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Abstract In this paper, we investigate non-Ricci, non-
compact Friedmann—Robertson—Walker type Kaluza—Klein
cosmology in the presence of pressureless matter and modi-
fied holographic Ricci dark energy in the frame work of Brans
and Dicke (Phys Rev 124:965, 1961) scalar—tensor theory of
gravitation. We solve the field equations of this theory using
a hybrid expansion law for the five dimensional scale fac-
tor. We have also used a power law and a form of logarith-
mic function of the scale factor for the Brans—Dicke scalar
field. Consequently, we obtain two interesting cosmologi-
cal models of the Kaluza—Klein universe. We have evaluated
the cosmological parameters, namely, the equation of state
parameter, the deceleration parameter, and the density param-
eters. To check the stability of our models we use the squared
speed of sound. Some well-known cosmological (wde—w:le
and statefinder) planes are constructed for our models. We
have also analyzed the physical behavior of these parame-
ters through graphical representation. It is observed that the
FRW type Kaluza—Klein dark energy models presented are
compatible with the present day cosmological observations.

1 Introduction

The discovery of accelerated expansion of the universe is one
of the biggest achievement of the twentieth century [1,2]. A
mysterious force with huge negative pressure, dubbed dark
energy (DE) was suggested to account for this accelerated
expansion. It is also suggested by the WMAP experiment
that the universe is composed of 73% DE, 23% dark matter,
and 4% baryonic matter [3]. The cosmic expansion of the
universe goes through various phases of matter and DE. The
DE is normally characterized by the equation of state (EoS)
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parameter (wgz.) and the ranges include —1/3 < wg, < —1
for quintessence, wg, = —1 for the cosmological constant
(vacuum), and wg, < —1 for phantom DE dominated eras.

The cosmological constant cold dark matter (ACDM)
model is the simplest cosmological model of DE, in which
vacuum energy plays the role of DE but it has issues like the
coincidence and fine-tuning problems. This motivated vari-
ous authors to find some alternatives to describe the nature
of DE. In this scenario, the matter part of the Einstein—
Hilbert action is modified and one proposed various dynam-
ical models such as families of scalar fields (which include
quintessence, phantom, k-essence, etc.) [4-65,67,68], the
Chaplygin gas model [8] and holographic DE models [9].
Padmanabhan [10], Copeland et al. [11] and Bamba et al.
[12] have presented a comprehensive review of DE models
and modified theories of gravity.

The DE problem can be studied in a simpler way using
holographic DE (HDE) models [13, 14]. In recent years, there
has been a lot of interest in HDE models because of the
fact that HDE is an emerging model as a candidate of DE
constructed by the holographic principle [15]. Motivated by
this principle, Cohen et al. [16] recommended that the vac-
uum energy density is proportional to the Hubble scale i.e.,
Iy ~ H~!. In this model, they successfully explained both
the fine-tuning and the coincidence problems, but it is unable
to expound the recent cosmic accelerated expansion. The
future event horizon has been considered as the characteristic
length / [17]. Later, the inverse of Ricci scalar curvature (i.e.,

|R| _Tl) has been taken as the length / [18]; the so-called holo-
graphic Ricci DE model. Huang and Li [19] and Zhang and
Wu [20] have investigated several properties of holographic
Ricci DE. Granda and Oliveros [21] proposed a modified
Ricci DE model in which the energy density of DE is a func-
tion of the Hubble parameter H and its first order derivative
with respect to cosmic time (i.e., H ). Chen and Jing [22] have
proposed a generalized DE model in which the density of DE
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contains the second order derivative of Hubble’s parameter
with respect to time (i.e., H ) and is known as modified holo-
graphic Ricci DE (MHRDE). This DE model explains the
well-known age problem of the old objects. The expression
for energy density of MHRDE is defined by Chen and Jing
[22] as

pa =3My(BIH + poH + psHH ™), ()

where Mg is the reduced Planck mass, 81, B>, and 3 are three
arbitrary dimensionless parameters. Some authors have also
investigated different DE models in the framework of various
theories of gravitation and obtained interesting results [23—
32].

The modification in the gravitational part of the Einstein—
Hilbert action leads to modified theories of gravitation, and
enhancement of dimensions in the original general relativity
is another way to handle the DE puzzle. Among the modi-
fied theories, the scalar—tensor theories of gravity have got
considerable attention. Brans and Dicke (BD) [33] have for-
mulated a scalar—tensor theory where the scalar field ¢ is
related with the gravitational constant G as G = S0 and it
involves a coupling parameter w. The scalar field is a fun-
damental feature of this model of gravity which is consid-
ered as a DE candidate. The coupling parameter (w) can be
adjusted according to the requirement. In particular, in the
limit w — o0, it reduces BD scalar—tensor theory to general
relativity.

The study of higher dimensional space-time is an active
field of research aimed to unify gravity with other gauge inter-
actions. The concept of extra dimensions is relevant in cos-
mology, particularly, at the early stage of the universe and the-
oretically the present four dimensional stage of the universe
might have been preceded by a multidimensional stage. This
fact has attracted many researchers [34—36] leading them to
investigate the cosmological models in the field of higher
dimensions. In fact, as time evolves the standard dimen-
sions expand while the extra dimensions shrink to Planck-
ian dimensions, beyond our ability to detect with the cur-
rently available experimental facilities [37,38]. Kaluza [39]
and Klein [40] have used this extra dimension to unify grav-
ity and electromagnetism in a theory which was essentially
five dimensional general relativity. Several authors [41-45]
have investigated various cosmological models using five or
more dimensions.

The aim of this paper is to obtain non-Ricci, non-compact
five dimensional Friedmann—Robertson—Walker (FRW) type
Kaluza—Klien (KK) MHRDE models in BD scalar—tensor
theory with BD scalar field as power and logarithmic function
of the average scale factor. The plan of this paper is as follows.
In Sect. 2, we discuss five dimensional FRW space-time, the
matter distribution and we formulate the BD field equations.
In Sect. 3, we assume a power law and a form of logarithmic
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function of the scale factor for the BD scalar field to obtain
solutions and analyze the physical behavior of the models
obtained. Finally, we conclude our results in the last section.

2 Model and field equations

We consider the non-Ricci, non-compact five dimensional
FRW type Kaluza—Klein metric in the form

+ r2(d6? + sin® 6dp?)

ds? = dt* — a?
1 —kr?

+(1—kr5dw2} )

where a(t) is the five dimensional scale factor of the model
and k = —1, 0, 4+ 1 (curvature parameter,) for open, flat,
closed models, respectively. The spatial volume (V'), Hubble
parameter (H ), expansion scalar (¢) and deceleration param-
eter (g) of this model are given by

vV =d*, 3)
0 =4H =42, @)
a
_i<i>_1 (5)
1= 4 \H ’

Several theories have been proposed as alternatives to Ein-
stein’s theory. Brans and Dicke [33] formulated a scalar—
tensor theory of gravitation which is supposed to be the best
alternative to Einstein’s theory. We consider the universe
filled with pressure-less matter and a modified holographic
Ricci DE (MHRDE) fluid. In this case the field equations
for the combined scalar and tenor fields given by Brans and
Dicke [33] are

ij — yRgij = —?(Tij +Tij) =& (di;j — &ijd)

2
) 1 k
—we (45,1'45,]‘ - E&jd’,kﬁb’ ) , (6)
k o 87‘[ —
¢ = G12w (T+T) @)

and the energy conservation equation is
(Tij +Tij):j =0, ®)

which is a consequence of field equations (6) and (7).

Here R Ricci scalar, R;; is Ricci tensor, w is a dimension-
less coupling constant. 7;; and T, j are energy-momentum
tensors for pressure-less matter and MHRDE, respectively,
which are defined as

Tij = pmuiuj, 9)
Tij = (Pde + Pde)Uittj — Pde8ij; (10)
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here pg. and p4. are the pressure and energy density of
MHRDE, respectively, wje = pde/pPde 1S the equation of
state (EoS) parameter of MHRDE. p,, is the energy density
of matter. The energy density of MHRDE py, is defined by
Chen and Jing [22],

pac =3My(BIH® + poH + p3HH ™) (1

where 1, B2 and B3 are three arbitrary dimensionless param-
eters. MIZ7 = % is the reduced Planck mass and in BD

theory ¢ o« G~!. We have

3 . ..
pie = $<ﬁ1H2+ﬁzH+ﬁ3HH—‘>. (12)

By adopting comoving coordinates, the field equations (6)
and (7) for the metric (2) using the energy-momentum tensors
(9) and (10) yield the following equations:

3% + 32—2 +3j—2 + %z—i + 3% % — —%Tpde, (13)
6j—z + 6:—2 = %g 4% = %’T(pde + P, (14)
q'5+4¢‘>§ = ﬁ’;w [ode + pm — 4pael. (15)
and energy conservation, Eq. (8), leads to

Bde + Pm + 4Z(pde + pde + pm) =0, (16)

where the overhead dot denotes ordinary differentiation with
respect to time 7.

3 Solution of field equations

We can observe that the field equations (13)—(15) are a sys-
tem of three independent equations with the five unknown
parameters d, pde, Pde> Pm»> and ¢. Hence in order to solve
this inconsistent system we need two additional constraints.

Many researchers have used a constant deceleration
parameter to obtain the solutions of the model which gives
a power law for the metric potentials [46-50]. The posi-
tive value of the deceleration parameter represents the early
decelerated phase of the universe, whereas the negative value
of the deceleration parameter yields the acceleration phase
of the universe. Modern observational results from Type Ia
supernova and CMB anisotropies suggest that the universe is
not only expanding, but also accelerating at present and hav-
ing decelerated expansion in the past. Therefore, the decel-
eration parameter must show this transition by its signature
changing. That is why the deceleration parameter is variable
in time, not a constant. This motivates us to choose the fol-
lowing average scale factor which provides a time dependent
deceleration parameter.

The hybrid expansion law (HEL) of the scale factor was
initially proposed by Akarsu etal. [51] for Robertson—Walker
space-time. Shri Ram and Chandel [52] have investigated
the dynamics of a magnetized string cosmological model in
f (R, T) gravity theory using HEL taking
a(t) = agt*e*’, where ag > 0. (17)
For ¢; = 0 and op = 0, one can obtain a power-law and
exponential expansion from Eq. (17), respectively. When o
and o, both are non-zero, the universe evolves with variable
deceleration parameter.

In the literature it is also common to use a power-law rela-
tion between the BD scalar field ¢ and the five dimensional
scale factor a of the form [53,54]

¢ = poa’ (18)

where ¢ is a constant and / is a power. Many authors have
investigated various aspects of this form of the scalar field
¢ and have shown that it leads to a constant deceleration
parameter [55,56] and also to a time varying deceleration
parameter [S7-59].

Recently, Kumar and Singh [60] proposed a BD scalar
field evolving as a logarithmic function of the average scale
factor to investigate the evolution of holographic and new
agegraphic DE models. The relation is given by

¢ = ¢1 In(n + n2 a()) (19)

where ¢, n1 > 1 and 1, > 0 are constants. We assume the
two forms of scalar field ¢. Singh and Kumar [61] and Sadri
and Vakili [62] have investigated holographic DE models in
BD theory using this logarithmic law for scalar field.

3.1 Model 1

Here, we consider a power-law relation between the BD
scalar field and the scale factor and find the properties of
the model. For this purpose, we assume Eq. (18) to hold.
Substituting the value of average scale factor (17) into
Egs. (13)—(15), (12) and (18), we get the scalar field ¢,

¢ = do(apr® ™). (20)

3.1.1 Energy densities

The energy density of MHRDE is

8 t

28301 _
3t2((¥1 + aot) ’

3o (agr®e®2)! o Bra
pae = 20—~ g (—1 +Otz) 221

21
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Fig. 1 Plot of scalar field ¢ versus ¢ in Model 1
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Fig. 2 Plot of energy densities versus cosmic time ¢ in closed Model
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Fig. 3 Plot of energy densities versus cosmic time ¢ in flat Model 1

the energy density of matter is

o= S a0 30) 5+

.

+ (aolot] ea21)2

2B3a1
312 (o) + ant) } } (22)

It is observed from Fig. 1 that the scalar field increases
with time for the different values of / = 0.1, 0.5, and
0.9. In this section we take the values of the parameters
ar = 0.67, ap = 0.065, 1 = 0.2, o = 0.48, g3 = 0.5,
ap = 1, ¢o = 25, w = 2, and different values of [ i.e.,
[ =0.1, 0.5, 0.9.Figures 2, 3 and 4 represent the energy den-
sity of MHRDE and matter (in Model 1) for closed (k = +1),
flat (k = 0) and open (k = —1) models with respect to cos-

@ Springer

Open Model (k=-1)

an 4
: 1=0.1 — e { 1=0.5 T Pael| 3
2 ==l ] 2 U Y

|
== 1

1

\

\//

5 10
Time t (Gyr)

0 5 10 0 5 10
Time t (Gyr) Time t (Gyr)

Fig. 4 Plot of energy densities versus cosmic time # in open Model 1

mic time ¢. For the above choice of parameters the energy
densities are positive throughout the evolution of the mod-
els. Itis observed that the energy densities p,, and pg, always
are positive and decrease with increasing cosmic time in the
case of flat and closed models. It can also be observed that
the energy density of matter varies in a negative region for
the open model, which shows that the open model is not
realistic. Furthermore, in the closed and flat models the mat-
ter energy density dominates the dark energy density initially
and subsequently the dark energy density dominates the mat-
ter energy density. Also, it is interesting to note that, as the
scalar field increases for different values of /, the dominance
of either the matter energy density or the MHRDE energy
density is delayed considerably. Obviously the BD scalar
field influences the interaction of the matter energy density
and the MHRDE energy density. This is a special feature of
our model.

3.1.2 Energy conditions

Here we discuss the well-known energy conditions for our
MHRDE Model 1. The study of the energy conditions came
into existence from the Raychaudhuri equations which play
an important role in any discussion of the congruence of
null and time-like geodesics. The energy conditions are also
the basic tools to prove various general theorems about the
behavior of strong gravitational fields. The standard energy
conditions are the following:

— Null energy conditions (NEC):

peft + pde = 0,

Strong energy conditions (SEC):

Pefi + Pde = 0, peit + 3pde = 0,

Weak energy conditions (WEC):

Pett = 0, peff + pae > 0,

— Dominant energy condition (DEC):
peft = 0, peft = pae = 0.

The NEC implies that the energy density of the universe
decreases with the expansion and the violation of the NEC
may yield a Big Rip of the universe. The violation of the SEC
condition represents the accelerated expansion of the uni-
verse. The Hawking—Penrose singularity theorems require
the validity of SEC and WEC. The WEC and NEC are very
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Fig. 6 Plot of energy conditions versus cosmic time ¢ in flat Model 1

important among all energy conditions as their violation leads
to the violation of other energy conditions. Figure 5 presents
the energy conditions for different values of / for closed
Model 1. It can be seen that the NEC is violated and hence the
model leads to a Big Rip. Also our model violates the SEC,
as it should. It can also be seen that the WEC is satisfied. It
can also be observed from Fig. 5 that the DEC peff + pae
is not satisfied. Figure 6 shows the energy conditions in the
flat Model 1 for different values of /. It may be observed that
the NEC, SEC, and WEC energy conditions are initially sat-
isfied and are violated at late times. But one of the features
of the DEC, peff — pde, 1S initially violated and is satisfied
at late times. This is because of the fact that the late time
acceleration of the universe is in accordance with the recent
observational data.

3.1.3 EoS parameter

The EoS parameter of a fluid relates its pressure p and energy
density p by v = %. Various values of EoS correspond to
different epochs of the universe in early decelerating and
present accelerating expansion phases. It includes stiff fluid,
radiation and matter dominated (dust) forw = 1, w = %
and w = 0 (decelerating phases), respectively. It represents
quintessence —1 < @ < —1/3, the cosmological constant
o = —1 and the phantom case, v < —1.

The EoS parameter of MHRDE wy, is

1, wl? o 2 3k
wdg—_g{(l +3l+6+7)(7+052) +W
aj aj Baay 28301 -
——(1+3 — - .
S+ )Hﬁl(t +o) = +3t2(a1+a2t)}

(23)

Flat Model (k=0)

1.5

o
2

EoS Parameter (wde)
o

o
2

Time t (Gyr)

Fig. 7 Plot of EoS parameter versus cosmic time ¢ in flat Model 1
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Fig. 8 Plot of EoS parameter versus cosmic time ¢ in closed Model 1

The EoS parameter of the Model 1 is depicted in Figs.
7 and 8 for different values of /. It can be seen that, for a
flat model (k = 0), it starts in the matter dominated era
and passes through radiating and dust and attains a constant
value in the quintessence region for/ = 0.1 and 0.5, while the
model crosses the phantom divide line (w4, = —1) and enters
into the phantom region. It is interesting to note that as the
BD scalar field increases the model approaches the phantom
region. Figure 8 depicts the behavior of EoS parameter in the
closed Model 1 for different values of the constant /. In this
case it can be observed that the model completely varies in
the phantom region and approaches the ACDM model at late
times.
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3.1.4 Density parameters

The MHRDE density parameter §2,,, matter density param-
eter §2,,, and total density parameter 2 = 24, + 2, + $2
are given by

Pde 12 o]
2 e = = —_
de = 34 H? wwﬁﬂm4m(t+”)
_ Py 2B3a1
12 3t2(a; +ant) |’
Om 1? w o,
o - alr6-2
3pH? 247 (o +a2t)2H ( + 2 )
o 2 6k o
x (T He) + m} ‘3{*3‘ (F+e)
By 28301
_ 24
12 + 3t2(ay +ant) | |’ 24)
Ok k
Q2 = = . 2
KT 3pH? T 292 25

The overall density parameters for the flat model are pre-
sented in Fig. 9 for different values of /. It is interesting to
note that the overall density is constant and & 1. This fact is
in agreement with the observational data. It is observed that
the matter energy density parameter, £2,,, initially dominates
the overall density of dark energy and they interact at a cer-
tain point of time. As [/ increases it can be noticed that the
interaction of the energy densities is being delayed. This is
because of the influence of the BD scalar field ¢. A similar
phenomenon may be observed in the flat model given in Fig.
10. It may also be noted that the dark energy density parame-
ter £24. dominates matter energy density parameter. It is well
known that dark energy does not directly interact with visible
matter except in the rare circumstances. It is quite interesting
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Fig. 9 Plots of density parameters versus ¢ in closed Model 1
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Fig. 10 Plots of density parameters versus ¢ in flat Model 1
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that in our case both of them interact at a certain point of time.
Figure 10 shows the behavior of the density parameters in the
closed model. It can be seen that the overall density parame-
ter approaches the one at very late times, which implies that
the model approaches the flat model. It can also be seen that
the matter energy density parameter §2,, and the DE density
parameter 24, interact at present time.

3.1.5 Stability analysis

We now consider an important quantity to verify the stability
analysis of MHRDE Model 1 (both closed and flat models).
This can be done using the squared speed of sound vf defined
as

2 Pde
vy = —.

Pde

(26)

A positive value of v? indicates a stable model whereas a
negative value represents a unstable model. We represent ”52
of Model 1 (both closed and flat) in Eq. (27) and depict the
behavior of v? in Figs. 11 and 12 for different values of /.
The closed and flat models both are unstable for/ = 0.1. For
I = 0.5 the closed model is initially unstable and becomes
stable at present epoch; however, for this particular value of
[ the flat model initially is unstable, becomes stable, and ulti-
mately attains instability at the present epoch. For [ = 0.9,
both models are unstable initially, attain stability for some
time, and become unstable at the present epoch. Hence, as
the BD scalar field increases, the stability of the Model 1 is
different at different times. It may be mentioned here that
Myung [63], Jawad et al. [64] and Jawad and Chattopad-
hyay [65] have performed a stability analysis of DE models
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Fig. 11 Plot of v? versus cosmic time ¢ for closed Model 1
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in modified theories of gravitation wherein they have also

obtained an unstable behavior of the models. We have
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3.1.6 ),~wqe plane

The wge—w/,, plane analysis is used to study the dynami-
cal property of dark energy models, where prime (/) indi-
cates derivative with respect to Ina. Caldwell and Linder
[66] have proposed this method to analyzing the behavior
of quintessence model. They have classified wg.—);, plane
into thawing (wg, < 0 and a)&e > 0) and freezing (wge < 0
and ), < 0) regions. This plane analysis was extended in
a wide range by different authors for studying the dynami-
cal character of various DE models and modified theories of
gravity [67-71].

The a)de—w; . Planes of closed and flat Models 1 are shown
in Figs. 13, 14 for different values of /. It may be noted that
the models vary in both thawing and freezing regions. We
have

Closed Model (k= +1)
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Fig. 13 Plot of a)de—a)il . Plane of closed Model 1
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Fig. 14 Plot of w4.—w];, plane of flat Model 1
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Fig. 15 Plot of scalar field ¢ versus t in Model 2

3.2 Model 2

Here we assume that the scalar field evolves as a logarith-
mic function of the scale factor and is given by Eq. (19).
Substituting the value of average scale factor (17) into Egs.
(13)—(15), (12) and (19), we get the scalar field ¢,

¢ = 1 In [n1 + maaor® )] . (29)

The behavior of BD scalar field of Model 2 is shown in
Fig. 15 for different values of 1;. This shows that the scalar
field increases as 7, increases.

3.2.1 Energy densities

The energy density of MHRDE is

31 In [n1 + ma(agr®' e®")] {/31 <% N az)

Pde = 8
2
_ Py B3 7 (30)
12 3t2(ay + ant)
the energy density of matter is
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8 t
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Fig. 16 Plot of energy densities versus cosmic time ¢ in closed Model
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Fig. 17 Plot of energy densities versus cosmic time ¢ in open Model 2
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Fig. 18 Plot of energy densities versus cosmic time # in flat Model 2

The variation of energy densities with time ¢ for n; = 1.1
and for different values of 7, is shown in Figs. 16, 17 and 18.
The other constants are the same as in Model 1. In this case
we observe a similar behavior for flat and closed models to
Model 1. However, in this case we see that the dark energy
density dominates the matter density earlier than in Model 1.
Also as 1 increases the interaction of the energy densities
occurs at early times. That is, the increase in the BD scalar
field influences the interaction of energy densities. It can also
be seen that the open model is not realistic because of the fact
that the energy density of matter is negative.

3.2.2 Energy conditions
Figures 19, 20 describe the energy conditions of both closed
and flat Models 2 for different values of 7,. It can be seen that

the validity of the energy conditions for Model 2 is similar
to that of the energy conditions of the Model 1.

3.2.3 EoS parameter

The EoS parameter of MHRDE, wye, is
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Fig. 19 Plotof energy conditions versus cosmic time ¢ in closed Model
2
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Fig. 20 Plot of energy conditions versus cosmic time ¢ in flat Model 2

1 6 (a1 n )2 " 3k 3a
, = —— —_— o _—
de 3 ! 2 (apre®t)2 2
ma(aor e®)? (% +3Im) (% +a2)’

(71 + m2(aore22t)) In(yy + na(agrereet))]?

ap(a; — 1
+(aota‘e°‘2’)nz{(m + nz(aota‘e"z’)){¥

2a100

2
+ 051}2 — 2 (apr®'e*?) (0;71 + 012) }

x{ [(n1 + m2(aor® €))% In(m1 + na(apt® )] }}
) ~
X{,Bl (%Jraz)—ﬂjfl P i }

312 (ay + ant)

The plot of EoS parameter given in Figs. 21, 22 for dif-
ferent values of 1, shows that the flat and closed models
completely vary in the phantom region. It is interesting to
see that in both models it varies completely in the phantom
region.

(32)

3.2.4 Energy density parameters

The MHRDE density parameter $2,., the matter density
parameter £2,,, and the total density parameter §2 are given
by

3t aj Baoy
%= gt ramr P (7 ) - 5

2B3a1
3t2(ay +ant) )’
t2

oy 2
87 () + aat)? {{ ( 1 +“2>
XG_ ot e J
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@ Springer



619 Page 12 of 19

Eur. Phys. J. C (2018) 78:619

Flat Model (k=0)
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Fig. 21 Plot of EoS parameter versus cosmic time ¢ in flat Model 2
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It can be seen from the Figs. 23, 24 that the behavior of
overall energy density parameters of both models is similar
to the case of Model 1.
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Fig. 23 Plot of density parameters versus cosmic time ¢ in flat Model
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Model 2

3.2.5 Stability analysis

The squared sound speed vs2 of MHRDE Model 2 is given by
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Closed Model (k= +1)
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shown in Figs. 25, 26, which show that both models are quite
unstable.
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Closed Model (k=+1)

Fig. 27 Plot of wge—w);, plane of closed Model 2
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(36)
The cosmological wg.—w/;, plane of Model 2 for different

values of 7, is given in Figs. 27-28. It is observed that for
both models it lies in both thawing and freezing regions.
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Flat Model (k= 0)
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Fig. 28 Plot of w4.—w];, plane of flat Model 2

4 Some other properties of the models

Spatial volume of the models as

V = (a1t¥e®")*. (37)
The Hubble parameter is
H=24a, (38)

t

The scalar expansion is
0=4(+a). (39)

The deceleration parameter is

o]

S — 4
(a1 + aa1)? 0

q=-1+

Many DE models have been proposed to explain the accel-
erated expansion phenomenon of the universe. In order to
verify the viability of these models, Sahni et al. [72] have
proposed the statefinder parameters (r, s). The cosmological
plane corresponding to these parameters is named the r—s
plane; it explains the distance of a given DE model from
the ACDM limit. The cosmological plane of these parame-
ters describes different well-known regions of the universe;
ie, s > 0 and r < 1 gives the region of phantom and
quintessence DE eras, (r,s) = (1,0) corresponds to the
ACDM limit, (r, s) = (1, 1) represents the CDM limit, and
s < 0and r > 1 indicate the Chaplygin gas. The statefinder
parameters for our models are given by
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-
y = —
aH3
— 14+ 20[1 30[1 (41)
O (a +tan)? (o +tan)?’
= 1
3(g—3)

_ 201[2 — 3(ay + apt)]
31+ oot) (@) — 3(a) + ant)?)’

(42)

Figure 29 shows the behavior of the deceleration parame-
ter against cosmic time 7. It can be observed that our models
exhibit a smooth transition from early deceleration (¢ > 0)
to the present acceleration (¢ < 0) phase of the universe.
Also it may be noted that the present value (i.e., at fo = 13.7
Gyr) of the deceleration parameter is go = —0.73 (Cunha
[73]) and is approaching the value —1 at late times. Recent
observational data of SNe Ia shows that the present universe
is accelerating with the value of the deceleration parameter
lying in the range —1 < g < 0. The statefinder plane can
be obtained by plotting r versus s as shown in Fig. 30. It
is pointed out that the r—s plane for Model 1 and Model 2
possess the regions of the quintessence and phantom models.
We also observe that our models correspond to ACDM limit
at late times.

Deceleration parameter (q)

2 4 6 8 10 12 14
Time t (Gyr)

Fig. 29 Plot of deceleration parameter versus time ¢ for ¢y = 0.67 and
ay = 0.065
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Fig. 30 Plot of r—s plane for & = 0.67 and o = 0.065

5 Conclusions and discussion

The scalar—tensor theory of gravitation proposed by Brans
and Dicke plays a significant role in the discussion of dark
energy cosmology. Hence, in this paper, by solving the BD
field equations we have obtained Kaluza—Klein FRW cosmo-
logical models filled with baryonic matter and MHRDE. We
observed that the volumes of Model 1 and Model 2 increase
with time, and Hubble’s parameter (H) and expansion scalar
(6) become constant at late times showing a uniform spatial
expansion of the universe.

The physical behavior of the cosmological parameters is
studied through their graphical representation. Here we have
two interesting models corresponding to the two forms of
the BD scalar field. The following are the interesting obser-
vations in the two models:

Model 1

— Here the flat and closed FRW models are realistic because
of the fact that the energy densities of matter p,, and
MHRDE p,, are always positive and decrease with cos-
mic time (Figs. 2, 3, 4). Further, in the above realistic
models, the interesting fact is that p,, dominates pg, ini-
tially and pg, dominates oy, later.

— Itis observed that the scalar field increases with time for
the three values of [ = 0.1, 0.5, 0.9 (Fig. 1). Also, it is
interesting to note that as the BD scalar field increases
the dominance of either matter energy density or the
MHRDE density is delayed considerably.

— If we observe the energy conditions of the model we may
notice that the NEC, SEC, and WEC are initially satisfied
and are violated at late times. This is because of the fact
that the universe is accelerating, which is in accordance
with the recent observational data (Figs. 5, 6).

— The behavior of EoS parameter shows that the flat model
starts in the matter dominated era and attains a constant
value in the quintessence region for / = 0.1 and 0.5.
Also, the flat model crosses the phantom divide line
(wge = —1) and enters into the phantom region for
[ = 0.9. It is interesting to note that as the BD scalar
field increases the flat model approaches the phantom
region (Fig. 7). In the closed model it can be observed
that the model completely varies in the phantom region
and approaches ACDM model at late times (Fig. 8). We
also found that wy, of our closed and flat models meet the
ranges —1.1370 32 (Plank+WP+BAO) and —1.09:£0.17
(Plank+WP+Union 2.1) given by Ade et al. [74] (Planck
data). This shows the consistency of our results with the
recent observations.

— The study of the overall density parameter shows that it is
constant and = 1, which is in agreement with the obser-
vational data. It is observed that the matter energy density
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parameter, £2,,, initially dominates the overall density of
dark energy and they interact at a certain point of time.
That is, the BD scalar field ¢ influences the interaction
of energy densities (Figs. 9 and 10). It is well known that
dark energy does not directly interact with visible matter
except in the rare circumstances. It is quite interesting
that in our case both of them interact at a certain point of
time.

— Itis observed from the stability analysis of the model that
the closed and flat models are mostly unstable, which
should be the case in the present scenario. We have
observed that in this case also the BD scalar field influ-
ences the stability of the models (Figs. 11 and 12). It can
be noted from the wg.—)/;, analysis that the models vary
in both the thawing and the freezing regions (Fig. 13 and
14).

— The behavior of DP shows that the models exhibit a
smooth transition of the universe from early deceleration
phase to the present accelerated phase. The present value
of the deceleration parameter is go ~ —0.73 (Fig. 29). It
is observed from the r—s trajectory that the models cor-
respond to ACDM limit (Fig. 30). Also, the trajectories
coincide with the quintessence and phantom regions.

Model 2

— In this case, the behavior of BD scalar field is discussed
for different values of n, (Fig. 15). We have observed
that the scalar field increases as 7, increases. The study
of the energy densities for this model (both flat and closed
models) has shown that a similar behavior as in the Model
1 (Figs. 16, 17, 18). We also noticed that the increase in
the BD scalar field influences the interaction of energy
densities.

— We observe that the energy conditions of both closed and
flat models in this case are also violated, which is similar
to that of the energy conditions of Model 1 (Figs. 19 and
20). It is observed that the behavior of the overall energy
density parameters of both models (closed and flat) is
similar to the case of Model 1 (Figs. 23, 24).

— The behavior of the EoS parameter shows that both mod-
els (closed and flat) completely lie in the phantom region
(Figs. 21 and 22). This shows that Model 2 supports the
pilgrim DE phenomenon.

— From the stability analysis of both models we observe
that they are unstable (Figs. 25 and 26). The wgz.—w);,
plane lies in both the thawing and the freezing regions
(Figs. 27 and 28).

Now it will be interesting to compare Model 1 and 2 with
regard to the energy densities, the EoS parameter, the stability
analysis, and the cosmological planes. It is observed that as
the BD scalar field increases, in Model 1, the interaction of

@ Springer

the energy densities is delayed as compared to Model 2. In
Model 1 the EoS parameter of the flat model shows that it lies
in the quintessence region, while in the closed model the EoS
parameter shows that the model varies in the phantom region
and approaches the ACDM model. But, in Model 2, the EoS
parameter shows that both (flat and closed) models (flat and
closed) completely lie in the phantom region. However, the
study of the deceleration parameter, the stability analysis,
and the cosmological planes give us the same behavior in
Model 1 and Model 2.

The above discussion shows that our models are in good
agreement with the recent scenario of modern cosmology.
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