable early time cosmology. The introduction of the
second matter component provides other consistent back-
ground solutions where the values of ξ can be also of order
1 and, at the same time, provides the necessary pressure
support to infall perturbations.
In this paper we will extend our previous analysis to the

case where an additional matter sector is minimally coupled
to the second metric. Though we do not consider the
problem, the second matter sector could be also relevant for
dark matter [27,28].
The outline of the paper is the following: In Sec. II we

review the bigravity formulation of massive gravity and the
extension to the case where a second matter sector is
present. In Sec. III we study FRW solutions, and cosmo-
logical perturbations are analyzed in Sec. IV.

II. MASSIVE GRAVITY AND BIGRAVITY

Any modification of GR that turns a massless graviton
into a massive one calls for additional DoF. Basically, GR is
deformed by a scalar function V built from the physical
metric g that couples with matter and a second metric ~g.
Besides the phenomenological issue, dealing with a non-
dynamical metric is rather awkward; in this context it is
natural to promote the second metric to a fully dynamical
field; see for instance [29]. Thanks to ~g, it is possible to
build nontrivial diffeomorphism invariant terms without
derivatives of the metric. Expanding the metric around a
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fiducial background, such terms lead precisely to the mass
term for the graviton. Consider the action

S ¼
Z

d4xf
ffiffiffi
~g

p
½κM2

pl
~Rþ L ~M�

þ ffiffiffi
g

p ½M2
plðR − 2m2VÞ þ LM�g; ð2:1Þ

where R and ~R are the corresponding Ricci scalars and the
deforming potential V is a scalar function of the tensor
Xμ
ν ¼ gμα ~gαν. Ordinary matter is minimally coupled with g

and is described by LM. In order try to cope with the
instabilities found in [26], we shall introduce a second
matter sector that couples minimally with ~g and it is
described by L ~M. The constant κ controls the relative size
of the strength of gravitational interactions in the two
sectors, while m sets the scale of the graviton mass. In
particular, in the limit κ → ∞, the second metric gets frozen
to a prescribed background value. Removing the second
matter sector one recovers the previously studied bigravity
theories; see for instance [30].
The modified Einstein equations can be written as1

Eμ
ν þQ1

μ
ν ¼ 1

2M2
pl
Tμ
ν ; ð2:2Þ

κ ~Eμ
ν þQ2

μ
ν ¼ 1

2M2
pl

~Tμ
ν ; ð2:3Þ

where we have defined Q1 and Q2 as effective energy-
momentum tensors induced by the interaction term. The
ghost free potential [2,4]2 V is a special scalar function of
Yμ
ν ¼ ð ffiffiffiffi

X
p Þμν given by

V ¼
X4
n¼0

anVn; n ¼ 0…4; τn ¼ TrðYnÞ;

V0 ¼ 1 V1 ¼ τ1; V2 ¼ τ21 − τ2;

V3 ¼ τ31 − 3τ1τ2 þ 2τ3;

V4 ¼ τ41 − 6τ21τ2 þ 8τ1τ3 þ 3τ22 − 6τ4: ð2:4Þ
In [32] it was shown that in the bimetric formulation the
potential V is BD ghost free. We have that

Q1
μ
ν ¼ m2½Vδμν − ðV 0YÞμν �; ð2:5Þ

Q2
μ
ν ¼ m2q−1=2ðV 0YÞμν ; ð2:6Þ

where ðV 0Þμν ¼ ∂V=∂Yν
μ and q ¼ detX ¼ detð~gÞ= detðgÞ.

The canonical analysis [32,33] shows that, in general, 7
DoF propagate; around a Minkowski background, 5 can be

associated to a massive spin two graviton and the remaining
2 to a massless spin two graviton. We consider only the
case where each matter sector is minimally coupled with
only its own metric field. Allowing the second metric to
couple also with standard matter would result in a violation
of the equivalence principle; indeed, it is not possible to
locally put both metrics in a Minkowski form.

III. FRW SOLUTIONS IN MASSIVE BIGRAVITY

Let us consider FRW background solutions in massive
bigravity of the form

ds2 ¼ a2ðτÞð−dτ2 þ dr2 þ r2dΩ2Þ ¼ ḡ1μνdxμdxν;

~ds2 ¼ ω2ðτÞ½−c2ðτÞdτ2 þ dr2 þ r2dΩ2� ¼ ḡ2μνdxμdxν:

ð3:1Þ

It is convenient to define the standard Hubble parameters
for the two metrics and the ratio between the two scale
factors

H ¼ da
dτ

1

a
≡ a0

a
; Hω ≡ ω0

ω
¼ ξ0

ξ
þH; ξ≡ ω

a
;

ð3:2Þ

where with 0 we always denote the derivation with respect
to the conformal time τ. Solutions fall in two branches
depending on how the covariant conservation of Q1=2,
enforced by the Bianchi identities is realized. It turns out
that the physically interesting case [23,26] is when, as a
consequence of the conservation of Q1=2, we have that

c ¼ Hω

H
; ξ0 ¼ ðc − 1ÞHξ with c > 0: ð3:3Þ

We will not discuss the other branch of solutions where ξ is
constant and the effect of gravity modification amounts to a
cosmological constant and perturbations are strongly
coupled [26], as expected.
The expansion rate follows from the equation

3H2

a2
¼ 8πGρ1 þm2ð6a3ξ3 þ 6a2ξ2 þ 3a1ξþ a0Þ: ð3:4Þ

The presence of the second metric is equivalent, for the
first sector, to a gravitational fluid with energy density ρg
given by

ρg ¼
m2½6ξ2ða3ξþ a2Þ þ 3a1ξþ a0�

8πG
; ð3:5Þ

with an equation of state pg ¼ wgρg of the form

wg ¼ −1 −
ð6a3ξ2 þ 4a2ξþ a1Þξ0

H½6ξ2ða3ξþ a2Þ þ 3a1ξþ a0�
: ð3:6Þ

1When not specified, indices of tensors related with gð~gÞ are
raised or lowered with gð~gÞ.

2A very similar potential having the same form but with X
instead of X1=2 was considered in [31].
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The conservation of energy-momentum tensor for the two
fluids leads to

ρ01 þ 3Hðρ1 þ p1Þ ¼ 0; ρ02 þ 3Hωðρ2 þ p2Þ ¼ 0;

ð3:7Þ
thus for pi ¼ wiρi we have ρ1 ¼ ρin1 a

−3ðw1þ1Þ and ρ2 ¼
ρin2 ω

−3ðw2þ1Þ.
Finally, using (3.3) in the time-time component of the

Einstein equations for the second metric we get that the
ratio ξ of the two scale parameters satisfies the following
algebraic equation:

ξ2
�
8a4
κ

− 2a2

�
þ ξ

�
6a3
κ

− a1

�
þ a1
3κξ

þ 2a2
κ

− 2a3ξ3 −
a0
3

¼ 8πG
3m2

�
ρ1 −

ξ2ρ2
κ

�
: ð3:8Þ

The analysis is identical when the same spatial curvature kc
is introduced in (3.1) for both metrics.3 The presence of the
second matter opens the possibility for a behavior of ξ
different from the one found in [23].
We assume that the mass scalem is related to the present

cosmological constant as m2M2
pl ∝ Λ and the equation of

state for matter one and two is such that w1;2 > −1. The
assumption on the scale m is natural if massive gravity is
relevant for the present acceleration of the Universe.4 In
order to not spoil early cosmology (say before nucleosyn-
thesis until after the decoupling time), the contribution
proportional to m in (3.4) has to kick in only at small
redshift (z ∼ 10) when “dark energy” starts to dominate the
expansion rate. This is the case when

3H2

a2
≃ 8πGρ1 implying m2

X3
i¼0

ðaiξiÞ ≪ 8πGρ1; ð3:9Þ

or equivalently

Λ
ρ1

X3
i¼0

aiξi ≪ 1: ð3:10Þ

Now, for most of the history of our Universe (matter and
radiation periods) ρ1 ≫ Λ, thus (3.10) is naturally satisfied
unless ξ evolves to values of ∼ρ1=Λ. As a result, in such a
regime, the implementation of Eq. (3.10) in Eq. (3.8)
requires that at the leading order

8πGðρ1κ − ρ2ξ
2Þ≃

�
a1m2

ξ when ξ ≪ 1

0 when ξ ∼ 1
: ð3:11Þ

In absence of a second matter sector, the solution ξ ∼ 1
could not exist. Of course, when (3.9) holds, while the
dynamics of a is not affected by ξ, on the contrary, the
impact on Hω can be relevant; see (3.2). According to
Eq. (3.11), the following regimes for the background value
of ξ emerge:
(A) When ξ2ρ2 ≫ ρ1 ≫ Λ5

ξ≃ −
�

a1m2

8πGρ2

�
1=3

∝
Λ1=3

ρ1=32

≪
Λ
ρ1

≪ 1;

with c≃ −
1

w2

: ð3:12Þ

The above expression can be rewritten also in the form

ξ ¼
�
−
8πGρin2
a1m2

� 1
3w2
a−

1þw2
w2 ; ð3:13Þ

where the explicit time dependence of ξ is shown. The
above expressions are valid when w2 < 0. Clearly, we
have that c > 0 and we also need a1 < 0 so that ξ is
real and positive. Being ξ ≪ 1, (3.9) is satisfied.
Requiring w2 < 0 is rather exotic; nevertheless, as
will be shown in Sec. IV B, it does not help to avoid
instabilities.

(B) When ρ1 ≫ ξ2ρ2 and at any time ρ1 ≫ Λ.
This case was considered in [26] when a single

matter sector was present. Clearly (3.9) is easily
satisfied. The value for ξ is of the form

ξ≃ a1m2

8πGρ1κ
∝

Λ
ρ1

≪ 1; with c≃ ð4þ 3w1Þ;
ð3:14Þ

and self-consistency requires that

ρ2 ≪
ρ31
Λ2

: ð3:15Þ

(C) When ρ1 ≃ ξ2ρ2 ≫ Λ

ξ≃
�
κ
ρ1
ρ2

�
1=2

¼ ξina
3ðw1−w2Þ
1þ3w2 ; with c≃ 1þ 3w1

1þ 3w2

;

ð3:16Þ

where we used the solutions of Eq. (3.7) and ξin ¼
ðκρin1 =ρin2 Þ−1=ð1þ3w2Þ defines the initial time conditions
in terms of the initial density ratio. In such a regime

ρ2 ∝ a−3
ð1þw2Þð1þ3w1Þ

1þ3w2 , thus only when w2 > − 1
3
matter

density in the second sector decreases with time, while3The spatial curvatures must be equal for consistency [23].
4We do not consider here the case [34]m2M2

pl ≫ ρ1, where the
scale of m is not related with the present acceleration of the
Universe.

5Notice that, being ξ2 ≫ Λ
ρ2
≃ ξ3, then ξ ≪ 1 and so we are in

the region where ρ2 ≫ ρ1 ≫ Λ.
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ξ can grow or decay depending on the sign of
ðw1 − w2Þ. When w2 > w1, going back in time, ξ
grows; nevertheless, condition (3.10) is still satisfied if
w1 ≥ 0. The validity region of such an approximated
solution is in the range

Λ
ρ1

≪ ξ ≪
�
ρ1
Λ

�
n
; ð3:17Þ

where the power n can be 1=3; 1=2, or 1 depending on
the ai values; see [23] for details. When w1 > w2 and ξ
decreases going back in time, the above lower bound
holds for w2 > −1=ð4þ 3w1Þ.

(D) When ρ2 ¼ 0, also the case of very large ξ is
possible, with

ξ ∝
�
ρ1
Λ

�
n
; ð3:18Þ

which gives c < 0. The power n is the same as in
Eq. (3.17); see [23]. Thus, not only is (3.9) violated
but also c is negative. Starting from a negative c in
order to get to a quasi-dS phase, where c ∼ 1, one has
to cross c ¼ 0 where ~g is singular.6

Finally, looking at the validity of our approximation, we
found that the explored range of the ξ values can be divided
in the following disjoined regions:

ξðAÞ ≪ ξðBÞ ∼
Λ
ρ1

≪ ξðCÞ ≪ ξðDÞ ∼
�
ρ1
Λ

�
n
; ð3:19Þ

which cover the whole range of ξ; except (D), all cases are
compatible with Eq. (3.9), i.e., an early time standard FRW
universe.

IV. PERTURBED FRW UNIVERSE

Perturbations around the solution (3.1) can be studied
along the same lines of [26]. We focus here on the scalar
sector; in the vector and tensor ones, the results are very
similar to the case with only ρ1 and they can be found in
[26]. In the scalar sector we have eight fields and two
independent gauge transformations; as a result we can form
six independent gauge invariant scalar combinations
Ψ1;Ψ2;Φ1;Φ2; E;B1 for the metric perturbations. For
matter we have the gauge invariant density perturbations
δρ1=2gi and the scalar part of velocity perturbations δus1=2.
The various definitions can be found in Appendix Awhere
also the full set of equations is given.
The fields B1 and Ψ1=2 are nondynamical and can be

expressed in terms of E and Φ1=2, in particular,

Ψ1 þ Φ1 ¼ m2a2f1E; Ψ2 þ Φ2 ¼ −
m2a2f1E
κcξ2

;

ð4:1Þ
where f1=2 are defined in Eq. (A13). The fields E and Φ1=2
satisfy three second-order equations; thus 3 scalar DoF
propagate.
The condition (3.9) guarantees only that the background

solution follows closely GR cosmology with standard
matter (sector 1) until the present epoch. Of course we
need more than that: we need to be sure that perturbations,
in particular the ones related to the new degrees of freedom,
do not start growing too early. Indeed, that is precisely what
happens when only ordinary matter is present: at early time,
the mode Φ2 inside the horizon grows exponentially,
though Φ1 and δ ¼ δρ1 gi=ρ1 are the same as in GR. As
a result we have to face a very early breakdown of
perturbation theory. Apparently, this point was not taken
into account fitting the parameters ai and m against
observations [37]. Basically, in the presence of the afore-
mentioned instabilities, structure formation will be com-
pletely different. Thus, a preliminary necessary condition is
to get rid of exponential instabilities, irrespective of their
tachyonic or ghost nature. In what follows we will show
that also the presence of a second matter sector is not
instrumental in avoiding such kinds of instabilities.

A. Structure of the evolution equations

The equations are rather complicated; however, at early
times we can expand using the small parameter ϵ ¼
mH−1 ∼ ðΛ=ρ1Þ1=2. Formally this is equivalent to expand-
ing the equations of the perturbation for small m. We stress
that in the m → 0 limit there is no guarantee to recover GR
as discussed in detail in [26].
In all cases (A), (B), and (C), Φ1, at leading order in ϵ,

satisfies the following equation:

Φ00
1 þ

6ðw1 þ 1Þ
ð1þ 3w1Þτ

Φ0
1 þ k2w1Φ1 ¼ 0; ð4:2Þ

which coincides with the one in GR. In the radiation epoch,
subhorizon modes oscillate, dumped by a factor a2, while
superhorizon modes are frozen and Φ1 ¼ constant. In a
matter dominated Universe Φ1 is always constant. Thus, at
leading order in ϵ, the dynamics ofΦ2 and E is described by
a system of coupled second-order ordinary differential
equations of the form

ϕ00 þDϕ0 þMϕþ z1Φ1 þ z2Φ0
1 ¼ 0;

ϕ ¼
�

Φ2

EN ≡ E=τ2

�
; ð4:3Þ

where D and M are suitable 2 × 2 matrices and z1=2
functions of τ and k. We have also conveniently introduced

6This point was overlooked in [24,35,36]. We only consider
FRW-like backgrounds where c > 0.
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a dimensionless field EN ¼ E=τ2. Thus, once Φ1 is found
from (4.2), it enters in (4.3) as a source term. As shown in
Appendix B, Eqs. (4.3) correspond, for subhorizon and
superhorizon modes, to a coupled system of Bessel-like
equations. It turns out that for cases (A) and (C), the system
(4.3) further simplifies because the dynamics of Φ2 decou-
ples from the one of EN and stability can be established
simply by studying the mass term. For the case (B), on the
contrary, one has to do a more involved analysis.

B. Case (A)

One has to be careful in the expansion; indeed here one
can expand for small m only if w2 < −1=3. The result, this
time, is that also the equation for Φ2 is decoupled. In
particular, we have that

Φ00
2 þ

6ð1 − jw2jÞ
jw2jð3w1 þ 1ÞτΦ

0
2 −

�
k2

jw2j
þ jw2jð3w1 þ 4Þ − 4

w2
2τ

2ð3w1 þ 1Þ2
�

Φ2 ¼ 0: ð4:4Þ

The above equation can be easily solved in terms of Bessel
functions. However, it is clear that the solution has an
exponentially growing mode. Indeed, inside the horizon
x ¼ kτ ≫ 1, the mass term is simply proportional to −jw2j
and is negative. The solution reads

Φ2 ¼ ðxjw2jÞ2−
3

2jw2 j

�
α1Jν

�
−ixffiffiffiffiffiffiffiffijw2j

p
�
þ α2Yν

�
−ixffiffiffiffiffiffiffijw2

p j

��
;

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4w2ð4w2 þ 1Þ þ 5

p
2jw2j

: ð4:5Þ

Clearly Φ2 grows like ex=
ffiffiffiffiffiffi
jw2j

p
. The same instability is

present also for the field E whose mass term, inside the

horizon, gets the value k2ðw1−1Þ
jw2jð3w1þ1Þ. As a result, exponential

instabilities are always present in both Φ2 and E and the
background (A) is pathological. The behavior of super-
horizon modes is similar to the case (B), discussed bellow.

C. Case (B)

As for the case (A), the expansion for small m is a bit

tricky, indeed ξ≃ a1m2

8πGρ1κ
goes to zero when m → 0 and all

quantities must be expanded to next-to-leading order. In
this case, as shown in Appendix B, the equations forΦ2 and
E stay coupled. The only way to decouple them is to work
with a fourth-order equation for one of the two fields.
Taking for simplicityw1 ¼ 1=3, we get for subhorizon modes

EN
ð4Þ þ 5ð3w2 þ 5Þ

τ
Eð3Þ
N þ k2

�
25w2 −

5

3

�
E00
N

þ k2
25ð9w2 − 1Þ

τ
E0
N − k4

125w2

3
EN ¼ 0; ð4:6Þ

and for w1 ¼ 0

Eð4Þ
N þ 8ð3w2 þ 5ÞEð3Þ

N

τ
þ k2ð16w2 − 1ÞEð2Þ

N

þ 8k2ð29w2 − 3Þ
τ

E0
N − k416w2E þ k2ð20w2 þ 3Þ

τ
Φ0

1

þ 8k4w2
3

Φ1 ¼ 0: ð4:7Þ

Even before attempting solving (4.6) and (4.7) one sees that
an exponential instability is expected. Indeed, for D and M
in (4.3) we have that

DetðDÞ ¼ 24ð3w1 þ 4Þ2ðw2 þ 1Þ
τ2ð3w1 þ 1Þ2 ;

TrðDÞ ¼ 2ð4þ 3w1Þð5þ 3w2Þ
τð1þ 3w1Þ

;

DetðMÞ ¼ −k4ð2w1 þ 1Þð3w1 þ 4Þ2w2;

TrðMÞ ¼ k2½ð4þ 3w1Þ2w2 − 2w1 − 1�: ð4:8Þ

Thus, while D is positive definite, M has at least a negative
eigenvalue; in particular, the eigenvalues of M are given by

λ1 ¼ −k2ð2w1 þ 1Þ; λ2 ¼ k2ð3w1 þ 4Þ2w2: ð4:9Þ

Clearly, the fact that λ1 < 0 will lead to an exponential
growth of subhorizon modes. It should be stressed that λ1
does not depend on w2 and precisely coincides with the
negative mass term of EN found in the case where a single
matter sector was present [26].7 The numerical solution of
(4.6) and (4.7) confirms that there is no value of w2 such that
EN does not grow exponentially. It is evident that subhorizon
instability cannot be avoided.
For superhorizon modes we can give directly the full

solutions

E ¼ Ē1τ
−15w2−1 þ Ē2τ

−9
2
−
ffiffiffi
21

p
2 þ Ē3τ

1
2
ð ffiffiffiffi

21
p

−9Þ þ Ē4

τ7

−
32τ2Φ̄1

37
for w1 ¼

1

3
; ð4:10Þ

E ¼ Ē1τ
−24w2−4 þ Ē2τ

−15
2
−
ffiffiffi
33

p
2 þ Ē3τ

1
2
ð ffiffiffiffi

33
p

−15Þ

þ Ē4

τ13
−
21τ2Φ̄1

82
for w1 ¼ 0; ð4:11Þ

where Ēi are the values of E at same initial time and Φ̄1 is
the frozen value of Φ1. Notice that in particular for w1 ¼ 1

3
the nondecaying mode of the three perturbations are

7For reference, when ρ2 ¼ 0, Φ2 has a tachyonic mass equal to
λ1 and EN ¼ − 2

3
Φ2, for w1 ¼ 1=3.
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Φ1 ¼ Φ̄1 Φ2 ¼
39

37
Φ̄1; E ¼ −

32

37
τ2Φ̄1: ð4:12Þ

In the metric perturbations actually E enters with the
combination k2E ∝ ðkτÞ2 ≪ 1, and as a result it stays very
small and there are no consequences on the validity of the
perturbative expansion. In addition, from (4.1) we get that

Ψ1 þ Φ1 ≈ 0; Ψ2 þ Φ2 ≈
96

185
Φ̄1: ð4:13Þ

Thus, perturbations in the sector one, relevant for our
matter, are indistinguishable from GR at early times. In the
second sector the two Bardeen potentials are not equal even
if the source is a perfect fluid.

D. Case (C)

As shown in Appendix B, also in this case the dynamics
of Φ2 is decoupled and its equations are similar to the ones
in case (A). Inside the horizon, simply looking at the time-
dependent mass terms we find that they are positive,
avoiding instabilities, when (see Appendix B)

w1=2 > 0; 3w1 þ 1 −
4f1
f2

> 0; ð4:14Þ

where f1;2, see Eq. (A13), are τ dependent. Notice that
when f1 ¼ f2 the above condition cannot be satisfied if
0 ≤ w1 < 1. Actually, we have f1 ¼ f2 when c ¼ 1 and/or
a2 ¼ a3 ¼ 0 (as in the simplest bigravity model of [37]),
and also when w1 ¼ w2. Now depending on whether w1 >
w2 or w2 > w1, ξ dynamically becomes very small or very
large in the early universe, being

ξðτÞ ¼ ξina
3ðw1−w2Þ
ð1þ3w2Þ : ð4:15Þ

In particular

3w1 þ 1 −
4f1
f2

¼
�

3ð3w1þ1Þðw2−1Þ
3w2þ1

< 0 for ξ → ∞
3ðw1 − 1Þ < 0 for ξ → 0

:

ð4:16Þ
Thus, (4.14) cannot be satisfied at early times. When ξ → 0
or ξ → ∞, the mass term of E becomes time independent and
negative definite, leading to an exponential instability. We
conclude therefore that also in the case (C) the instability
cannot be avoided if w2 < 1. For what concerns super-
horizon modes the discussion is similar to the case (B).

V. CONCLUSIONS

We studied in detail the dynamics of scalar perturbations
in massive bigravity. Beside its theoretical interest, massive
gravity could be an interesting alternative to dark energy.
As a general ground, the ghost free massive gravity theories
can be classified according to the global symmetries of the

potential V in the unitary gauge [18]. The ones charac-
terized by Lorentz invariance on flat space have a number
of issues once an homogeneous FRW background is
implemented.
In the bigravity formulation, with a single matter sector,

things get better and FRW cosmological solutions indeed
exist [23–25]. However, cosmological perturbations are
different from the ones in GR. Already during radiation
domination, subhorizon scalar perturbations tend to grow
exponentially [26]. The manifestation of such instabilities
is rather peculiar. In the sector one, composed by ordinary
matter and the metric g, their perturbations are very close to
the ones of GR. The instability manifests as an exponential
subhorizon growth of the field E and of the second scalar
mode Φ2, one of the Bardeen potentials of ~g, which quickly
invalidates the use of perturbation theory at very early time.
This is very different from GR where perturbations become
large (power law growth) only when the Universe is
nonrelativistic.
The emergence of an instability only in the perturbations

of the second metric suggests its origin may reside in the
matter content asymmetry of the two sectors, since only the
physical metric is coupled to matter. Indeed, the only
background solutions acceptable have a ratio ξ ¼ ω=a of
the metrics’ scale factors such that ξ ≪ 1.
Adding a second matter sector sourcing the second metric

opens up the possibility [case (C)] to have a more symmetric
background with ξ ∼ 1 and one may hope the exponential
instability is absent. Unfortunately, we have shown that this
is not the case. Though, the pressure provided by the second
matter stabilizesΦ2 and its dynamics becomes similar to GR,
the subhorizon instability persists for E that represents a
purely gravitational extra scalar field.
We managed to analyze the perturbations in the whole

range of ξ compatible with the early Universe evolution
(matter and radiation). The cases (A) and (B) represent
regions of very small ξ where only one matter sector
dominates; likewise the case with a single matter, and both
E and Φ2 grow exponentially inside the horizon. When
ρ1 ≫ ρ2, the values of the tachyonic mass responsible for
that instability does not depend on w2 and actually coincides
with the one found in the case where ρ2 ¼ 0 [26]. In region
(C) both the matter sectors are important. While the Bardeen
potentials Φ1;2 are stable, the purely scalar gravitational field
E ¼ E1 − E2 (see Appendix A) that involves both metrics
has early time instabilities. Finally, the region (D), charac-
terized by very large values of ξ, already at the level of
background, spoils early time standard FRW cosmology.
Spanning the whole range of ξ compatible with a

standard early time cosmology, when m2M2
pl is the order

of the present cosmological constant, the bottom line is that
massive bigravity has an intrinsic exponential instability.
Looking at the behavior of the matter contrast that is the

same of GR, one may speculate that some sort of Vainshtein
[38] cosmological mechanism could take place, though
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here the trouble is with perturbations and not with the
background. Even if that happens, the deal is rather pricey:
perturbation theory will fail both at Solar System and
cosmological scales.
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Note added.—After the completion of this paper, [39] came
out confirming our results. In addition, [39] shows that
cosmological perturbations around the background solution
found in [34] with m2 ≫ H2

0 (i.e., the mass m is not related
with the current Hubble scale H0) are stable. However, the
coefficients ai of the potential must be subject to a huge
tuning to reproduce the present acceleration of the Universe.

APPENDIX A: PERTURBED GEOMETRY

Let us now consider the perturbations of the FRW
background (3.1)

gμν ¼ ḡ1 μν þ a2h1 μν; ~gμν ¼ ḡ2 μν þ ω2h2 μν; ðA1Þ

parametrized as follows:

h1 00 ≡ −2A1; h2 00 ≡ −2c2A2;

h1=20i ≡ C1=2i − ∂iB1=2;

∂iV1=2i ¼ ∂iC1=2i ¼ ∂jhTT1=2ij ¼ δijhTT1=2ij ¼ 0;

h1=2ij ≡ hTT1=2ij þ ∂iV1=2j þ ∂jV1=2i þ 2∂i∂jE1=2

þ 2δijF1=2: ðA2Þ

Spatial indices are raised or lowered using the spatial flat
metric. In the scalar sector we can form six independent
gauge invariant scalar combinations that we chose to be

Ψ1 ¼ A1 −HΞ1 − Ξ0
1

Ψ2 ¼ A2 þ c−2
�
c0

c
−Hω

�
Ξ2 −

Ξ0
2

c2

Φ1 ¼ F1 −HΞ1; Φ2 ¼ F2 −Hω
Ξ2

c2
;

E ¼ E1 − E2; B1 ¼ B2 − c2B1 þ ð1 − c2ÞE0
1; ðA3Þ

where Ξ1=2 ¼ B1=2 þ E0
1=2. In the matter sectors, we define

the following gauge invariant perturbed pressure and
density:

δρ1gi ¼ δρ1 − Ξ1ρ
0
1; δp1gi

¼ δp1 − Ξ1p0
1;

δρ2gi ¼ δρ2 −
Ξ2

c2
ρ02; δp2gi

¼ δp2 −
Ξ2

c2
p0
2: ðA4Þ

The scalar part v of the perturbed 4-velocity uμ is defined as

uμ1=2 ¼ ūμ1=2 þ δuμ; uμ1u
ν
1gμν ¼ −1;

uμ2u
ν
2 ~gμν ¼ −1; δu01=2 ¼ −a−1A1=2;

δu1=2i ¼ að∂iv1=2 − ∂iB1=2Þ: ðA5Þ

The corresponding gauge invariant quantity is defined as

u1=2s ¼ vþ E0
1=2: ðA6Þ

The conservation of the energy momentum tensor leads to a
set of differential relations. For the sector 1 we have

δρ01gi ¼ ð1þ w1Þ½ρ1ðk2u1s − 3Φ0
1Þ − 3Hδρ1gi �; ðA7Þ

u01s ¼ ð3w1 − 1Þu1sH −
w1

ð1þ w1Þ
δρ1gi
ρ1

−Ψ1: ðA8Þ

For the sector 2,

δρ02gi ¼ ð1þ w2Þ½ρ2ðk2u2s − 3Φ0
2Þ − 3Hωδρ2gi �;

u02s ¼ u2s

�
ð3w2 − 1ÞHωþ

c0

c

�
− c2

�
w2

ð1þ w2Þ
δρ2gi
ρ2

þΨ2

�
:

ðA9Þ

The perturbed Einstein equations for the first metric reads

2ΔΦ1 þ 6HðΨ1H − Φ0
1Þ þ a2m2f2ð3F 1 − ΔEÞ

¼ −8πa2Gδρ1gi ; ðA10Þ

∂i

�
2Ψ1H − 2Φ0

1 þ
a2m2B1f2
ðcþ 1Þ þ 8πGa2ðp1 þ ρ1Þu1s

�
¼ 0;

ðA11Þ

ð∂i∂j − δijΔÞða2f1m2E − Φ1 −Ψ1Þ
þ δij½m2a2ð2f1F 1 þ f2A1Þ þ 2Ψ1ðH2 þ 2H0Þ
−2Φ00

1 − 2Hð2Φ0
1 −Ψ0

1Þ� ¼ 8πGa2δijδp1gi
; ðA12Þ

where

f1 ¼ ξ½2ξð3a3cξþ a2ðcþ 1ÞÞ þ a1�;
f2 ¼ ξð6a3ξ2 þ 4a2ξþ a1Þ:

ðA13Þ

For the metric ~g
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2c2ΔΦ2 þ 6HωðΨ2Hω − Φ0
2Þ þ

m2a2f2
κξ2

c2ðΔE − 3F 2Þ

¼ −
8πG
κ

a2c2ξ2δρ2gi ; ðA14Þ

∂i

�
2cðΨ2Hω − Φ0

2Þ −
m2a2f2

κξ2ð1þ cÞB2

þ 8πG
κ

ca2ξ2ðp2 þ ρ2Þu2s
�
¼ 0; ðA15Þ

− cð∂i∂j − δijΔÞ
�
a2f1m2

κξ2
E þ cðΦ2 þΨ2Þ

�

þ δij

�
m2a2

κξ2
ð2cf1F 2 þ f2A2Þ

þ 2

�
H2

ω þ 2H0
ω − 2

c0

c
Hω

�

×Ψ2 − 2Φ00
2 þ 2

�
c0

c
− 2Hω

�
Φ0

2 þ 2HωΨ0
2

�

¼ 8πG
κ

a2c2ξ2δijδp2gi
: ðA16Þ

The gauge invariant fields F 1=2 can be expressed in terms
of Φ1=2, B1 and E by using

HωF 2 −HF 1 ¼ ðH −HωÞðΦ1 − Φ2Þ; ðA17Þ

c2ðF 2 þ F 1Þ ¼ ðB1 − EÞðHþHωÞ − 2c2ðΦ1 − Φ2Þ:
ðA18Þ

We often use the Fourier transform of perturbations with
respect to xi, the corresponding 3-momentum is ki and
k2 ¼ kiki. To keep notation as simple as possible we give
up the symbol of the Fourier transform.

APPENDIX B: EVOLUTION OF
PERTURBATIONS

In this Appendix we give the equations that govern the
evolution of the perturbations. We are interested in two
regimes: subhorizon modes with kτ ≫ 1 and superhorizon
ones for which kτ ≪ 1.

1. Case (B)

Remember that in this case we have ξ≃ a1m2

8πGρ1κ
≪ 1 and

that the leading contribution for the evolution equation of
Φ1 is the same as GR. For subhorizon modes, Φ2 and E
satisfy a system of coupled equations,

Φ00
2 þ

6½9ðw2 þ 1Þw2
1 þ 3ð5w2 þ 7Þw1 þ 4w2 þ 14�

τð3w1 þ 4Þð3w1 þ 1Þ Φ0
2 þ k2½ð3w1 þ 1Þð3w1 þ 4Þw2 − 3w1 − 2�Φ2

þ k2ð3w1 − 1ÞΦ1 þ
18w1 − 6

τð3w1 þ 1ÞΦ
0
1 þ

12½9ð3w2 þ 1Þw2
1 þ 15w1ð3w2 þ 1Þ þ 2ð6w2 þ 5Þ�

τ3ð3w1 þ 1Þ3ð3w1 þ 4Þ E0

þ k2
6ð3w1 þ 1Þð3w1 þ 4Þw2 − 6ðw1 þ 1Þ

τ2ð3w1 þ 1Þ2 E ¼ 0;E00 þ 6ð9w2w1 þ 9w1 þ 12w2 þ 10Þ
τð9w2

1 þ 15w1 þ 4Þ E0 þ k2½w1 þ 3ð3w1 þ 4Þw2 þ 1�E

−
1

6
k2τ2ð3w1 − 1Þð3w1 þ 1Þ2Φ1 þ τð1− 9w2

1ÞΦ0
1 þ

1

6
k2τ2ð3w1 þ 1Þ2ð12w2 þw1ð9w2 þ 3Þ þ 2ÞΦ2

þ τð3w1 þ 1Þ½12w2 þw1ð9w2 þ 3Þ þ 2�
3w1 þ 4

Φ0
2 ¼ 0: ðB1Þ

For superhorizon modes, the coupled equations for Φ2 and E are given by

Φ00
2 þ

6ð3w1 þ 4Þðw2 þ 1Þ
τð3w1 þ 1Þ Φ0

2 þ
6ð15w1 þ 17Þ½ð3w1 þ 4Þw2 þ 1�

τ2ð3w1 þ 1Þ2 Φ2 þ
24

τ3ð3w1 þ 1Þ3 E
0 þ 48½12w2 þ w1ð9w2 − 3Þ þ 2�

τ4ð3w1 þ 1Þ4 E

−
18ð3w1 þ 5Þðð3w1 þ 4Þw2 þ 1Þ

τ2ð3w1 þ 1Þ2 Φ1 −
18½ð3w1 þ 4Þw2 þ 1�

τð3w1 þ 1Þ Φ0
1 ¼ 0; ðB2Þ

E00 þ 2ð3w1 þ 7Þ
τð3w1 þ 1Þ E

0 þ 36ð3w2
1 þ ð6w2 þ 5Þw1 þ 8w2 þ 2Þ

τ2ð3w1 þ 1Þ3 E − τð36w2 þ 3w1ð9w2 − 2Þ þ 1ÞΦ0
1

−
9ð3w1 þ 5Þð4w2 þ w1ð3w2 − 1ÞÞ

3w1 þ 1
Φ1 þ τð3ð3w1 þ 4Þw2 þ 1ÞΦ0

2

þ 3ð9w3
1 þ 9ð5w2 þ 2Þw2

1 þ ð111w2 þ 14Þw1 þ 68w2 þ 7Þ
3w1 þ 1

Φ2 ¼ 0: ðB3Þ
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2. Case (C)

For this case ξ≃ ðκρ1ρ2
Þ1=2 ¼ ξina

3ðw1−w2Þ
1þ3w2 . At the leading order in the ϵ expansion, Φ2 satisfies the following equation that is

valid for any kτ

Φ00
2 þ

6ðw2 þ 1Þ
τð3w2 þ 1ÞΦ

0
2 þ k2

w2ð3w1 þ 1Þ2
ð3w2 þ 1Þ2 Φ2 ¼ 0: ðB4Þ

For E, inside the horizon, we get

E00 þ 2½2f1ð3w2 þ 1Þ þ f2ð1 − 9w1w2Þ�
τf2ð3w1 þ 1Þð3w2 þ 1Þ E0 þ k2½ð3w1 þ 1Þf2 − 4f1�

3f2ð3w2 þ 1Þ E

þ k2τ2
ð3w1 þ 1Þ2ðf2ð3w1 þ 1Þ − 2f1Þ

6f2ð3w2 þ 1Þ Φ2 þ τ

�
−
2f1
f2

þ 3w1 þ 1

�
Φ0

2

−
τð3w1 þ 1Þ½f2ð3w1 þ 1Þ − 2f1�

f2ð3w2 þ 1Þ Φ0
1 − k2τ2

ð3w1 þ 1Þ2ðf2ð3w1 þ 1Þ − 2f1Þ
6f2ð3w2 þ 1Þ Φ1 ¼ 0. ðB5Þ

The quantities f1 and f2 are defined in (A13). Imposing that all mass terms are positive we get precisely condition (4.14).
Notice that for w2 ¼ w1 the equation for E reduces to

E00 −
6ðw1 − 1Þ
τð3w1 þ 1Þ E

0 þ k2ðw1 − 1Þ
3w1 þ 1

E þ F ðΦ1;Φ2Þ ¼ 0; ðB6Þ

and the exponential instability is present.
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