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We propose extended Chaplygin gas equation of state for which it recovers barotropic 
uid with quadratic equation of state.
We use numerical method to investigate the behavior of some cosmological parameters such as scale factor, Hubble expansion
parameter, energy density, and deceleration parameter. We also discuss the resulting e�ective equation of state parameter. Using
density perturbations we investigate the stability of the theory.

1. Introduction

Accelerated expansion of universe may be described by dark
energy which has positive energy and adequate negative
pressure [1, 2]. 	ere are several theories to describe the dark
energy such as quintessence [3]. Another candidate is Ein-
stein’s cosmological constant which has two crucial problems
so called �ne tuning and coincidence [4].	ere are also other
interesting models to describe the dark energy such as �-
essence model [5] and tachyonic model [6]. An interesting
model to describe dark energy is Chaplygin gas [7, 8] that
are based on Chaplygin equation (CG) of state [9], which are
not good consistent with observational data [10]. 	erefore,
an extension of CG model is proposed [11–13], which is
called generalized Chaplygin gas (GCG). It is also possible
to study viscosity in GCG [14–19]. However, observational
data ruled out such a proposal. 	en, GCG was extended to
the modi�ed Chaplygin gas (MCG) [20]. Recently, viscous
MCG is also suggested and studied [21, 22]. A further
extension of CG model is called modi�ed cosmic Chap-
lygin gas (MCCG) which was recently proposed [23–25].
Also, various Chaplygin gas models were studied from the
holography point of view [26–28].

	e MCG equation of state (EoS) has two parts: the �rst
term gives an ordinary 
uid obeying a linear barotropic EoS,
and the second term relates pressure to some power of the
inverse of energy density. So here we are essentially dealing
with a two-
uid model. However, it is possible to consider

barotropic 
uid with quadratic EoS or even with higher
orders EoS [29, 30].	erefore, it is interesting to extendMCG
EoS which recovers at least barotropic 
uid with quadratic
EoS.

MCG is described by the following EoS:

� = �� − �
�� . (1)

Now we would like to introduce the extended Chaplygin gas
EoS:

� = ∑
�
���� − �

�� , (2)

which reduces to MCG EoS for � = 1 (�0 = 0) and
can recover barotropic 
uid with quadratic EoS by setting� = 2. Also higher � may recover higher order barotropic

uid which is indeed our motivation to suggest extended
Chaplygin gas. We hope this model will be consistent with
observational data compared to previous models.

	is paper is organized as follows. In Section 2 we
review FRW cosmology and give some useful equations to
study cosmological parameters. In Section 3 we introduce
our model and numerically analyze some cosmological
parameters. In Section 4 we study the deceleration parameter
and compare our results with some observational data. In
Section 5 we investigate the stability of our model and study
density perturbations and speed of sound in the same context.

Hindawi Publishing Corporation
Advances in High Energy Physics
Volume 2014, Article ID 231452, 11 pages
http://dx.doi.org/10.1155/2014/231452



2 Advances in High Energy Physics

Finally in Section 6 we summarize our results and give a
conclusion.

2. Equations

	e spatially 
at Friedmann-Robertson-Walker (FRW) uni-
verse is described by the following metric:

	
2 = 	�2 − �(�)2 (	�2 + �2	Ω2) , (3)

where 	Ω2 = 	�2 + sin2�	�2. Also, �(�) represents time-
dependent scale factor. 	e energy-momentum tensor for a
perfect 
uid is given by

��
]
= (� + �) ��0�0] − ���] , (4)

where �(�) is the energy density and �(�) is the isotropic

pressure. Also, �0 = 1 and �� = 0 (� = 1, 2, 3) with ��]���] =1. 	e independent �eld equations for the metric (3) and the
energy-momentum tensor (4) are given by

3�2 = 3( ̇�
�)
2 = �, (5)

2 ̈�
� + (

̇�
�)
2 = −�, (6)

where dot denotes derivative with respect to the cosmic time�, andwe take 8� = 1. It is also assumed that the total matter
and energy are conserved with the following conservation
equation:

̇� + 3 ̇�
� (� + �) = 0. (7)

3. Extended Chaplygin Gas EoS

Modi�ed Chaplygin gas was introduced with the following
equation of state:

� = �� − �
�� , (8)

where 0 < � < 1/3, �, and 0 < ! < 1 are positive constants.
In this model, one gets a constant negative pressure at low
energy density and high pressure at high energy density.
Choosing � = 0 one gets generalized Chaplygin gas EoS,
and � = 0 together ! = 1 recovers the original Chaplygin
gas EoS. Moreover, the �rst term on the right hand side of
(8) gives an ordinary 
uid obeying a barotropic EoS, while
there are other barotropic 
uidswith EoS being quadratic and
higher orders [29]. Since modi�ed Chaplygin gas can only
recover linear form of barotropic EoS, here we would like
to extend this model so that resulting EoS also can recover
EoS of barotropic 
uids with higher orders. In that case we
propose the following EoS:

� = ∑
�
���� − �

�� , (9)

which is called the extended Chaplygin gas EoS. Now, � = 1
recovers ordinary MCG with �1 = �. In order to obtain the
scale factor-dependence of energy density we should use EoS
given by (9) in conservation equation (7). 	e � = 0 term is
somewhat similar to a cosmological constant (if �0 was set
equal to minus 1 it would be exactly like a lambda term). We
know that the cosmological constant presents a �ne tuning
problem, so our model is superior. In the following special
cases we only consider the last term of expansion in (9) and
�nd special solution.

3.1. � = 1. Special case of � = 1 reduces to the modi�ed
Chaplygin gas EoS with the following density [31]:

� = [ �
1 + � + #

�3(1+�)(1+�) ]
1/(1+�), (10)

where # is an integration constant, and as we mentioned
above, the last term of expansion considered. 	erefore, we
can obtain Hubble parameter as the following:

� = ̇�
� =

1
√3[

�
1 + � + #

�3(1+�)(1+�) ]
1/2(1+�). (11)

	is case is completely discussed in [32].

3.2. � =−!. Here, we assume that the last term of expression
in EoS (9) is dominant. In that case one can express energy
density in terms of scale factor as

� = [� − � + #
�3(1+�) ]

1/(1+�), (12)

where # is an integration constant.
We can use numerical method to solve the Friedmann

equations and obtain the time dependence of the scale
factor in plots of Figures 1 and 2 for various parameters.
In Figure 1 we �x � and � and see that the variation of !
has opposite e�ect at the early and late time. In the early
universe, increasing ! increases the value of the scale factor
(Figure 1(a)). But at the late times, increasing ! decreases the
value of the scale factor (Figure 1(b)). In Figure 2(a) we �x �
and ! and vary�.We �nd that, in the early universe, the value
of � is not important, and it is reasonable because density is
high at the initial stage and the second term of EoS becomes
negligible. But, at the late time, increasing � increases the
value of the scale factor. Another interesting case is when we
set� = (1−!)/(1+!) and �x� to investigate time-dependent
scale factor by variation of ! (see Figure 2(b)). Under this
assumption we get from (9) that as � increases (0 < ! < 1),
the �rst term on the right hand side reduces to zero while the
second term decreases for a chosen energy density. Special
case of ! = 0.5 yields to � = 1/3 which is illustrated by blue
line of Figure 2(b).

In order to compare this state with observational data
we study Hubble expansion parameter in terms of red-
shi� in Figure 3 for selected values of parameters �, �, !,
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Figure 1: Scale factor versus time for � = 3 and � = 1/3. ! = 0.1 (green line), ! = 0.5 (blue line), and ! = 0.9 (red line).
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Figure 2: Scale factor versus time for (a) ! = 0.5 and � = 1/3. � = 0 (yellow), � = 0.6 (green), � = 1.8 (blue), � = 2.5 (black), � = 3.4 (red).
(b) � = 3 and � = (1 − !)/(1 + !). ! = 0.1 (green line), ! = 0.5 (blue line), ! = 0.9 (red line).

and constant #. We can see that current value of the Hubble
expansion parameter obtained as �0 ∼ 70 corresponding to# = 1 which is near several observational data [34]. Also,
we can use observational data given by [35, 36] to compare�(') at di�erent redshi�s. We can see from Figure 3 that the
later value of�(') has higher value than results presented by
[35, 36]. In order to have agreement with these data we can
choose smallest value of the constant #. It is clear that the
dashed line of Figure 3 is near the results obtained by SJVKS10

or best �tted values of [35, 36]. However, we can obtain exact
agreement by choosing appropriate small value of #.
3.3. !=−1. Similar to the previous case, we focus on the last
summation term of (9). In that case, one can express energy
density in terms of the scale factor as

� = [ �
� − 1 −

#
�3(�−1)(�−1) ]

1/(1−�), (13)
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Figure 3: Hubble expansion parameter versus redshi� for � = 1,� = 1/3, and ! = 0.9 for # = 0.4 (dashed line), # = 1 (solid line),
and # = 1.6 (dotted line), dots denote observational data [33].
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Figure 4: Hubble expansion parameter versus redshi� in case of � =2, for � = 1/3, and ! = 0.5 for # = 1.

where # is an integration constant. 	erefore, we can obtain
Hubble parameter as the following:

� = ̇�
� =

1
√3[

�
� − 1 −

1
3 (� − 1) �3(�−1)(�−1) ]

1/2(1−�). (14)

	is is indeed dual of the �rst case (Section 3.1) by � → −�
and � → −!.

3.4. � = 2 and != 1/2. In that case the EoS (9) reduces to the
following expression:

; = �1� + �2�2 − �
√�. (15)

We assume that �1 = �2 ≡ � and use (7) to obtain the
following integral:

ln (�) = −∫ 	�
3 ((1 + �) � + ��2 − (�/√�)) . (16)

It gives us the following energy density:

� = (A�
9/2 + �−((9+15�2)/2)�)2

�9 , (17)

whereA is root of the following equation:

�A5 + (1 + �)A3 − � = 0. (18)

In this case the Hubble parameter in terms of redshi� plotted
in the Figure 4, which shows that this case is far from
observations in any time.

3.5. � = 3 and != 1/2. In that case the EoS (9) reduces to the
following expression:

; = �1� + �2�2 + �3�3 − �
√�. (19)

We assume that �1 = �2 = �3 ≡ � and use (7) to �nd the
following integral:

ln (�) = −∫ 	�
3 ((1 + �) � + ��2 + ��3 − (�/√�)) . (20)

It gives us the following energy density:

� = (C�
9/2 + �−((9+15	2+21	4)/2)�)2

�9 , (21)

where C is root of the following equation:

�C7 + �C5 + (1 + �)C3 − � = 0. (22)

Resulting Hubble parameter of this case is similar to the
previous case (� = 2), therefore we check the next case.
3.6. Arbitrary � and !. In the previous subsections we
discussed some particular cases of � and !. Now, we would
like to consider general case and give numerical analysis of
the cosmological parameters such as scale factor, dark energy
density, and Hubble expansion parameter with an arbitrary
choice of � and !. Before doing this, we obtain an expression
for the energy density corresponding to ! = 0.5 which is
extension of the previous subsections. Repeating procedure
of the Sections 3.4 and 3.5 gives us the following expressions:

� = (C�
9/2 + �−((9+∑� 6(�−1)C2(�−1))/2)�)2

�9 , (23)
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Figure 5: Hubble expansion parameter versus redshi� in case of
arbitrary � and !. We �x D = 0.5 and E = 1 (solid line), E = 1.3
(dashed line), E = 1.5 (dotted line), E = 1.7 (dash dotted line), andE = 1.9 (long dashed line); dots denote observational data [33].

whereC is root of the following equation:

�∑
�
C
2�+1 + (1 + �)C3 − � = 0. (24)

We can investigate�(F) using the expression
Ω = �

3�20 , (25)

where�0 being the Hubble parameter today, in the form,

Ω (F) = Ω0[1 − D + D(1 + F)�]2, (26)

where D and E are constants related to the constantsC,�, and�. Since there is only one 
uid and the spatial section is 
at,Ω0 = 1. Using Friedmann’s equation, it is possible to obtain�(F) and compare it with the observational data.We perform
it in Figure 5. We can see that choosing D = 0.5 and E = 1.7
are the best �t in agreement with observational data [35, 36].
	erefore, always we can choose appropriate values of D and E
to have a model in agreement with observational data better
than ΛCDMmodel.

However, some disagreement of these cases with observa-
tional data of�(F)maybe because of choosing! = 0.5. Other
choice of ! should investigate numerically as the following.

In order to �nd real solutions which will be interesting
from observational point of view, �rst of all, we combine (5),
(6), and (9) to obtain the following second order di�erential
equation:

2 ̈�
� + (

̇�
�)
2 +∑
�
3��( ̇�

�)
2� − 3−��( ̇�

�)
−2� = 0, (27)

where we assume �� ≡ � for simplicity and reducing
free parameters. Numerically, we can solve (15) and obtain
behavior of scale factor against �. In Figure 6 we �x �, !, and� and vary � to �nd that increasing � decreases value of the
scale factor. Figure 6(a) shows long term behavior of the scale
factor, while Figure 6(b) shows variation of the scale factor at
the early universe. Also, Figure 7 shows that � decreases by
increasing!which is in agreementwith the late time behavior
of the Figure 1.

On the other hand we can combine (5), (7), and (9) to
obtain the following �rst order di�erential equation of the
energy density:

̇� + √3(�3/2 + �∑
�
��+(1/2) − ��−�+(1/2)) = 0. (28)

Equation (28) can also be solved numerically to obtain
the behavior of the dark energy density. Figure 8 shows that
increasing � decreases value of energy density. As expected,
energy density obtained here is a decreasing function of time
which yields an in�nitesimal constant at the late times.

By using (5) we can rewrite (6) as follows:

2�̇ + 3�2 = −�. (29)

Now, we use (5) and (9) in (29) to study behavior of Hubble
expansion parameter via the following equation:

2�̇ + 3�2 +∑
�
3���2� − 3−���−2� = 0. (30)

Numerical analysis of this equation is illustrated in Figure 9
and shows that increasing � decreases value of the Hubble
expansion parameter.

4. Deceleration Parameter

In the previous section we gave a numerical analysis the
behavior of the scale factor, energy density, and Hubble
expansion parameter. Since it is not clear to see the analytical
behavior of these parameters from (27), (28), and (30),
we would like to look at another parameter to get more
information about the dynamics.

An important parameter in cosmology, from theoretical
and observational point of views, is called the deceleration
parameter which is given by

L = −( ̇�
�)
−2 ̈�
� = −1 −

�̇
�2 . (31)

Using (5), (9), and (31) one can obtain

L = 12 +
3
2 (∑� ��

�−1 − �
��+1) . (32)

In Figure 10 we draw deceleration parameter in terms of � for
various values of �. We can see that increasing � increases
the value of L. 	e green line of Figure 10 corresponds to
modi�ed Chaplygin gas. At the early universe with high
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Figure 6: Scale factor versus time for � = 3, ! = 0.9, and � = 1/3. � = 1 (green line), � = 2 (blue line), � = 3 (black line), � = 4 (red line).
(a) General behavior. (b) Early universe.
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Figure 7: Scale factor versus time for � = 3, � = 2, and � = 1/3.! = 0.9 (green line), ! = 0.7 (blue line), ! = 0.5 (black line), ! = 0.1
(red line).

density the deceleration parameter may be reduced to the
following expression:

L ≈ 1 + 3�∑� ��−12 . (33)

In the case of � = 1 and � = −1 we recover result ofΛCDM model where L = −1. On the other hand, late time
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Figure 8: Energy density versus time for � = 3, ! = 0.9, and � =1/3. � = 1 (green line), � = 2 (blue line), � = 3 (black line), � = 4
(red line).

behavior (low density limit) of deceleration parameter may
be described by

L ≈ 1 − 3��−�−12 . (34)

Again, special case of ! = −1 and � = 1 give L = −1.
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and � = 1/3. � = 1 (green line), � = 2 (blue line), � = 3 (red line).

At the late stage of evolution one can obtain an e�ective
EoS parameter as follows:

Oe� = −1 + ��∑� �
�+�, (35)

as � → 0 then Oe� → −1 so we asymptotically get � =−� from extended Chaplygin gas as well as MCG, which
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Figure 11: E�ective EoS parameter versus density for � = 3, ! = 0.9,
and � = 1/3. � = 1 (green line), � = 2 (blue line), � = 3 (red line).

corresponds to an empty universe with cosmological con-
stant. In Figure 11 we draw the e�ective EoS parameter and
�nd that at the late stage, increasing � decreases the value
of Oe� and yields it −1. On the other hand, at the early
universe with high density we have positive e�ective EoS. It
is interesting to note that Oe� always remains greater than −1,
thus avoiding the undesirable feature of big rip similar to the
previous cases of Chaplygin gas EoS. Also, we can see that
evolution of Oe� with higher � is faster than the case with
lower �.
5. Density Perturbation

In this section we give density perturbation analysis of our
model. Already, density perturbation of a universe domi-
nated by Chaplygin gas was studied by [34]. Now, we use
their results to write the following perturbation equation
corresponding to 
at FRW universe which expands with
acceleration.	e perturbation equation of density is given by

̈� + � [2 − 3 (2O − #2�)] ̇�
− 32�2 (1 − 6#2� − 3O2 + 8O) � = −�2

#2��2 �,
(36)

where � is a density 
uctuation, � is the wave-number of the
Fourier mode of the perturbation, O = �/�, and

#2� = �̇̇� , (37)

is sound speed. 	is is an important parameter to investigate
stability of the theory. Extended Chaplygin gas with real
positive sound speed is stable therefore we should seek
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regions in which the squared sound speed will be positive
to have stability. In the following subsections we solve (36)
numerically for some values of �.
5.1. � = 1. In the case of � = 1 one can obtain

� = [√32 (1 + �) � + #1]
−2
, (38)

where #1 is an integration constant. 	en, the behavior
of � is illustrated in Figure 12, which shows evolution of
perturbation for various values of �. We can see that at the
initial time there is no di�erence between various values of�. A�er that, increasing � increases the value of �. Analytical
study of a similar case with ! = 0.5 can be found in [34].
Reference [34] suggests � to be proportional to combination
of hypergeometric and exponential function of time which
is decreasing function of time at initial stage. 	erefore, our
results are in agreement with [34]. However, there is also a
numerical analysis with ! > 1 which suggest � is increasing
function of scale factor [37], so this case is not relevant to our
study.	e � = 1 case corresponding toMCGwas ruled out by
[37] by using observational constraints. 	erefore, we should
consider other cases with higher � to investigate the validity
of our model.

In Figure 13 we �x #1 = 0.01 and study variation of
squared sound speed for various values of !. We can see that
this model is completely stable for 0 ≤ ! ≤ 1.
5.2. � = 2. In the case of � = 2 we can obtain the following
dark energy density:

� = 1 + �� tan2 (3(1 + �)3/2 (� + #2)2√3� ) , (39)
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Figure 13: Squared sound speed for � = 3, #1 = 0.01, � = 1, and� = 1/3. ! = 1 (green line), ! = 0.7 (blue line), ! = 0.5 (black line),! = 0.1 (red line).
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Figure 14: Time evolution of � for � = 3, #2 = 1, ! = 0.5, � = 2,
and � = 1/3. � = 0 (blue line), � = 10 (green line), � = 100 (cyan
line).

where #2 is an integration constant. 	erefore, (36) can be
solved numerically which is illustrated in Figure 14. 	is
shows time evolution of � for various values of �. We �nd
that small values of � yield to positive � which are decreasing
function of time. Larger values of � yield to � as periodic
function, which are damped at the late time.

Also, in the Figure 15 we can see the behavior of squared
sound speed for some values of !. Signi�cantly, we can see
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Figure 15: Squared sound speed for � = 3, #2 = 1, � = 2, and� = 1/3. ! = 1 (green line), ! = 0.7 (blue line), ! = 0.5 (black line),! = 0.1 (red line).

a periodic behavior of #2� and �nd that our model is
completely stable.

Interesting point in this case is that one can get a stable
universe for some nonzero values of � unlike the MCG
models that were studied in [37]. It gives us good motivation
to continue our work to construct a valuable model of the
universe.

5.3. � = 3. In that case we can obtain the following time-
dependent density:

� = 1 + T (�) + √1 + 2T (�)√�T (�) , (40)

where

T (�) = tan2 (√6 (� + #3)�1/4 ) , (41)

and #3 is an integration constant. Also, we assumed that the
last term of expansion in (9) is dominant.

Figure 16 shows that � grows periodically at the initial
time and then behaves as damping periodic function of time.
We study evolution of � only for � = 0.

Also, Figure 17 shows a variation of squared sound speed
with timewhich is positive for all values of ! and tells that our
model is completely stable with � = 3. Also, there are critical
times where the sound speed vanishes and again grows to
high value. It means that small value of ! should choose to
avoid causality.

Before end of this section, it may be useful to present
sound speed in terms of scale factor. In that case we recall
special cases of � = 2 and � = 3 with ! = 0.5, which is
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t

�

Figure 16: Time evolution of � for � = 3, #3 = 1, ! = 0.5, � = 0,� = 3, and � = 1/3.
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Figure 17: Squared sound speed for � = 3, #3 = 1, � = 3, and� = 1/3. ! = 1 (green line), ! = 0.7 (blue line), ! = 0.5 (black line),! = 0.1 (red line).

discussed in Sections 3.4 and 3.5. In that case, Figure 18 shows
that the squared sound speed is positive for both cases. In
both cases of � = 2 and � = 3 the sound speed yields a
constant for the large scale factor. It is clear that increasing� increases sound speed. We can �x parameter to have well
de�ned sound speed.
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Figure 18: Squared sound speed for � = 0.5, ! = 0.5, and � = 0.05.� = 2 (dashed line), � = 3 (dotted line).

6. Conclusion

In this paper, an extendedmodel of Chaplygin gas (ECG) as a
model of dark energy is proposed which recovers barotropic

uid with quadratic EoS. Scale-factor dependence energy
density is obtained for special cases. In the general case,
we obtained the evolution of scale factor, Hubble expansion
parameter, and time-dependent dark energy density and
found the e�ect of � in cosmological parameters. For instance
we found that evolution of scale factor corresponding to � = 1
(linear barotropic 
uid) is faster than the case with � = 2
(quadratic barotropic 
uid). We also found that Hubble
expansion parameter and dark energy density are decreasing
with �.

	en, we investigated deceleration parameter and dis-
cussed initial time and late time behavior of it.Wehave shown
that L → −1 is veri�ed for low densities (late time).	en, we
discussed about e�ective EoS parameter and con�rmed thatO ≥ −1 is valid also in our model.

We analyzed�(F) and compared our results with obser-
vational data. We found that, by choosing appropriate values
of constant parameters, our model has more agreement with
observational data than ΛCDM.

Finally, we studied density perturbations and investigated
the stability of ourmodel under assumption that the �rst term
of (9) was dominant. We focused on the special case of � = 1
(MCG), � = 2, and � = 3.We found that the cases of � = 2 and� = 3 are completely stable by choosing appropriate values of
parameters.

We found that adding higher order terms which recovers
second and higher order barotropic EoS also may solve the
problem of MCG which was ruled out [37]. 	erefore, we
concluded that ECG may be a more appropriate model than
MCG and GCG and has agreement with the observational

data.	is paper is one of the �rst steps to introduce extended
Chaplygin gasmodel and there aremany things to investigate
in future works such as construction of holographic version
of this model.

It is not clear that if the model is to produce a su�ciently
long matter dominated period, followed by a dark energy
dominated epoch at the correct redshi�, if the values of the
extended Chaplygin gas density and pressure are su�ciently
small to pass current experimental tests. For example, if
the pressures and densities need to be fairly large in order
to produce the appropriate eras, the extended Chaplygin
gas presence may be detectable via, for example, galactic
dynamics where it condenses with the regular matter (like
dark matter); it will be part of our future work. An important
point is that our solution did not recover the standard
cosmologicalmodel in the past, since the extendedChaplygin
gas does not behave as a dust component. In order to have a
model which behaves as a dust we should consider varying��(�) in (9), so at the initial time��(�) → 0 and gives � = 0.
	is is also le� for future work.
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