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Abstract—Cloud-assisted Industrial Internet of Things (IIoT) relies on cloud computing to provide massive data storage services. To

ensure the confidentiality, sensitive industrial data need to be encrypted before being outsourced to cloud storage server. Public-key

encryption with keyword search (PEKS) enables users to search target encrypted data by keywords. However, most existing PEKS

schemes are based on conventional hardness assumptions, which are vulnerable to adversaries equipped with quantum computers in

the near future. Moreover, they suffer from key exposure, and thus the security would be broken once the keys are compromised. In

this paper, we propose a forward secure PEKS scheme (FS-PEKS) based on lattice assumptions for cloud-assisted IIoT, which is

post-quantum secure. We integrate a lattice-based delegation mechanism into FS-PEKS to achieve forward security, such that the

security of the system is still guaranteed even the keys are compromised by the adversaries. We define the first formal security model

on forward security of PEKS, and prove the security of FS-PEKS under the model. As the keywords of industrial data are with

inherently low entropy, we further extend FS-PEKS to resist insider keyword guessing attacks (IKGA). The comprehensive performance

evaluation demonstrates that FS-PEKS is practical for cloud-assisted IIoT.

Index Terms—Cloud-assisted Industrial Internet of Things, public-key encryption with keyword search, lattice assumptions, forward

security, insider keyword guessing attacks.

✦

1 INTRODUCTION

INTERNET of Things (IoT) deployment is composed of
various types of sensors, actuators, and other intelligent

terminal equipments connected to the Internet [1], [2]. It
provides identification, computation, and mutual informa-
tion exchange among the connected devices. As a special
type of IoT, Industrial Internet of Things (IIoT), which
relies on various kinds of mobile intelligent terminal devices
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and wireless communication technologies to realize remote
monitoring and management in modern industrial sectors
[3], has been increasingly prevalent. With the sharp increase
of the massive industrial data, cloud computing technolo-
gies have been integrated into IIoT to store and process
these information [4], [5]. Thus, apart from upgrading to
intelligent industries, the cloud-assisted IIoT also brings a
vast improvement in industrial manufacturing efficiency
and lowers the production cost.

Despite the great benefits on managing industrial da-
ta brought by cloud-assisted IIoT, security and privacy
concerns in data outsourcing have been raised, of which
data confidentiality is one of the most important aspects.
From the perspective of cloud users, the contents of the
outsourced industrial critical data are very sensitive and
should be kept confidential for privacy preservation [6], [7],
[8]. Therefore, sensitive industrial data should be encrypted
before being outsourced to cloud-assisted IIoT.

Along with data confidentiality, data sharing is also in-
dispensable. In a cloud-assisted IIoT, a data administra-
tor (i.e., a data sender) collects different industrial data
from various kinds of sensors, and shares them with an
intended recipient (e.g., a senior skilled worker). The data
administrator encrypts the data with the public key of the
intended recipient, and further uploads the encrypted data
(i.e., ciphertext) to the cloud storage server. To retrieve the
encrypted data, a trivial approach for the recipient is to
download all corresponding ciphertexts stored in the cloud
storage server, decrypt the entire encrypted industrial data
set, and further retrieve the target data locally. Nonetheless,
it is considerably impractical due to heavy communication
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overhead and computational costs. This makes efficient
retrieval of target data from the cloud storage a formidable
task.

Public-key encryption with keyword search (PEKS) [9]
could be a good candidate in cloud-assisted IIoT to achieve
data retrieval without leaking privacy. PEKS is a crypto-
graphic primitive that supports searching over encrypted
data by keywords. In PEKS, a data sender firstly encrypts
data as well as its keyword under the data receiver’s public
key, and uploads corresponding ciphertexts to the storage
server (i.e., cloud server). The data receiver could generate a
trapdoor of a specific keyword by using his/her private key,
and submits it to the storage server. The storage server then
could test whether the ciphertext of the keyword matches
the trapdoor for data retrieval.

While existing PEKS schemes [10], [11], [12], [13], [14] bring
significant benefits to cloud-assisted IIoT, there are two
main hindrances in widely adopting PEKS into the system
in the near future. On the one hand, most existing PEKS
schemes are constructed on conventional cryptographic
hardness assumptions. However, as pointed out in [15], with
the emergence of the quantum computers, PEKS schemes
will be threatened. Recent breakthrough results [16], [17]
indicate that adopting quantum computers in industrial
sectors would be possible in the near future, and thus poses
the post-quantum secure PEKS schemes more demanding
than ever. On the other hand, the most computationally
expensive part of PEKS for the cloud server is to retrieve
target data from the entire outsourced database, as the
cloud server is required to perform a test algorithm for
each keyword over the database during the search process.
Existing PEKS schemes introduce a significant end-to-end
computation delay due to costly public-key cryptographic
operations, such as bilinear pairing and modular exponen-
tiation operations. In a cloud-assisted IIoT, the cloud server
may simultaneously process industrial data from various
kinds of sensors or mobile terminal devices, to satisfy the
data retrieval requirements of multiple data receivers. As
such, existing PEKS schemes are confronted with perfor-
mance bottleneck on the cloud server side.

In addition to the aforementioned hindrances, deployment
of PEKS in cloud-assisted IIoT would also face two se-
curity challenges. With the explosive use of mobile intel-
ligent terminal devices with limited key protection, most
existing PEKS schemes suffer from key-exposure problems
[18]. Once a data receiver’s private key is compromised,
adversaries could reveal the contents of trapdoors that the
data receiver previously submitted, and further violate the
confidentiality of outsourced data. Recent reports show that
such attacks have become commonplace [19], [20]. We also
analyze the inherent characteristic of industrial data in IIoT
and point out that the keywords in industrial data are with
inherently low entropy, making it practical for the misbe-
haved cloud server to launch insider keyword guessing
attacks (IKGA) [21].

In this paper, we propose a forward secure PEKS scheme
for cloud-assisted IIoT, called FS-PEKS. FS-PEKS is based on
lattice-based cryptography [22], which enjoys very strong
security level based on worst-case hardness, and enables
FS-PEKS to be post-quantum secure. We propose a key
update mechanism and integrate it into FS-PEKS to resist

key exposure. In FS-PEKS, every private key is associated
with a time period, and required to be updated at the end of
each time period. The key idea behind FS-PEKS to achieve
forward security is to exploit the lattice basis delegation
mechanism [23], which flexibly updates the compromised
or expired private key of each entity even after multiple
time periods, termed lazy update. To enable the cloud server
to perform the testing process with a high efficiency, we
set a fixed binary string in generating the PEKS cipher-
text. Once the first decrypted bit is different from that of
corresponding location in the fixed binary string, the cloud
server could abort immediately, without decrypting all bits
of the fixed binary string. We further extend FS-PEKS to
thwart IKGA, where the preimage sample function [24] and
learning with errors (LWE) encryption [25] are employed
to generate authenticated PEKS ciphertexts, such that the
misbehaved cloud server cannot break the security of FS-
PEKS by performing IKGA.

Specifically, the contributions of this work are elaborated
as follows.

• We propose a lattice-based forward secure PEKS
scheme, called FS-PEKS. FS-PEKS is constructed on
a hierarchy identity-based encryption based on the
hardness assumption of deciding LWE problem, and
therefore is secure against quantum attacks. We de-
fine the first formal security model of forward secure
PEKS scheme, and present formal security proof of
FS-PEKS under the proposed model.

• FS-PEKS achieves forward security, and keeps the
updated private key size constant at the end of each
time period, and independent of the time periods.
We extend FS-PEKS to prevent IKGA from the misbe-
haved cloud server, without the need of establishing
a secure channel between the cloud server and data
receivers.

• We conduct a comprehensive performance evalua-
tion. Compared with existing schemes, FS-PEKS is
efficient in terms of computational costs and commu-
nication overhead. Specifically, in the keyword test-
ing process, the cloud server only needs to perform
simple addition and multiplication operations over
a moderate module, without more time-consuming
cryptographic operations, such as bilinear pairing
and modular exponentiation operations. Thus, FS-
PEKS greatly decreases the end-to-end delay from
the cloud server to the data receiver, making it quite
practical for post-quantum secure cloud-assisted I-
IoT.

The paper is organized as follows. In Section 2, we present
the problem statement, including PEKS with new require-
ments for cloud-assisted IIoT, forward security of PEKS and
keyword guessing attacks (KGA). In Section 3, we present
preliminaries, including system model, security model, de-
sign goals, and lattice-based background. In Section 4, we
propose FS-PEKS and its extension to resist IKGA. In Section
5, we give the correctness and security proofs. In Section
6, we conduct a comprehensive performance evaluation. In
Section 7, we review the related work. Finally, we draw the
conclusions and future work in Section 8.
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2 PROBLEM STATEMENT

2.1 Public-key encryption with keyword search

PEKS scheme enables privacy-preserving encrypted data
retrieval and sharing. In a PEKS scheme, a data sender
firstly generates the encrypted data Epk(M) under a public-
key encryption system, and produces the corresponding
ciphertext CTw of keyword w (called PEKS ciphertext)
with the PEKS scheme, where the keyword w is extracted
from the primitive data M . Finally the data sender uploads
Epk(M)‖CTw to the cloud server. When the intended da-
ta receiver wishes to retrieve the encrypted data Epk(M)
associated with some specific keyword w, the data receiver
generates the trapdoor tw of the specific keyword, and sends
it to the cloud server via a secure channel. The cloud server
performs the search on a collection of encrypted data with
the trapdoor tw, and checks whether there exists a keyword
in encrypted data matches the one selected by the data
receiver. If the cloud server succeeds in such a matching, it
returns the corresponding encrypted data Epk(M) associat-
ed with the keyword w to the data receiver. Finally, the data
receiver retrieves the intended encrypted data, and decrypts
it with the private key sk of the public-key encryption
system.

In order to evaluate whether a PEKS scheme is prac-
tical for cloud-assisted IIoT, there are two main factors
to be considered. On the one hand, a data sender, e.g.,
a data administrator of an industrial sector, takes charge
of encrypting industrial data and corresponding keywords
contained in the data, and further uploads them to the
cloud storage server. Compared with efficiency, the data
sender is more concerned with data privacy, e.g., whether
the encrypted industrial data are shared correctly by the
intended data receiver without leaking any information
to others. In particular, with the rapid development of
advanced quantum computers, the application of PEKS in
cloud-assisted IIoT that could achieve quantum-resistance
will be a critical consideration. On the other hand, the major
challenge from the data receiver’s perspective is the delay
from the cloud server to the data receiver. As the most
computationally expensive part of the PEKS is generally
the search and testing phase, especially in mobile cloud-
assisted IIoT settings, the cloud server may perform the
search and test algorithm to serve multiple data receivers
simultaneously, thus, the data receiver, e.g, a senior skilled
worker, may need to bear a heavy delay, and cannot timely
use the shared industrial data in practice.

2.2 Forward security of PEKS

As far as we are concerned, the security of modern cryp-
tographic systems applied in industrial sectors wholly de-
pends on the assumption that the individual’s private key is
absolutely secure. Actually, with the explosive use of mobile
intelligent terminal devices in IIoT, due to limited key
protection, the private key of the individual may be com-
promised, or even known by the cloud server. To complete
various security tasks, the individual needs to maintain a
complex procedure for key management. Compared with
the enterprises, the individual has a relatively weaker sense
of security protection: even some careless mistakes or faults
in managing the private key may lead to key exposure [18].

In PEKS without supporting forward security, once the pri-
vate key of the data receiver is compromised, the adversary
might use the exposed private key to generate the trapdoor,
and submit it to the cloud server as a legitimate request. The
cloud server tests it successfully, and returns the previous
encrypted data to the adversary. Eventually, the previous
encrypted data can be decrypted by the adversary under
the exposed private key. More recently, Zhang et al. [26]
have presented a devastating file-injection attack process. It
is possible to reveal the contents of past search queries of
dynamic searchable symmetric encryption schemes with a
few injection of files. This fact highlights the importance of
forward security in any real-world deployment, especially
in the mobile cloud storage application settings.

2.3 Keyword guessing attacks

In most of the existing PEKS schemes, there exists an
inherent security limitation: vulnerability against off-line
keyword guessing attacks (KGA). More specifically, an out-
side adversary can encrypt any selected keyword by using
the data receiver’s public key. Once the trapdoor is inter-
cepted by the adversary, it could run the test algorithm to
identify the ciphertext of the keyword which matches the
targeted trapdoor. This enables the adversary to learn the
keyword hidden in the trapdoor, and thus violates the data
privacy. To deal with such KGA, trivial approaches have
been explored. Firstly, set up a secure channel between the
data receiver and the cloud server such that the adversary
cannot intercept the trapdoor [27]. Secondly, designate a
particular cloud server to search and test the results in
PEKS, such that only the unique cloud server could conduct
the testing process. This is is called designated-tester PEKS
[28]. Apart from the existing KGA by the outside adversary,
the misbehaved cloud server could also perform insider
keyword guessing attacks (IKGA). It executes the exhaustive
search as what an outside adversary does, even if the
trapdoor is transmitted via a secure channel, and finally find
the keyword which is indeed generated by the data receiver.
Public-key encryption with fuzzy keyword search [29] could
resist IKGA to some extent. In such a scheme, each keyword
corresponds to an exact trapdoor. With the fuzzy trapdoor,
the misbehaved cloud server may know about the exact
keyword as two or more keywords may share the same
trapdoor. Nevertheless, the misbehaved cloud server could
still know which small set the underlying keyword belongs
to. In addition, the data receiver has to locally filter out the
non-matching ones from the small set returned from the
cloud server, which will introduce heavy communication
overhead and computational costs to the data receiver. In
recent, a public-key authenticated searchable encryption
scheme has been proposed [10], in which a data sender
not only encrypts a keyword, but also authenticates it, such
that the data receiver could be convinced that the encrypted
keyword could only be generated by the data sender.

3 PRELIMINARIES

3.1 System model

In this section, we introduce the system model of PEKS for
cloud-assisted IIoT in Fig. 1, which has three entities: a data
sender, a data receiver, and a cloud server.
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Data Sender: As a data administrator of an industrial
sector, the data sender collects industrial data (such as
production information, operation status of the equipment,
and other information collected by the sensors), encrypts
the industrial data as well as keywords contained in the
data under the public key of an intended data receiver, and
further uploads them to the cloud server associated with the
IIoT.

Data Receiver: As a cloud user, the data receiver uses the
private key to generate the trapdoor associated with the
specific keyword, and sends it to the cloud server to retrieve
the intended encrypted industrial data.

Cloud Server: It is associated with IIoT, and it is respon-
sible for the computation and storage of industrial data
in the IIoT system. Once receiving a trapdoor from the
data receiver, it performs the testing process and returns
corresponding encrypted industrial data.

Fig. 1. System model of PEKS for cloud-assisted IIoT

A formal definition of FS-PEKS is given in the following.

Definition 1. FS-PEKS consists of five polynomial-time algo-
rithms, Setup, KeyUpdate, PEKS, Trapdoor, Test.

Setup: The probabilistic polynomial-time (PPT) algorithm
takes as inputs a secure parameters κ, outputs the system
public parameter Σ, and the initial public-private key pairs
of the data sender and the data receiver respectively.

KeyUpdate: This PPT algorithm takes as inputs key
pair (PKr‖i, SKr‖i) of the data receiver, time period i,
outputs key pair (PKr‖j , SKr‖j) in time period j, where
i < j. This PPT algorithm also takes as inputs key pair
(PKs‖i, SKs‖i) of the data sender, time period i, outputs key
pair (PKs‖j , SKs‖j) in time period j for i < j.

PEKS: This PPT algorithm takes as inputs Σ, the public
key PKr‖j of the data receiver, the keyword w and the
current time period j with j = 1, · · · , η, where η denotes
the total time periods. It outputs a forward secure PEKS
ciphertext CTj associated with the keyword w.

Trapdoor: This PPT algorithm takes as inputs Σ, the
public-private key pair (PKr‖j , SKr‖j) of the data receiver in
current time period j and a keyword w, outputs a trapdoor
tw‖j associated with the keyword w.

Test: This deterministic polynomial-time algorithm takes
as inputs a trapdoor tw‖j in time period j, a forward secure
PEKS ciphertext CTj , outputs 1 if CTj and tw‖j contain the
same keyword w, and 0 otherwise.

Correctness consistence: FS-PEKS requires that for any
honestly generated key pair (PKs‖j , SKs‖j) of the data
sender, key pair (PKr‖j , SKr‖j) of the data receiver in any
time period j, and for any keyword w, Test(tw‖j , CTj , j) =
1 holds with probability 1, where CTj ← PEKS(w,PKr‖j)
and tw ← Trapdoor(w, SKr‖j ,PKr‖j , j).

3.2 Security model

Now we define ciphertext indistinguishability of FS-PEKS
under the adaptively chosen keyword attacks. The chal-
lenger C generates the system public parameters, prepares
the initial public keys of the data sender and the data receiv-
er, and returns them to the adversary A. The adversary A is
allowed to perform queries as follows.

Hash oracle: A is allowed to issue all hash oracles in time
period j, j = 1, · · · , η, where η is the total number of time
periods, and A can obtain corresponding hash value.

Trapdoor oracle: A can adaptively query to C on the
trapdoor tw for any keyword w of his choice in time period
j. To achieve forward security, the restriction is that the time
period j > j∗, j∗ is the break-in time.

Break-in phase: This phase models the possibility of key
exposure. Once receiving this query for private key SKr‖j

of the data receiver in time period j from A, C returns
corresponding private key SKr‖j in time period j to A. The
restriction is that the time period j > j∗, where j∗ is the
break-in time period.

Challenge phase: A adaptively chooses two keywords
(w∗

0 , w
∗
1) in time period j∗ which have not been queried for

trapdoor oracle, and submits them to C as the challenged
keywords. C randomly chooses a bit b ∈ {0, 1}, computes
CT ∗

j∗ ← PEKS(w∗
b ,PKr‖j∗) and returns it to A.

A continues to issue queries for trapdoor oracle as above,
with the restriction that neither w∗

0 , or w∗
1 could be submit-

ted to the oracle.

Guess: Finally,A outputs a bit b′ ∈ {0, 1}. It wins the game
if and only if b′ = b.

We defineA’s advantage of successfully distinguishing the
ciphertexts of PEKS in the break-in time period j∗ under the
adaptively chosen keyword attacks as AdvCA(κ) = |Pr[b′ =
b]− 1/2|.

Furthermore, as the keywords in industrial data are with
inherently low entropy, IKGA has been a threat to the de-
ployment of PEKS in cloud-assisted IIoT. In essence, an ad-
versary, including the misbehaved cloud server, may guess
the target keyword, and try to generate a forged searchable
ciphertext, such that it could pass the testing process. Thus,
to resist IKGA from the adversary, we propose an extension
of FS-PEKS in Section 4, and provide the security proof of
the resistance to IKGA in Section 5. Here, we define the
security of the IKGA-resistance scheme in the extension of
FS-PEKS as follows.

The challenger C generates the system public parameters,
prepares the initial public keys of the data sender and the
data receiver, and returns them to the adversary F . The
adversary F is allowed to perform queries as follows.

Hash oracle: F is allowed to issue all hash oracles in time
period j, j = 1, · · · , η, where η is the total number of time
periods, and F could obtain the corresponding hash value.
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Trapdoor oracle: F can adaptively query to C on the
trapdoor tw for any keyword w of his choice in time period
j.

Searchable ciphertext oracle: F queries to C on any key-
word w in time period j, C can respond with corresponding
searchable ciphertext. To achieve forward security, the re-
striction is that the time period j > j∗, j∗ is the break-in
time.

Break-in phase: This phase models the possibility of key
exposure. Once receiving this query for private key SKs‖j

of the data sender in time period j from F , C returns
corresponding private key SKs‖j in time period j to F . The
restriction is that the time period j > j∗, where j∗ is the
break-in time period.

Forgery phase: F outputs a forged searchable ciphertext
associated with w∗ in time period j∗, which could pass the
testing process.

We denote F ’s advantage of successfully performing IK-
GA in the break-in time period j∗ as AdvCF (κ).

3.3 Design goals

In this paper, we target FS-PEKS for cloud-assisted IIoT,
there exist two types of challenges.

1) How to achieve provable security of FS-PEKS. As
we discussed before, existing PEKS schemes suffer
from key exposure, once the private key is com-
promised, an adversary can reveal the contents of
past search queries. Thus, the previous encrypted
data can be decrypted by the adversary. Existing
LWE-based encryption schemes cannot be directly
applied to our construction, we need to modify and
integrate other lattice-based techniques into the con-
struction of FS-PEKS. In addition, how to provide
security proof of FS-PEKS under the formal defini-
tion with reduction to the hardness assumption of
deciding LWE problem, is also a challenging and
tricky issue.

2) How to enable FS-PEKS to resist IKGA. We have
analyzed the inherent characteristic of industrial
data and point out that the keywords in industrial
data are with inherently low entropy. Thus, KGA
has been a threat to the deployment of PEKS in
cloud-assisted IIoT. Particularly, in a much more
stronger attack model, IKGA could be launched by
a misbehaved cloud server.

To make FS-PEKS in cloud-assisted IIoT practical under
the aforementioned model, the following properties should
be achieved.

1) Security: FS-PEKS should achieve quantum resis-
tance, forward security, and IKGA resistance.

2) Efficiency: FS-PEKS should maintain high computa-
tional efficiency and low communication overhead.
In particular, the reduced testing time and smaller
trapdoor size will contribute to minimizing the end-
to-end delay from the cloud server to the data
receiver.

3.4 Lattice-based background

Lattice-based cryptography is secure against quantum at-
tacks, and enjoys strong security guarantee based on worst-
case hardness. In addition, lattice-based cryptography in-
herently has efficient implementations, since it only needs
simple addition and multiplication operations over a mod-
erate module.

We firstly provide some definitions about lattice-based
cryptography as follows.

Definition 2. Let B = {b1, · · · , bm} ∈ R
m×m be an (m×m)-

dimension matrix, where the columns are linearly independent
vectors b1, · · · , bm ∈ R

m. The m-dimensional full-rank lat-
tice Λ generated by B is L(B) = {y ∈ R

m : ∃z =
(z1, z2, · · · , zm)⊤ ∈ Z

m, y = Bz =
∑

i∈[m] zibi}.
The basis of the lattice Λ = L(B) is B = {b1, · · · , bm}. Let

B̃ = {b̃1, · · · , b̃m} denote the Gram-Schmidt orthogonaliza-
tion of the vectors b1, · · · , bm taken in that order.

Definition 3. With a matrix A ∈ Z
n×m
q , a vector µ ∈ Z

n
q , we

define the q-module integer lattices in [30] as follows.

1) Λq(A) = {y ∈ Z
m
q : ∃z ∈ Z

n
q , y = A⊤z mod q}.

2) Λ⊥
q (A) = {e ∈ Z

m
q : Ae = 0 mod q}.

3) Λµ
q (A) = {e ∈ Z

m
q : Ae = µ mod q}.

Definition 4. For any σ > 0, the Gaussian function on R
m

centered at c is ∀x ∈ Z
m, ρσ,c(x) = exp(−π‖x− c‖2/σ2), and

ρσ,c(L) = Σx∈Lρσ,c(x), where L is a subset of Zm. The discrete
Gaussian distribution over L with center c and parameter σ is
∀y ∈ L, DL,σ,c(y) = ρσ,c(y)/ρσ,c(L).

Definition 5. Given a prime q, a positive integer n, and Gaussian
noise distribution χ. A (Zq, n, χ)-LWE problem [25] consists of
access to an unspecified challenge LWE oracle OL, which is either
a truly random sampler O, or, a noisy pseudo-random sampler
O′. They are described respectively as follows.
O: This oracle outputs truly uniform samples from Z

n
q × Z

ℓ
q .

O′: This oracle outputs samples of the form
(uk, vk1, · · · , vkℓ) = (uk, u

⊤
k b1+z1, · · · , u⊤

k bℓ+zℓ) ∈ Z
n
q×Zℓ

q ,
where each bl ∈ Z

n
q (l = 1, · · · , ℓ) is a uniformly distributed

persistent value which is invariant across invocations, each
zl ∈ Zq is a fresh sample from χ, and uk is uniform vector in Z

n
q .

The (Zq, n, χ)-LWE problem allows to repeatedly query
to the challenge oracle OL. Here we say that an adversary
A decides the (Zq, n, χ)-LWE problem if LWEadv[A] :=

|Pr[AO′

= 1] − Pr[AO = 1]| is non-negligible. As proved
in [25], [31], the (Zq, n, χ)-LWE problem is as hard as the
worst-case SIVP and GapSVP under a quantum reduction.

Definition 6. The Inhomogeneous Small Integer Solution (ISIS)
Problem: with a matrix U ∈ Z

n×m
q , a uniform vector ϑ ∈ Z

n
q ,

and a real number ̟ > 0, the goal is to solve a nonzero integer
vector ξ ∈ Z

m such that Uξ = ϑ mod q and ‖ξ‖ ≤ ̟.

As proved in [24], for any prime q > ̟ · ω(
√
n log n) and

any poly-bounded ̟ = poly(n), the average-case hardness
assumption of ISIS problem is as hard as approximating the
problem SIVP in the worst case to within certain factor ̟ ·
Õ(
√
n).

In our scheme, we take advantage of the algorithm
TrapGen in [32] to generate A ∈ Z

m×n
q , TA ∈ Z

m×m
q , such

that A is statistically close to a uniform matrix in Z
n×m
q ,
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and TA is a random short lattice basis of Λ⊥
q (A), and each

Euclidean norm of all the rows is bounded by O(n log n).
Now we describe the algorithm SamplePre [24] as follows.

Lemma 1. Taking as inputs A ∈ Z
n×m
q , TA ∈ Z

m×m
q , a

vector µ ∈ Z
n
q , m ≥ 2n⌈log q⌉, and a parameter σ ≥ ‖T̃A‖ ·

ω(
√
logm), where ‖T̃A‖ is the Euclidean norm of T̃A, the PPT

algorithm SamplePre(A, TA, µ, σ) outputs a sample t ∈ Z
m
q

distributed in DΛµ
q (A),σ , where DΛµ

q (A),σ is a Gaussian noise
distribution over Λµ

q (A) with parameter σ, such that At = µ
mod q.

Next we introduce the lattice basis delegation NewBasisDel

[23], which is a key technique to update the private key.
NewBasisDel refers to the distribution Dm×m on matrices
in Z

m×m
q , which denotes (DZm,δR)

m conditioned on the

resulting matrix being Zq-invertible, where δR =
√
n log q ·

ω(
√
logm).

Lemma 2. Taking as inputs A ∈ Z
n×m
q , a Zq-invertible ma-

trix R sampled from Dm×m , a short lattice basis TA, and

parameter δ ≥ ‖T̃A‖ · δR
√
mω(log3/2 m), the PPT algorithm

NewBasisDel outputs a random short lattice basis TB of Λ⊥
q (B),

where B = AR−1.

Finally, we introduce SampleR and SampleRwithBasis [23],
which are important to realize the security proof of cipher-
text indistinguishability and the resistance to IKGA.

Lemma 3. The PPT algorithm SampleR performs as follows.

1) Set T to be a canonical basis of the lattice Zm.
2) For i = 1, 2, · · · ,m, sample each ri from the algorithm

SampleGaussian(Zm, T, δR, 0) described in [23].
3) Output R, if R = {r1, r2, · · · , rm} is Zq-invertible,

otherwise repeat the step 2.

Lemma 4. Taking as inputs m ≥ 2n⌈log q⌉, q ≥ 3, A ∈ Z
n×m
q ,

the PPT algorithm SampleRwithBasis outputs a low-norm ma-
trix R which is statistically close to Dm×m, and a random
short lattice basis TB for Λ⊥

q (B) with B = AR−1, such that

‖T̃B‖ ≤ δR/ω(
√
logm) with an overwhelming probability.

4 THE PROPOSED FS-PEKS

4.1 Overview

FS-PEKS consists of Setup, KeyUpdate, PEKS, Trapdoor,
and Test algorithms. In order to construct secure lattice-
based FS-PEKS, in Setup, we need to set secure parameters
for q-module lattices, and set the initial public-private key
pairs of the data sender and data receiver, respectively.
The key idea in KeyUpdate is to modify the lattice basis
delegation NewBasisDel, which enables the cloud user (i.e.,
a data sender or a data receiver) to flexibly achieve private
key update for each time period j = 1, 2, · · · , η. More
specifically, we modify NewBasisDel as updating private key
in each time period, which could generate a series of private
keys SKuser‖1, SKuser‖2, · · · , SKuser‖η of an entity. As cor-
responding public keys PKuser‖1,PKuser‖2, · · · ,PKuser‖η

could be computed by any entity based on the initial public
key and the corresponding hash function, the proposed FS-
PEKS does not need the cloud user to update corresponding
public key in each time period essentially. From the perspec-
tive of the data receiver, when transit changes from time

period i to time period j, i < j, the data receiver revokes
SKr‖i, SKr‖i+1, · · · , SKr‖j−1 from the local storage, the new
private keys remain SKr‖j , SKr‖j+1, · · · , SKr‖η . From this
period onwards, any outside adversary cannot succeed in
searching over the PEKS ciphertext for previous time peri-
ods, even if the private keys SKr‖j , SKr‖j+1, · · · , SKr‖η are
exposed.

In PEKS, the data sender sets a fixed binary string γj =
(1, 1, · · · , 1) ∈ {1}ℓ. With the pubic key PKr‖j of the data
receiver, the data sender runs the modified LWE-based en-
cryption mechanism to generate the PEKS ciphertext of the
fixed binary string, which is associated with the keyword. In
Trapdoor, with the private key SKr‖j , the data receiver runs
the modified NewBasisDel to generate a random lattice basis
Tw‖j , which is associated with the selected keyword, and
further employs the preimage sample function SamplePre

to generate the trapdoor tw‖j of the selected keyword,
and submits it to the cloud server for search on the PEKS
ciphertext. In Test, with the trapdoor tw‖j , the cloud server
could decrypt the PEKS cipheretxt under the decryption
mode of LWE. In particular, once a bit is decrypted as 0 for
the first time, the cloud server aborts, without decrypting
each bit of the fixed binary string further. Up to the recovery
of the entire fixed binary string γj = (1, 1, · · · , 1) ∈ {1}ℓ,
the cloud server could make sure the trapdoor tw‖j and the
PEKS ciphertext contain the same keyword.

We further extend FS-PEKS to resist IKGA. Without us-
ing the fixed binary string γj = (1, 1, · · · , 1) ∈ {1}ℓ in
PEKS, the data sender chooses a random binary string
γj = (γj1, γj2, · · · , γjℓ) ∈ {0, 1}ℓ to generate the corre-
sponding ciphertext as before. In addition, with the pri-
vate key SKs‖j of the data sender in time period j, the
data sender employs SamplePre to generate a signature
associated with the random binary string, and integrates
the signature into the authenticated PEKS ciphertext. In
Test, the cloud server needs to recover the entire random
binary string, and then verifies the validity of the signature.
Consequently, without the private key SKs‖j of the data
sender, the misbehaved cloud server cannot generate a valid
signature, or even cannot perform such IKGA even if it
masters the trapdoor tw‖j from the data receiver.

4.2 Construction of FS-PEKS

Now we describe the lattice-based FS-PEKS scheme
for cloud-assisted IIoT. It consists of the following five
polynomial-time algorithms.

Setup: Taking as input a security parameter κ, the sys-
tem initialization sets the discrete Gaussian distribution
χ and security Gaussian parameters δ = (δ1, · · · , δη),
σ = (σ1, · · · , ση) for each time period j = 1, · · · , η, and
the system initialization performs in the following steps.

1) Randomly select a uniformly random vector µ ←
Z
n
q .

2) Set two secure hash functions H1 : Zn×m
q × N →

Z
m×m
q , and H2 : {0, 1}ℓ1 × N → Z

m×m
q , where the

set N = {0, 1, · · · , η}, the outputs of H1 and H2 are
both distributed in Dm×m.

3) Run TrapGen(q, n) to generate the data receiver’s
initial public key Ar ∈ Z

n×m
q together with the pri-

vate key Tr ∈ Z
m×m
q for Λ⊥

q (Ar). Run TrapGen(q, n)
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to generate the data sender’s initial public key As ∈
Z
n×m
q together with the private key Ts ∈ Z

m×m
q for

Λ⊥
q (As).

Finally, the system initialization outputs the public param-
eter Σ = (As, Ar, µ,H1, H2, χ, δ, σ).

KeyUpdate: Taking as inputs Σ, the current time period j
and the private key Tr‖i in previous time period i, the data
receiver performs as follows.

1) Compute Rr‖i = H1(Ar‖i) · · ·H1(Ar‖1) ∈ Z
m×m
q

and Ar‖i = Ar(Rr‖i)
−1 ∈ Z

n×m
q .

2) Compute Rr‖i→j = H1(Ar‖j) · · ·H1(Ar‖i + 1) ∈
Z
m×m
q and run NewBasisDel(Ar‖i, Rr‖i→j , Tr‖i, δj)

to generate SKr‖j = Tr‖j for Λ⊥
q (Ar‖j) as the

private key in current time period j, where Ar‖j =
Ar‖i(Rr‖i→j)

−1 = Ar(Rr‖j)
−1 ∈ Z

n×m
q .

PEKS: This PPT algorithm is performed by the data
sender. Taking as inputs Σ, the current time period j,
the public key Ar‖j of the data receiver and keyword
w ∈ {0, 1}ℓ1 , the data sender performs as follows.

1) Set a fixed binary string γj = (1, 1, · · · , 1) ∈ {1}ℓ,
where ℓ is the security-level of testing in cloud
storage, and randomly select a uniform (n × ℓ)-
dimension matrix Bj ← Z

n×ℓ
q .

2) Select each noise ej1, ej2, · · · , ejℓ ← Zq according
to χ, set ej = (ej1, ej2, · · · , ejℓ). Select each noise
vector νj1, νj2, · · · , νjℓ ← Z

m
q according to χm, and

set the noise matrix Vj = (νj1, νj2, · · · , νjℓ) ∈ Z
m×ℓ
q .

3) Compute βj = H2(w‖j), and generate the PEKS
ciphertext CTj1 = µ⊤Bj + ej + γj⌊q/2⌋, CTj2 =
(Ar‖jβ

−1
j )⊤Bj + Vj .

Finally, the data sender sends CTj = (CTj1, CTj2) to the
data receiver as the PEKS ciphertext.

Trapdoor: This PPT algorithm is performed by the data
receiver. Taking as inputs Σ, the public-private key pair
(Ar‖j , Tr‖j) of the data receiver in current time period j,
and a keyword w, the data receiver performs as follows.

1) Compute βj = H2(w‖j), and run
NewBasisDel(Ar‖j , βj , Tr‖j , δj) to generate a
random short lattice basis Tw‖j ∈ Z

m×m
q for

Λ⊥
q (Ar‖jβ

−1
j ).

2) Run SamplePre(Ar‖jβ
−1
j , Tw‖j , µ, σj) to generate

the trapdoor tw‖j ∈ Z
m
q .

Note that Ar‖jβ
−1
j tw‖j = µ ∈ Z

n
q , and the trapdoor tw‖j is

distributed in DΛµ
q (Ar‖jβ

−1

j ),σj
.

Finally, the data receiver sends the trapdoor tw‖j to the
cloud server via a secure channel.

Test: This deterministic polynomial-time algorithm is per-
formed by the cloud server. Taking as inputs Σ, the PEKS
ciphertext CTj , a trapdoor tw‖j from the data receiver in
current time period j, the cloud server performs as follows.

Compute γj = (γj1, γj2, · · · , γjℓ)← CTj1 − t⊤w‖jCTj2. For

l = 1, 2, · · · , ℓ, compare each γjl and ⌊q/2⌋ treating them
as integers in {1, 2, · · · , q} ⊂ Z. Whenever a γjl satisfies
|γjl−⌊q/2⌋| ≥ ⌊q/4⌋ in Z, the cloud server aborts. Otherwise
|γjl−⌊q/2⌋| < ⌊q/4⌋ in Z, set γjl ← 1, up to γjℓ ← 1. Finally,
once the cloud server recovers γj = (1, 1, · · · , 1) ∈ {1}ℓ, it
returns 1, which means that the trapdoor tw‖j and the PEKS
ciphertext CTj contain the same keyword w.

4.3 Extension to resist IKGA

The aforementioned FS-PEKS could achieve ciphertext in-
distinguishability, which will be proved in Section 5 under
the assumption that the cloud server is honest-and-trusted,
and the trapdoor is transmitted to the cloud server via a
secure channel. In order to satisfy the open and flexible re-
quirements of the next generation networks, we consider t-
wo more challenging attack situations, described as follows.
Firstly, once an outside adversary intercepts the trapdoor, it
could execute the exhaustive search. It firstly chooses any
keyword w and regenerates the PEKS ciphertext associated
with the keyword, then uses the PEKS ciphertext and the
trapdoor to run the test algorithm, to identify the keyword
which is selected by the data receiver. Secondly, as a misbe-
haved cloud server, it could also perform IKGA. Particularly,
even if the trapdoor is transmitted via a secure channel, the
misbehaved cloud server could also execute the exhaustive
search as what an outside adversary does, to identify the
keyword which is selected by the data receiver.

With the above security challenges, we further extend FS-
PEKS to address the above security issues, such that the
solution does not rely on a secure channel, but could also
resist IKGA. The critical parts of the extension of FS-PEKS
are described as follows.

Firstly, in Setup, the scheme adds another secure hash
function H3 : Z

m×ℓ
q × {0, 1}ℓ → Z

n
q . In KeyUpdate, in a

similar manner, the scheme flexibly realizes the KeyUpdate
process from the private key Ts‖i of the data sender in time
period i to the private key Ts‖j in time period j.

Secondly, in PEKS, without setting a fixed binary string
γj = (1, 1, · · · , 1) ∈ {1}ℓ, the data sender chooses a
random binary string γj = (γj1, γj2, · · · , γjℓ) ∈ {0, 1}ℓ,
thus CTj1 = µ⊤Bj + ej + (γj1, γj2, · · · , γjℓ)⌊q/2⌋, CTj2 =
(Ar‖jβ

−1
j )⊤Bj + Vj could also be computed as before. Fur-

thermore, the data sender computes hj = H3(CTj2‖γj) ∈
Z
n
q , and runs SamplePre(As‖j , Ts‖j , hj , σj) to generate

ξj ∈ Z
m
q . Eventually, the data sender returns CTj =

(CTj1, CTj2, ξj) to the data receiver as the PEKS ciphertext
associated with the keyword w.

Finally, in Test, the cloud server performs as follows.

1) Compute γj = (γj1, γj2, · · · , γjℓ) ← CTj1 −
t⊤w‖jCTj2. For l = 1, 2, · · · , ℓ, compare each γjl and

⌊q/2⌋ treating them as integers in {1, 2, · · · , q} ⊂ Z.
If they are close, i.e., if |γjl − ⌊q/2⌋| < ⌊q/4⌋ in Z,
set γjl ← 1, and otherwise set γjl ← 0. Then output
γj = (γj1, γj2, · · · , γjℓ) ∈ {0, 1}ℓ.

2) Compute hj = H3(CTj2‖γj) ∈ Z
n
q and check

whether the equation As‖jξj = hj holds, and
whether ξj is distributed in D

Λ
hj
q (As‖j),σj

. If they

hold, the cloud server returns 1, otherwise, it returns
0.

5 CORRECTNESS AND SECURITY

5.1 Correctness of FS-PEKS

Let the data receiver’s key pair be (Ar‖j , Tr‖j), the data
sender’s key pair be (As‖j , Ts‖j) in the current time period
j. Let w be the keyword contained in CTj and w′ be that in
tw′‖j .
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In Test, with the trapdoor tw′‖j of the current time j, the
cloud server could easily recover γ′

j = (γ′
j1, γ

′
j2, · · · , γ′

jℓ)←
CTj1− t⊤w′‖jCTj2 under the decryption mode of LWE. Now
we take into account the following two cases.

1) If w = w′, then γ′
j ← CTj1 − t⊤w′‖jCTj2 = CTj1 −

t⊤w‖jCTj2 = (γj1, γj2, · · · , γjℓ)⌊q/2⌋ + ej − t⊤w‖jVj .

Here ej − t⊤w′
j‖j

Vj is actually an ℓ dimensional noise

row vector. To decrypt correctly, the scheme needs
to guarantee that each component of the error vector
is less than q/5 as discussed in [24]. Thus γ′

j = γj =
(1, 1, · · · , 1) ∈ {1}ℓ.

2) If w 6= w′, as γ′
j ← CTj1 − t⊤w′‖jCTj2 6=

(γj1, γj2, · · · , γjℓ)⌊q/2⌋ + ej − t⊤w‖jVj , thus the
PEKS ciphertext CTj can be decrypted as γj =
(1, 1, · · · , 1) ∈ {1}ℓ with a negligible probability.

Therefore, FS-PEKS satisfies correctness consistence, the
cloud server could be assured that the PEKS ciphertext
CTj = (CTj1, CTj2) and the trapdoor tw′‖j contain the
same keyword w. Finally the cloud server responds with
the corresponding encrypted industrial data associated with
the keyword to the data receiver, such that the data receiver
could further decrypt it and get the primitive industrial data
shared by the data sender.

5.2 Provable security of FS-PEKS

Now we prove that in FS-PEKS, even if the key exposure
occurs, the adversary cannot take advantage of the exposed
private key of the data receiver to break the ciphertext
indistinguishability in previous time periods.

Theorem 1. Lattice-based FS-PEKS achieves ciphertext indis-
tinguishability under the adaptively chosen keyword attacks in
the random oracle model, provided that the hardness assumption
of deciding (Zq, n, χ)-LWE problem holds.

Proof: Assume there exists an adversary A with a non-
negligible probability ε breaking ciphertext indistinguisha-
bility under the adaptively chosen keyword attacks in the
random oracle model, we build a challenger C with a non-
negligible probability solving the hardness assumption of
deciding the (Zq, n, χ)-LWE problem by running the adver-
sary A as a subroutine.

Setup: C requests from LWE oracle OL for each fresh
pair (uk, vk1, · · · , vkℓ) ∈ Z

n
q × Z

ℓ
q , where k = 0, 1, . . . ,m.

C randomly guesses  = j∗ as the time period when A
breaks the ciphertext indistinguishability. Simultaneously, to
maintain consistency, C sets two lists L1, L2. Let Q be the
maximum number of A’s queries to H2. C selects a random
number J∗ ∈ [Q]. Finally, C prepares a simulated attack
environment for A as follows.

1) C samples + 1 random matrices R∗, R∗
1, · · · , R∗

 ←
Dm×m by running SampleR.

2) C assembles the random matrix F ∗ ← Z
n×m
q from

m of the given LWE samples, by letting the k-th
column of F ∗ be the vector uk ∈ Z

n
q for all k =

1, · · · ,m.
3) C sets Ar = F ∗R∗R∗

 · · ·R∗
1, the matrix Ar is uni-

form in Z
n×m
q since all the R∗

1, · · · , R∗
 ∈ Z

m×m
q are

invertible modulo q and F ∗ is uniform in Z
n×m
q . C

also sets µ = u0 ∈ Z
n
q , chooses a random matrix

As ← Z
n×m
q , and finally sets Σ = (As, Ar =

F ∗R∗R∗
 · · ·R∗

1, µ,H1, H2).

Finally, C returns Σ to the adversary A.

We firstly assume that:

• Regardless when A makes the H1-query on Ar‖j, we
assume that it has queried corresponding hash value in time
period i < j.

• Regardless when A makes the private key query in
certain time period, we assume that it has made all relevant
H1 queries before.

Now, A performs the following queries.

H1 query: For each query on Ar‖j, where j = 1, 2, · · · , ,
C sets H1(Ar‖j) = R∗

j , and returns R∗
j to A.

If j =  + 1, C computes Ar‖j−1 = Ar(R
∗
 · · ·R∗

1)
−1,

runs SampleRwithBasis(Ar‖j−1) to obtain a random Rj ←
Dm×m and a short random lattice basis Tr‖j for Λ⊥

q (Ar‖j),
where Ar‖j = Ar‖j−1(Rj)

−1 ∈ Z
n×m
q , and adds

(Ar‖j, Ar‖j , Rj , Tr‖j) into L1 list, and returns Rj to A.

If j >  + 1, C performs as follows. C find-
s (Ar‖j − 1, Ar‖j−1, Rj−1, Tr‖j−1) from L1 list, choos-
es a matrix Rj ← Dm×m, runs the algorithm
NewBasisDel(Ar‖j−1, Rj , Tr‖j−1, δj) to generate a random
short lattice basis Tr‖j for Λ⊥

q (Ar‖j), where Ar‖j =
Ar‖j−1(Rj)

−1, adds (Ar‖j, Ar‖j , Rj , Tr‖j) into L1 list, and
finally returns Rj to A.

H2 query: For the QH2
-th query, here QH2

= 1, 2, · · · , Q,
A queries on a distinct w‖j in time period j, C performs as
follows.

If QH2
= J∗ such that w = w∗ and j = j∗,

C sets H2(w‖j) = R∗, and returns it to A. Other-
wise, C looks into L1 list to find (Ar‖j, Ar‖j , Rj , Tr‖j)
and chooses a matrix Rw‖j ← Dm×m, then run-
s NewBasisDel(Ar‖j , Rw‖j , Tr‖j , δj) to generate a random
short lattice basis Tw‖j for Λ⊥

q (Ar‖j(Rw‖j)
−1). Finally, C

saves the tuple (w‖j, Ar‖j(Rw‖j)
−1, Rw‖j , Tw‖j) in L2 list,

and returns Rw‖j to A.

Trapdoor oracle: Upon receiving the query on a keyword
w in time period j from A. C first looks into L2 list, if
(w‖j, Ar‖j(Rw‖j)

−1, Rw‖j , Tw‖j) is in L2 list, C gets Tw‖j ,
then runs SamplePre(Ar‖j(Rw‖j)

−1, Tw‖j , µ, σj) to generate
the trapdoor tw‖j , and returns to A.

Break-in phase: This phase models the possibility of key
exposure. A queries on the private key for the data receiver
in time period j, with the restriction that the time period
j > j∗, where j∗ =  is the break-in time period. As we
assume A may have made relative queries to H1 on Ar‖j,
C could provide A with corresponding private key Tr‖j as
follows.

For the previous time period i query, we note that i = +1
is the smallest time period when H1(Ar‖i) 6= R∗

i . Since we
have assumed that A would have made H1 query on Ar‖i,
we could retrieve the saved tuple (Ar‖i, Ar‖i, Ri, Tr‖i)
from L1 list. We could construct Ar‖i = Ar‖+1 =
Ar(R

∗
1)

−1 · · · (R∗
 )

−1(H1(Ar‖ + 1))−1 and Tr‖i is a short

random basis for Λ⊥
q (Ar‖i). C could compute the low norm

matrix Rr‖i→j = H1(Ar‖j) · · ·H1(Ar‖i+1) as before. Then
C runs NewBasisDel(Ar‖i, Rr‖i→j , Tr‖i, δj) to generate the
public key Ar‖j = Ar‖i(Rr‖i→j)

−1 and a short random
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lattice basis Tr‖j as the private key of the data receiver in
time period j, and returns Tr‖j to the adversary A.

Challenge phase: A sends (w∗
0 , w

∗
1) in time period  = j∗

to C, where w∗
0 and w∗

1 are two challenged keywords, then
C randomly chooses a bit b ← {0, 1}. If b = 0, C returns a
random PEKS ciphertext CT ∗

 = (CT ∗
1, CT ∗

2) associated
with the keyword w∗

0 to the adversary A. Otherwise, C
performs as follows.

1) For each k = 0, 1, . . . ,m, l = 1, . . . , ℓ, retrieve vkl ∈
Zq from the LWE instance, set v0 = (v01, · · · , v0ℓ),
v∗ = (v1, · · · , vm)⊤ ∈ Z

m×ℓ
q , where each vk =

(vk1, · · · , vkℓ)⊤ ∈ Z
ℓ
q , and set γ∗

j = (1, 1, · · · , 1) ∈
{1}ℓ.

2) Compute CT ∗
1 = v0 + γ∗

j ⌊q/2⌋, and set CT ∗
2 = v∗.

Finally, C sends CT ∗
 = (CT ∗

1, CT ∗
2) associated with the

keyword w∗
1 to the adversary A.

Guess. Eventually, A outputs b′ ← {0, 1}.
The goal of A is to decide which keyword is used

in the challenged CT ∗
 , as C could return the PEKS ci-

phertext which is associated with the keyword w∗
1 with

probability 1/2. In fact, it is easy to see that the above
challenged forward secure PEKS ciphertext associated with
the keyword w∗

1 has the correct distribution. Accord-
ing to the setting of the public parameter Σ, recall that
Ar = F ∗R∗R∗

 · · ·R∗
1, thus we have Ar‖(H2(w

∗
1‖))−1 =

Ar(R
∗
1)

−1 · · · (R∗
 )

−1(R∗)−1 = F ∗ and CT ∗
2 = v∗ =

(F ∗)⊤B∗
 + V ∗

 for some random matrix B∗
 ∈ Z

n×ℓ
q

and V ∗
 ∈ Z

m×ℓ
q with Gaussian distribution. Therefore

CT ∗
1, CT ∗

2 have the correct forms. We consider the case
that A could succeed in guessing that the keyword w∗

1 is
used in generation CT ∗

 with a non-negligible probability ε,
where the keyword w∗

1 is just the J∗-th H2 query. It means
that w∗

1 = w∗ and j = j∗ = , and this case occurs with
probability 1/Q. Moreover, the challenger C could success-
fully guess the break-in time j∗ =  with probability 1/η.
Therefore, if A with a non-negligible probability ε could
break ciphertext indistinguishability under the adaptively
chosen keyword attacks in the random oracle model, then C
has a non-negligible probability at least AdvCA(κ) = ε/2ηQ
in deciding the (Zq, n, χ)-LWE instance by running A as a
subroutine.

5.3 Security proof of the resistance to IKGA

Now we prove that in the extension of FS-PEKS, even if
the key exposure of the data sender occurs, any adversary
cannot forge the searchable ciphertext in previous time
periods. Thus, the extension of FS-PEKS could resist IKGA
from the misbehaved cloud server.

Theorem 2. The extension of FS-PEKS achieves IKGA resis-
tance, provided that the hardness assumption of ISIS problem
holds.

Proof: Assume that the misbehaved cloud server, as an
adversary F , could perform IKGA by forging the searchable
ciphertext in the random oracle model with a non-negligible
probability ǫ, we could then build a challenger C also with a
non-negligible probability solving the hardness assumption
of ISIS problem by running the adversary F as a subroutine.

Setup: C randomly guesses  = j∗ as the time period when
F forges the searchable ciphertext, thus F could further
perform IKGA successfully. C requests an instance of ISIS
problem (U, ϑ) ∈ Z

n×m
q × Z

n
q , and manages to solve the

vector ξ∗ ∈ Z
m
q , such that Uξ∗ = ϑ and 0 < ‖ξ∗ ‖ ≤ σ

√
m.

To maintain consistency, C sets three lists L1, L2, L3. Let M
be the maximum number of F ’s queries to H3. C selects a
random number I∗ ∈ [M ]. Finally, C prepares a simulated
attack environment for F as follows.

1) C samples  random matrices S∗
1 , · · · , S∗

 ← Dm×m

by running SampleR.
2) C sets As = US∗

 · · ·S∗
1 , the matrix As is uniform

in Z
n×m
q since all the S∗

1 , · · · , S∗
 ∈ Z

m×m
q are

invertible modulo q, and U is uniform in Z
m×m
q . C

also randomly chooses µ ← Z
n
q , chooses a random

matrix Ar ← Z
n×m
q , and finally sets Σ = (As =

US∗
 · · ·S∗

1 , Ar, µ,H1, H2, H3).

Finally, C returns Σ to the adversary F .
We also assume that:
• Regardless when F makes the H1-query on As‖j, we

assume that it has queried corresponding hash value in time
period i < j.
• Regardless when F makes the private key query in

certain time period, we assume that it has made all relevant
H1 queries before.

Now, F performs the following queries.
H1 query: For each query on As‖j, where j = 1, 2, · · · , ,
C sets H1(As‖j) = S∗

j , and returns S∗
j to F .

If j =  + 1, C computes As‖j−1 = As(S
∗
 · · ·S∗

1 )
−1,

runs SampleRwithBasis(As‖j−1) to obtain a random Sj ←
Dm×m and a short random lattice basis Ts‖j for Λ⊥

q (As‖j),
where As‖j = As‖j−1(Sj)

−1 ∈ Z
n×m
q , and adds

(As‖j, As‖j , Sj , Ts‖j) into L1 list, and returns Sj to F .
If j >  + 1, C performs as follows. C find-

s (As‖j − 1, As‖j−1, Sj−1, Ts‖j−1) from L1 list, choos-
es a matrix Sj ← Dm×m, runs the algorithm
NewBasisDel(As‖j−1, Sj , Ts‖j−1, δj) to generate a random
short lattice basis Ts‖j for Λ⊥

q (As‖j), where As‖j =
As‖j−1(Sj)

−1, adds (As‖j, As‖j , Sj , Ts‖j) into L1 list, and
finally returns Sj to F .

Similarly, C could also answer the query on Ar‖j from F
in the same approach.
H2 query: F queries on a distinct w‖j in time period

j, C also looks into L1 list to find (Ar‖j, Ar‖j , Rj , Tr‖j)
and chooses a matrix Rw‖j ← Dm×m, then run-
s NewBasisDel(Ar‖j , Rw‖j , Tr‖j , δj) to generate a random
short lattice basis Tw‖j for Λ⊥

q (Ar‖j(Rw‖j)
−1). Finally, C

saves the tuple (w‖j, Ar‖j(Rw‖j)
−1, Rw‖j , Tw‖j) in L2 list,

and returns Rw‖j to F .
H3 query: For the MH3

-th query, here MH3
= 1, 2, · · · ,M ,

F queries on a distinct CTj2‖γj , C returns hj to F , if it
exists in list L3. If MH3

= I∗, such that γj = γ∗
 , and

CTj2 = CT ∗
2 is just the second component of the search-

able ciphertext associated with the keyword w∗, under the
uniform matrix B∗

 ← Z
n×m
q , the noise matrix V ∗

 ∈ Z
m×ℓ
q , C

adds (CT ∗
2, γ

∗
 ,⊥, ϑ) to L3, and returns ϑ toF . Otherwise, C

generates ξj ← DZm,σj
by running SampleDom in [24], and

computes hj = Uξj ∈ Z
n
q , then C adds (CTj2, γj , hj , ξj) to

L3.
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Trapdoor oracle: Upon receiving the query on a keyword
w in time period j from F . C first looks into L2 list, if
(w‖j, Ar‖j(Rw‖j)

−1, Rw‖j , Tw‖j) is in L2 list, C gets Tw‖j ,
and runs SamplePre(Ar‖j(Rw‖j)

−1, Tw‖j , µ, σj) to generate
the trapdoor tw‖j , and returns to F .

Searchable ciphertext oracle: F submits a keyword w and
a binary string γ ∈ {0, 1}ℓ in time period j for searchable
ciphertext query. C randomly chooses a uniform matrix
Bj ← Z

n×m
q , a noise matrix Vj ∈ Z

m×ℓ
q , and computes

CTj1, CTj2 in a normal way. Then C chooses ξj ← DZm,σj

by running the algorithm SampleDom. Finally, C returns
CTj = (CTj1, CTj2, ξj) to the adversary F .

Break-in phase: This phase models the possibility of key
exposure. F queries on the private key for the data sender
in time period j, with the restriction that the time period
j > j∗, where j∗ =  is the break-in time period. As we
assume F may have made relative queries to H1 on As‖j,
C could provide F with corresponding private key Ts‖j as
follows.

For the previous time period i query, we note that i =
 + 1 is the smallest time period when H1(As‖i) 6= S∗

i .
Since we have assumed that F would have made H1

query on As‖i as before, we could retrieve the saved tu-
ple (As‖i, As‖i, Si, Ts‖i) from L1 list. We could construct
As‖i = As‖+1 = As(S

∗
1 )

−1 · · · (S∗
 )

−1(H1(As‖+1))−1 and

Ts‖i is a short random basis for Λ⊥
q (As‖i). C could compute

the low norm matrix Ss‖i→j = H1(As‖j) · · ·H1(As‖i + 1)
as before. Then C runs NewBasisDel(As‖i, Ss‖i→j , Ts‖i, δj)
to generate the public key As‖j = As‖i(Ss‖i→j)

−1 and a
short random lattice basis Ts‖j as the private key of the data
sender in time period j, and returns Ts‖j to F .

Forgery phase: In this phase, the adversaryF , in the role of
the misbehaved cloud server, may try to forge the searchable
ciphertext in time period  = j∗. More specifically, F returns
C a forged searchable ciphertext CT ∗

 = (CT ∗
1, CT ∗

2, ξ
∗
 ) of

γ∗
 associated with w∗. With the restriction that γ∗

 associated
with w∗

 cannot be submitted to the searchable ciphertext
oracle.

Note that the adversary F could query C to get
(w∗‖, Ar‖j(Rw∗‖)

−1, Rw∗‖, Tw∗‖) in L2 list, F could fur-
ther generate tw∗‖ ← SamplePre(Ar‖jβ

−1
 , Tw∗‖, µ, σj).

Now C recovers γ∗
 by computing γ∗

 ← CT ∗
1 − t⊤w∗‖CT ∗

2

under the searchable trapdoor tw∗‖, and outputs ξ∗ as a
forged signature of γ∗

 associated with the keyword w∗.
Thus, C outputs ξ∗ as its answer to the ISIS problem
(U, ϑ) ∈ Z

n×m
q × Z

n
q . We know that F could win the game

only if ξ∗ is a valid signature of γ∗
 associated with the

keyword w∗, thus we have As‖ξ
∗
 = H3(CT ∗

2‖γ∗
 ), where

0 < ‖ξ∗ ‖ ≤ σ
√
m. Recall that As = US∗

 · · ·S∗
1 , thus we

have As‖ξ
∗
 = As(S

∗
1 )

−1 · · · (S∗
 )

−1ξ∗ = Uξ∗ . Moreover,
note that C could successfully guess that H3(CT ∗

2‖γ∗
 ) = ϑ

with probability 1/M . The challenger C could successfully
guess the break-in time j∗ =  with probability 1/η. Thus,
if F succeeds in forging a valid searchable ciphertext with
a non-negligible probability ǫ, then F could find a solution
ξ∗ , such that Uξ∗ = ϑ and 0 < ‖ξ∗ ‖ ≤ σ

√
m, with a non-

negligible probability AdvCF (κ) = ǫ/ηM , which contradicts
to the hardness assumption of ISIS problem. Consequently,
the extension of FS-PEKS achieves IKGA resistance from the
misbehaved cloud server.

6 PERFORMANCE EVALUATION

In this section, we firstly provide performance comparison
among FS-PEKS and existing PEKS schemes [9], [11], [12],
[33], including the communication overhead and computa-
tional costs. Then, we further compare the performance of
the extension of FS-PEKS achieving IKGA with the other
PEKS schemes [10], [13], [14], which also have such security
property. All the experiments are run on a laptop with
Window 10 system with an Intel Core 2 i5 CPU and 8GB
DDR 3 of RAM. We utilize C language and MIRACL Library
version 5.6.1. We employ an MNT curve with base field
size 159 bits and embedding degree 6. As the lattice-based
algorithms are based on parameters n,m, q, to achieve the
security of the q-module integer lattices, the parameters
need to satisfy m ≥ 2n⌈log q⌉. To compare with existing
schemes, here we give an instance for FS-PEKS and its
extended scheme, and set the security level ℓ = 10. All
the results of experiments are represented 30 trials on av-
erage. Now we firstly evaluate the performance comparison
among FS-PEKS and existing PEKS schemes [9], [11], [12],
[33]. Let |G1|, |GT | denote the bit size of an element in group
G1, GT , respectively. Let |p|, |q| denote the bit size of an
element in Zp, Zq , respectively. The notations of operations
are given in Table 1.

Fig. 2. Communication overhead comparison

Fig. 3. PEKS computational costs comparison

Table 2 lists the communication overhead in detail. As
shown in Fig. 2, the trapdoor size of FS-PEKS is much
less than that of other schemes. Although the PEKS size
of FS-PEKS is slightly bigger than that of [9], [11], [12], only
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TABLE 1
Notations of Operations

Notations Operations

TPa The running time of a bilinear pairing

TEx The running time of an modular exponentiation

TAd The running time of a point addition

TMu The running time of a scalar multiplication

Tmu The running time of a general multiplication

THa The running time of a hash-to-point

Tha The running time of a general hash function

TABLE 2
Communication Overhead

Schemes PEKS size Trapdoor size

BDOP-PEKS [9] |G1|+ ℓ |G1|

SCF-MCLPEKS [11] |G1|+ |p| |G1|

CLPEKS [12] |G1|+ |p| |G1|

Shao et al.’s scheme [33] 5|G1|+ 3|GT | 3|G1|

FS-PEKS (ℓ+mℓ)|q| m|q|

TABLE 3
Computational Costs

Schemes PEKS computational costs Testing time

BDOP-PEKS [9] TPa + 2TEx + 2Tha TPa + Tha

SCF-MCLPEKS [11] 3TPa +TAd +4TMu +3THa +Tha +2Tmu TPa + 2TAd + TMu + 2THa + Tha

CLPEKS [12] TPa + 2TAd + 4TMu + THa + 3Tha TPa + Tha

Shao et al.’s scheme [33] 3TPa + 9TEx + 3Tha 4TPa + 5TEx + Tha

FS-PEKS Tha + (nℓ+ nm2 + nmℓ)Tmu mℓTmu

TABLE 4
Testing Time Comparison

Schemes Testing time

PAEKS [10] 2TPa + Tmu

CLPAEKS [13] 2TPa + 2TAd + 2TMu + 2Tha + Tmu

DS-PAEKS [14] 7TEx + 3Tmu

Extended scheme Tha + (mℓ+ nm)Tmu

FS-PEKS can achieve forward security. Thus, FS-PEKS just
adds reasonable PEKS size overhead. Moreover, we give an
analysis of computational costs among FS-PEKS and other
existing schemes [9], [11], [12], [33] in Table 3.

Fig. 4. Testing time comparison

The results of computational costs, including detailed

Fig. 5. The comparison of testing time

PEKS computational costs and testing time, are shown in
Fig. 3 and Fig. 4, respectively. According to the compu-
tational costs comparison, with the increasing number of
searching keywords, FS-PEKS achieves almost the same as
[9] in PEKS computational costs, and is much more efficient
than that of [11], [12], [33]. FS-PEKS is much more efficient
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than all the existing schemes in testing time, and only FS-
PEKS can achieve quantum resistance. Now we further com-
pare the extension of FS-PEKS with existing PEKS schemes
[10], [13], [14], all of which can resist IKGA. In particular,
here we evaluate the performance of the end-to-end delay
from the cloud server to the data receiver, and focus on the
comparison of testing time in Table 4. The experiment re-
sults of testing time with the increasing number of searching
keywords are illustrated in Fig. 5. Similar to the computa-
tional costs in Fig. 4, the extended scheme is also more light-
weight than other existing schemes. This is mainly because
FS-PEKS and its extended scheme are built on lattice, which
only needs simple addition and multiplication operations
over a moderate module, without time-consuming bilinear
pairing and modular exponentiation operations. In addition,
only our extended scheme could achieve forward security,
quantum attacks and IKGA resistance simultaneously.

7 RELATED WORK

With the rapid development of cloud computing, cloud
storage technologies have become increasingly prevalent.
Cloud storage data auditing services [34], [35] are employed
to ensure the integrity of data. While data encryption ser-
vices are used to ensure the data confidentiality [36]. To
achieve the goal of searching over encrypted data out-
sourced to the cloud server without leaking any information
about the messages shared by the data sender, searchable
encryption is one of the essential approaches. Searchable
encryption is divided into symmetry searchable encryp-
tion and asymmetric searchable encryption. The symmetry
searchable encryption (SSE) scheme was firstly introduced
in [37]. Following that, many SSE schemes with distinct
features have been proposed in the literature [38], [39], [40],
[41]. Although these SSE schemes are with relatively high
computational efficiency, they are only suitable for a single
user model, but could not be well applied in multi-user
model.

On the contrary, public-key encryption with keyword
search (PEKS) scheme contributes to key distribution and
data sharing with multiple users. The first PEKS scheme
was proposed by Boneh et al. [9], which enables a cloud
server to search on a collection of encrypted data with
a trapdoor from a data receiver. Following Boneh et al.’s
work [9], many PEKS variants [42], [43], [44], [45], [46] with
different features were proposed. However, Baek et al. [27]
pointed out that the scheme in [9] needs to establish a secure
channel for transmitting the trapdoor. To tackle with this
issue, Baek et al. [27] constructed a PEKS scheme without
secure channel, and the trapdoor could be transmitted via a
public channel. Byun et al. [47] have shown that these PEKS
schemes are vulnerable to off-line keyword guessing attack
due to the low-entropy keyword space. After that, Rhee et
al. [28] proposed a designated tester PEKS scheme remov-
ing the secure channel, where only the designated server
could test whether the ciphertext of the keyword matches
the trapdoor generated by the data receiver. Rhee et al.
[48] gave a generic construction of designated tester PEKS
scheme, it not only achieves ciphertext indistinguishability
but also trapdoor security, such that any outside adversary
cannot distinguish whether two trapdoors are generated by

the same keyword. Moreover, Fang et al. [49] constructed
a PEKS scheme against keyword guessing attacks under
the standard model. Ma et al. [50] proposed a public-key
encryption with equality test scheme supporting flexible
authorization. In addition, to avoid key management and
the key escrow problem in cloud-assisted IIoT, some cer-
tificateless PEKS schemes for cloud-assisted IIoT have also
been proposed [12], [13].

Although some feasible techniques [28], [48], [49] have
been proposed to resist KGA, we also observe that a
misbehaved cloud server could perform insider keyword
guessing attacks (IKGA). In order to resist such attacks,
a PEKS scheme [29] with fuzzy keyword search has been
constructed. However, heavy communication overhead and
computational costs are also introduced to the data receiver.
Chen et al. [14] proposed a dual-server PEKS scheme, which
utilizes two servers and requires the two servers do not col-
lude. Sun et al. [51] proposed a PEKS scheme with resistance
against IKGA by using indistinguishability obfuscation [52],
which is inefficient to execute, making it impractical. More
recently, Huang et al. [10] proposed an authenticated PEKS
scheme succeeding in resisting IKGA. The certificateless
authenticated PEKS scheme for cloud-assisted IIoT in [13]
could also achieve KGA resistance against the misbehaved
cloud server.

With the explosive use of mobile intelligent terminal de-
vices with limited key protection, the key exposure of the
individual for the search on encrypted data stored in the
cloud server might occur, and the adversary could capture
the private key and break the forward security. Recently, to
address this security issue, some SSE schemes supporting
forward security in the literature [26], [53], [54], [55], [56]
have emerged. However, PEKS schemes achieving forward
security have remained much less in previous research.
To the best of our knowledge, there is only one public-
key broadcast searchable encryption [57] with this security
property.

Nevertheless, due to the security proof in [15], the conven-
tional public key cryptographic algorithms will be insecure
once quantum computers become realistic, thus the secu-
rity of those PEKS schemes mentioned above will also be
threatened. Fortunately, lattice-based cryptography [22] has
been a promising technique for resisting quantum attacks,
since it holds very strong security guarantee based on worst-
case hardness. In this paper, we construct lattice-based PEKS
scheme by leveraging a hierarchy identity-based encryp-
tion based on the hardness assumption of deciding LWE
problem [23] and the idea of the forward secure lattice-
based signature [58]. The LWE problem was introduced in
Regev’s seminal work [25]. As a novel hardness assumption,
it lead to a series of different LWE-based cryptosystems and
applications [59], [60], which by extension are also post-
quantum secure.

8 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a forward secure public-
key encryption with keyword search (FS-PEKS) scheme
from lattice, which is secure against the quantum attacks.
The proposed FS-PEKS is provable secure and achieves
forward security, making it suitable for secure searching
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over encrypted industrial data in cloud-assisted IIoT. Fur-
thermore, we have extended FS-PEKS to resist IKGA from
the misbehaved cloud server. Compared with existing PEKS
schemes, our proposed solution has higher computational
efficiency at the cloud server side and lower communication
overhead in trapdoor size.

For the future work, we plan to investigate how to con-
struct an efficient lattice-based key-exposure resilient PEKS
that not only protects against past keys in the event of
key exposure, but also future keys. Moreover, we will in-
vestigate how to utilize novel lattice-based cryptographic
technologies to enhance cloud-assisted IIoT in terms of
security, performance, and functionality.
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