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Abstract

This paper proposes a method for head pose estimation

from a single image. Previous methods often predict head

poses through landmark or depth estimation and would re-

quire more computation than necessary. Our method is

based on regression and feature aggregation. For having

a compact model, we employ the soft stagewise regression

scheme. Existing feature aggregation methods treat inputs

as a bag of features and thus ignore their spatial relation-

ship in a feature map. We propose to learn a fine-grained

structure mapping for spatially grouping features before ag-

gregation. The fine-grained structure provides part-based

information and pooled values. By utilizing learnable and

non-learnable importance over the spatial location, differ-

ent model variants can be generated and form a comple-

mentary ensemble. Experiments show that our method out-

performs the state-of-the-art methods including both the

landmark-free ones and the ones based on landmark or

depth estimation. With only a single RGB frame as in-

put, our method even outperforms methods utilizing multi-

modality information (RGB-D, RGB-Time) on estimating

the yaw angle. Furthermore, the memory overhead of our

model is 100× smaller than those of previous methods.

1. Introduction

Facial modeling and analysis have long been an active

research topic in computer vision [2, 3, 4, 5, 6, 7, 21, 22, 24,

25]. Large facial datasets [16, 37, 48] and efficient methods

for different facial analysis problems have been proposed

for years, such as face recognition [4, 6] or identification,

facial age estimation [45], landmark detection [3], and head

pose estimation [35]. This paper addresses the head pose

estimation problem which has many applications such as

driver behavior monitoring and human attention modelling.

It could also be used to improve or provide extra informa-

tion for other problems such as identity recognition [39],

expression recognition [46], or attention detection [8].

Figure 1. Sample results of pose estimation using the proposed

method. Our method only takes as input a single RGB frame.

Results for two sequences of head motion are shown. The blue

line indicates the direction the subject is facing; the green line for

the downward direction while the red one for the side.

Head pose estimation from a single image is a challeng-

ing problem. Head pose is a 3D vector containing the angles

of yaw, pitch and roll. Estimating the head pose from an im-

age essentially requires to learn a mapping between 2D and

3D spaces. Some methods utilize more modalities such as

3D information in depth images [28, 25, 14, 27] or tem-

poral information in video sequences [16]. The depth im-

ages provide 3D information that is missing in 2D images.

Videos capture continuous movement of human heads and

provide extra information to help the pose estimation. How-

ever, learning the temporal information is usually achieved

by recurrent structures with high computation costs while

capturing depth information often requires special cameras

which are not always available. Most single-frame pose es-

timation methods utilize facial landmark detection for esti-

mating head poses [20, 3]. However, it would incur more

computation and leads to bigger models. Hence, all these

models are not suitable to be adopted on platforms with lim-

ited memory and computation resource.

This paper proposes FSA-Net, a compact model for pose

estimation from a single image using direct regression with-

out landmarks. For having a compact model, the proposed

model is built on the soft stagewise regression scheme [45].

To harvest multi-scale information, like many regression

methods [45, 3], our method combines feature maps from

different layers/stages. For having more accurate predic-
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tions, it requires to learn meaningful intermediate features

for performing regression. The state-of-the-art differen-

tiable aggregation/pooling methods such as capsule net-

works [36] and NetVLAD [1] can be adopted for distilling

representative features from candidate features. However,

these methods often treat the inputs as a bag of features and

neglect their spatial relationship in the feature map. The key

idea of the proposed method is to spatially group pixel-level

features of the feature map together into a set of features

encoded with spatial information. These features are then

used as the candidate features for aggregation. That is, the

proposed method learns to find the fine-grained structure

mapping for spatially grouping pixel-level features together

to form more power region-level features.

The proposed fine-grained structure mapping can be in-

terpreted as a more flexible and versatile tool for pooling.

Conventional pooling takes a set of features at fixed loca-

tions within a local window. A pre-defined operation is

applied to them without taking data content into account

while our method pools features from a wider area with a

more versatile operation. For harvesting more versatile spa-

tial information, we adopt both learnable and non-learnable

importance measures, and complementary model variants

can be generated for making a powerful and robust ensem-

ble. Experiments show that our model outperforms other

single-frame pose estimation methods with the model size

of only 5MB, around 100× smaller than that of the previ-

ous state-of-the-art method. For yaw angle prediction, the

proposed method is even favorable against heavy models

utilizing multiple modalities such as RGB-D or RGB-Time.

Figure 1 shows sample results of the proposed method. It is

clear that the pose estimation is rather accurate.

2. Related work

Landmark-based methods. They find facial landmarks

first and then use them to estimate the head pose. Given a

set of 2D face landmarks, the head pose can be determined

by 3D computer vision techniques such as POSIT [11].

Regression-based methods [5, 43, 12, 23, 42] sketch initial

faces, and incrementally align the drawn faces to real ones

by regression. Model-based methods [26, 24, 10] model hu-

man faces with several key points, and then locate the key

points on real faces via trained appearance models. Deep-

learning-based methods [48, 3, 38] estimate 3D face models

using convolutional neural networks (CNNs) and gain supe-

rior performance compared to previous methods. Although

effective, landmark detection is not required for pose esti-

mation and often incurs unnecessary computation.

Methods with different modalities. Landmark-based

methods require manually annotated labels as ground truth.

However, acquiring annotated landmarks is labor-intensive.

In some cases with low-resolution images, even experts can-

not accurately pinpoint facial landmark locations. Consid-

ering the cost and accuracy, some proposed face alignment

algorithms without face landmarks [6, 35]. On the other

hand, it is also very popular to adopt different modalities to

compensate for the loss of information [14, 27, 9, 29].

RGB. Several approaches only utilize a single RGB im-

age for pose estimation [6, 35, 32, 22, 31]. FacePoseNet [6]

employed a CNN for 3D head pose regression, which im-

proves face recognition accuracy. Nataniel et al. [35] com-

bined ResNet50 with a multi-loss architecture. Each loss

contains a binned pose classification and regression, corre-

sponding to yaw, pitch, and roll individually. With binned

classification, their method obtained robust neighborhood

prediction of the pose.

Depth. Intensity-based head pose estimation algorithms

fail to produce accurate head poses in conditions such as

poor illumination during night time or large illumination

variations during day time. Fanelli et al. [14] exploited dis-

criminative random regression forests for head pose esti-

mation with depth images. Meyer et al. [27] proposed to

register 3D morphable models to depth images and incre-

mentally refine the registration over time.

RGB+Time. Methods for facial video analysis take a se-

quence of RGB images as inputs and utilize temporal infor-

mation. Previous facial analysis methods on videos [9, 29]

cope with temporal coherence by Bayesian filters or parti-

cle filters. Inspired by the similarity between Bayesian fil-

ters and recurrent neural networks (RNNs), Gu et al. [16]

proposed to track facial features by RNNs over time.

Multi-task methods. Head pose estimation is closely re-

lated to other facial analysis problems. Recent work [7,

31, 49] demonstrates that learning related tasks jointly

achieves better results than performing individual tasks in-

dependently. Several methods [31, 32] propose to perform

various related facial analysis tasks simultaneously using

CNNs. Hyperface [31] learns common features by CNNs,

for simultaneously performing face detection, facial land-

mark localization, head pose estimation and gender recog-

nition. KEPLER [22] learns global and local features by a

Heatmap-CNN to explore structural dependencies.

Attention. Our method provides attention for pose estima-

tion. Our attention can be optimized in an end-to-end man-

ner along with the pose estimation without complex addi-

tional techniques [18, 19, 40, 30, 17]. Compared with other

pooling methods using attention such as CBAM [41] and

Attentional Pooling [15], our method has the following dif-

ferences with them. First, they focus on categorical clas-

sification problems (image classification and action recog-

nition) while our method is for a regression problem. Sec-

ond, they only generate one or two spatial heatmaps while

our model is capable of generating multiple spatial attention

proposals which are more flexible for refining regression

values. Finally, our method takes into account multi-scale

information, and it’s useful to other applications.
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3. Method

In this section, we first formulate the pose estima-

tion problem (Section 3.1). Next, we introduce the soft

stagewise regression and apply it to pose estimation (Sec-

tion 3.2). We then give an overview of the proposed FSA-

Net (Section 3.3). Two important ingredients of the FSA-

Net, the scoring function and the fine-grained structure

mapping, are then described in Section 3.4 and Section 3.5

respectively. Finally, we explain details of the architecture

(Section 3.6).

3.1. Problem formulation

For the problem of image-based head pose estima-

tion, we are given a set of training face images X =
{xn | n = 1, ..., N} and the pose vector yn for each image

xn, where N is the number of images. Each pose vector yn
is a 3D vector whose components respectively correspond

to the angles of yaw, pitch, and roll. The goal is to find a

function F so that it predicts ỹ = F (x) that matches the

real head pose y for the given image x as much as possible.

We find F by minimizing the mean absolute error (MAE)

between the predicted and the ground truth poses,

J(X) =
1

N

N∑

n=1

‖ỹn − yn‖1 , (1)

where ỹn=F (xn) is the predicted pose for the training im-

age xn. It is a regression problem by nature.

3.2. SSRNetMD

Our proposed solution is built on the SSR-Net [45],

which provides a compact model for age estimation from a

single image. Inspired by DEX [33], SSR-Net casts the re-

gression problem of age estimation as a classification prob-

lem by dividing into the age domain into several age classes

(bins). A network performs the classification task and out-

puts a probability distribution for age classes. Given the

probability distribution, the age is estimated as the expected

value. For having a compact model, SSR-Net adopts a

coarse-to-fine strategy for classification. Each stage only

performs intermediate classification with a small number of

classes, say “relatively younger”, “about right” and “rela-

tively older” within the current age group. The next stage

refines the decision within the age group assigned by the

previous stage [45]. In sum, SSR-Net performs a hierar-

chical classification and uses the following soft stage-wise

regression for estimating the age ỹ:

ỹ =

K∑

k=1

~p(k) · ~µ(k), (2)

where K is the number of stages; ~p(k) is the probability

distribution for the k-th stage; and ~µ(k) is a vector consist-

ing of the representative values of age groups at the k-th

stage. To accommodate quantization errors and class am-

biguity, a shift vector ~η(k) adjusts the center for each bin

and a scale factor ∆k scales the widths of all bins at the k-

th stage, thus modifying the representative ages ~µ(k). Like

~p(k), both ~η(k) and ∆k are found by a neural network. Given

an input image, SSR-Net outputs K sets of stage parameters

{~p(k), ~η(k),∆k}
K

k=1 and uses the soft stage-wise regression

for estimating the age.

The soft stagewise regression formulation can be ap-

plied to any regression problem. For a given re-

gression problem, the soft stagewise regression function

SSR({~p(k), ~η(k),∆k}
K

k=1) accepts K sets of stage param-

eters and outputs the expected value as the regression value

according to Equation (2). In this paper, we apply the soft

stagewise regression to the problem of pose estimation from

a single image. Different from the age estimation problem,

the pose estimation problem estimates a vector, rather than a

scalar. We denote the SSR-Net for multiple dimensional re-

gression by SSR-Net-MD, and revise the two-stream struc-

ture of the SSR-Net as described in Section 3.6. Although

SSR-Net-MD gives fairly good performance, we propose to

use feature aggregation to further improve it.

3.3. Overview of FSANet

Figure 2(a) depicts the architecture of the proposed FSA-

Net. The input image goes through two streams. There are

K stages (K = 3 in Figure 2(a)). Each stream extracts a

feature map at a stage. For the k-th stage, the extracted

feature maps are fused together by the stage fusion module

(the green boxes between two streams in Figure 2(a)). The

stage fusion module first combines the two feature maps by

element-wise multiplication. It then applies c 1×1 convo-

lutions to transform the combined feature map into c chan-

nels. Finally, average pooling is used to reduce the size of

the feature map to w×h. Thus, we obtain a w×h×c feature

map Uk for the k-th stage. The feature map Uk is a spa-

tial grid, in which each cell contains a c-dimensional fea-

ture representation of a particular spatial location. These K

feature maps are then fed into the mapping module for ob-

taining K c′-d vectors, each of which will be used to obtain

the stage outputs {~p(k), ~η(k),∆k} for the SSR function.

Given K feature maps of size w×h ×c, the task of the

aggregation module is to aggregate them into a small num-

ber of more representative features, in our case, K c′-d fea-

tures, one for each stage. Through the aggregation process,

a more meaningful representation can be distilled from a

bag of features. Existing feature aggregation methods, such

as capsule [36] and NetVLAD [1], can be employed for the

task. However, as mentioned in Section 1, these methods

treat the input features as a bag of features and completely

ignore the spatial information exhibited within the feature

map. To overcome the problem, we propose to perform

spatial grouping of features before feeding them into the
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(a) FSA-Net (b) Fine-grained structure mapping
Figure 2. Overview of the proposed FSA-Net. Source code available at https://github.com/shamangary/FSA-Net

aggregation process. Thus, the inputs to the feature aggre-

gation module would be more powerful features encoded

with global spatial information, rather than the pixel-level

features1 in the feature maps.

For the purpose of spatial grouping, for each feature map

Uk, we first compute its attention map Ak through a scor-

ing function (Section 3.4). Next, the feature maps Uk and

the attention maps Ak are fed into the fine-grained structure

mapping module. The module learns to extract n′ c-d repre-

sentative features by spatially weighting the pixel-level fea-

tures in the feature maps. These vectors are then fed into

a feature aggregation method for generating the final set

of representative features for regression, V , containing K

c′-d features. The vector Vk is used to generate the stage

outputs {~p(k), ~η(k),∆k} for the k-th stage through a fully-

connected layer. These outputs are then substituted into the

SSR function for obtaining the pose estimation.

3.4. Scoring function

For better grouping features, it is useful to measure the

significance of the pixel-level features. Given a pixel-level

feature u = (u1, . . . , uc), we design a scoring function

Φ(u) to measure its importance to facilitate spatial group-

ing. Thus, for each feature map Uk, we obtain an impor-

tance or attention map Ak, where Ak(i, j) = Φ(Uk(i, j)).
We explore three options as the scoring functions. (1)

1 × 1 convolution, (2) Variance and (3) Uniform. The first

option takes an extra 1 × 1 convolution layer as a learn-

able scoring function, i.e., Φ(u)=σ(w · u), where σ is the

sigmoid function and w is the learnable convolution kernel.

Although the use of 1×1 convolution as the scoring function

allows us to learn how to weight features from the training

1We refer the feature associated with a cell of the feature map as a pixel-

level feature. Notice that a “pixel” of the feature map actually occupies a

local patch in the input image.

data, it could suffer from the potential overfitting problem

when there is significant discrepancy between the training

and testing data. Inspired by ORB [34] in which features

are selected using variances, the second option explores the

use of variance for importance, i.e., Φ(u) =
∑c

i=1(ui−µ)2

where µ = 1
c

∑c

i=1 ui. Note that variance is differentiable

although not learnable. The final option, uniform, is to treat

all features equally, i.e., Φ(u) = 1. In this case, Ũ = U and

the fine-grained structure mapping is not performed. Note

that these three options explore learnable, non-learnable and

constant alternatives. They could provide complementary

information. In Section 4, we will compare the performance

of these options. We found that they capture different as-

pects and the best practice is to form an ensemble model

by averaging their predictions together. This way, the pose

estimation is more robust.

3.5. Finegrained structure mapping

With the feature maps Uk and their attention maps Ak,

the next step is to perform fine-grained structure mapping to

extract a set of representative features Ũ . Figure 2(b) illus-

trates the process. We first flatten all feature maps Uk into a

matrix U whose first dimension is n=w×h×K, U ∈ R
n×c.

In other words, U is a 2D matrix containing all c-d pixel-

level features in all feature maps across all stages. For the

k-th stage, we would like to find a mapping Sk which se-

lects and groups features in U into a set of n′ representative

features Ũk by

Ũk = SkU, (3)

where Sk ∈ R
n
′
×n and Ũk ∈ R

n
′
×c. That is, we assem-

ble n′ representative features from n pixel-level features by

their linear combinations. The map Sk is the linear transfor-

mation which performs the linear dimensionality reduction

by taking weighted averages over all pixel-level features.
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We write the map Sk as the product of two learnable

maps, C and Mk:

Sk = CMk, (4)

where C ∈ R
n
′
×m, Mk ∈ R

m×n and m is a parameter.

The map Mk is specific for the k-th stage while the map C

is shared across all stages. The maps Mk and C are formed

as follows:

Mk = σ(fM (Ak)), (5)

C = σ(fC(A)), (6)

where σ is the sigmoid function; fM and fC are two differ-

ent functions defined by fully-connected layers; and A =
[A1, A2, . . . , AK ] is the concatenation of all attention maps.

Both fM and fC are parts of the end-to-end trainable FSA-

Net and they are discovered through learning from training

data. The use of a separable map for Sk not only reduces

the number of parameters, but also stabilizes the training.

Furthermore, L1 normalization is performed for each row

of Sk for more stable training.

Each row of the map Mk can be folded into K maps

of the size w × h, each of which represents how the pixel-

level features spatially contribute to the representative fea-

ture corresponding to the specific row. Thus, each row of

Mk can be taken as a fine-grained structure that is salient to

pose estimation. Figure 5 visualizes some maps.

Finally, we concatenate all Ũk together to form the final

set of representative features, Ũ = [Ũ1, Ũ2, . . . , ŨK ], where

Ũ ∈ R
(n′

·K)×c. The set of representative features Ũk is

then fed into a feature aggregation method for obtaining the

final set of features, V ∈ R
K×c

′

, for stage-wise regression.

3.6. Details of the architecture

Similar to the DeepCD [44] and SSR-Net, the FSA-Net

has two streams. They are built with two basic building

blocks BR and BT as:

BR(c) ≡ {SepConv2D(3×3, c)-BN-ReLU},

BT(c) ≡ {SepConv2D(3×3, c)-BN-Tanh},

where SepConv2D is separable 2D convolution; BN de-

notes batch normalization and c is a parameter. The struc-

ture of the first stream is {BR(16)-AvgPool(2×2)-BR(32)-

BR(32)-AvgPool(2×2)} - {BR(64)-BR(64)-AvgPool(2×2)}
- {BR(128)-BR(128)}. The layers between each pair of

brackets form a stage. The feature map at the end of a stage

is the output of the stage. The structure of the second stream

is {BT(16)-MaxPool(2×2)-BT(32)-BT(32)-MaxPool(2×2)}
- {BT(64)-BT(64)-MaxPool(2× 2)} - {BT(128)-BT(128)}.

Since there are three stages, the parameter K is equal to 3
in our FSA-Net.

As for other parameters, in our current implementation,

we set w = 8, h = 8 and c = 64 for the feature maps.

We set m = 5 and n′ = 7 for the fine-grained structure

mapping, and c′ = 16 for the feature aggregation module

throughout all experiments.

Figure 3. Examples from the datasets. The first row is from the

300W-LP synthetic dataset. In this dataset, the images at different

poses are rendered, instead of being taken in the real world. The

second row is from the AFLW2000 dataset which contains many

different real-world backgrounds and light conditions. The third

row is from the BIWI dataset which was collected under the con-

trolled environment.

4. Experiments

This section describes implementation, the datasets for

training and testing, evaluation protocols, results, compar-

isons with other methods, and the ablation study.

4.1. Implementation

We used Keras with Tensorflow backend for imple-

menting the proposed FSA-Net. For data augmentation in

training, we applied random cropping and random scaling

(0.8 ∼ 1.2) to training images. We used 90 epochs to train

the network with the Adam optimizer with the initial learn-

ing rate 0.001. The learning rate was reduced by a factor of

0.1 every 30 epochs. The experiments were performed on

a computer with an Intel i7 CPU and an GTX1080Ti GPU.

The inference time of our model is around 1ms per image.

4.2. Datasets and evaluation protocols

Datasets. Three popular datasets for head pose estima-

tion were adopted in the experiments: the 300W-LP [48],

AFLW2000 [48], and BIWI [13] datasets, The 300W-LP

dataset [48] was derived from the 300W dataset [37] which

unifies several datasets for face alignment with 68 land-

marks. Zhu et al. used face profiling with 3D image mesh-

ing to generate 61, 225 samples across large poses and fur-

ther expanded to 122, 450 samples with flipping [48]. The

synthesized dataset is named as the 300W across Large

Poses (300W-LP). The AFLW2000 dataset [48] provides

ground-truth 3D faces and the corresponding 68 landmarks

for the first 2, 000 images of the AFLW dataset [21]. The

faces in the dataset have large pose variations with var-

ious illumination conditions and expressions. The BIWI

dataset [13] contains 24 videos of 20 subjects in the con-

trolled environment. There are a total of roughly 15, 000
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frames in the dataset. In addition to RGB frames, the dataset

also provides the depth image for each frame. Figure 3

shows examples from these three datasets. For training and

evaluation on these datasets, we follow the following two

common protocols.

Protocol 1. For this protocol, we follow the setting of

Hopenet [35] whose goal is also landmark-free head pose

estimation: training on the synthetic 300W-LP dataset while

testing on the two real-world datasets, the AFLW2000 and

BIWI datasets. Notice that, the same as the setting of

Hopenet, when evaluating on the BIWI dataset, we do

not use tracking and only considers samples whose ro-

tation angles are within the range of [−99◦,+99◦] with

MTCNN [47] face detection. We compare several state-of-

the-art landmark-based pose estimation methods using this

protocol. The batch size we used for this protocol is 16.

Protocol 2. In this protocol, we used 70% of videos (16
videos) in the BIWI dataset for training, and the others (8
videos) for testing. The faces in the BIWI dataset are de-

tected by MTCNN with the empirical tracking technique to

avoid failure of face detection. Notice that this protocol was

adopted by several pose estimation methods with different

modalities such as RGB, depth, and time while our method

only utilizes a single RGB frame. We used the batch size 8
for training in this protocol.

4.3. Competing methods

We compare our method with the following state-of-the-

art methods for pose estimation. The first group of methods

is landmark-based. KEPLER [22] predicts facial keypoints

and pose at the same time with a modified GoogLeNet ar-

chitecture. The coarse pose supervision is used for im-

proving landmark detection. FAN [3] is a state-of-the-art

landmark detection method. It is robust against occlusions

and head poses. The method acquires multi-scale informa-

tion by merging block features multiple times across lay-

ers. Dlib [20] is a standard face library which contains

landmark detection, face detection, and several other tech-

niques. 3DDFA [48] uses CNNs to fit a 3D model to an

RGB image. The dense 3D model allows alignment of

the landmarks even with occlusions. Hopenet [35] is a

landmark-free regression method. It employs ResNet and

trains it using both MSE and cross-entropy losses.

There are also some head pose estimation methods

which utilize multiple modalities. VGG16 (RGB) and

VGG16+RNN (RGB+Time) were proposed by Gu et

al. [16]. They analyzed multiple possibilities of combin-

ing the CNN and RNN based on analysis of Bayesian fil-

ters. Martin [25] estimates head pose from depth images

from a consumer depth camera by building and registering

a 3D head model. DeepHeadPose [28] focuses on low-

resolution RGB-D images. It uses both classification and

regression to predict the estimation confidence.

MB Yaw Pitch Roll MAE

Dlib (68 points) [20] - 23.1 13.6 10.5 15.8

FAN (12 points) [3] 183 6.36 12.3 8.71 9.12

Landmarks [35] - 5.92 11.86 8.27 8.65

3DDFA [48] - 5.40 8.53 8.25 7.39

Hopenet (α=2) [35] 95.9 6.47 6.56 5.44 6.16

Hopenet (α=1) [35] 95.9 6.92 6.64 5.67 6.41

SSR-Net-MD [45] 1.1 5.14 7.09 5.89 6.01

FSA-Caps (w/o) 2.9 5.27 6.71 5.28 5.75

FSA-Caps (1×1) 1.1 4.82 6.19 4.76 5.25

FSA-Caps (var.) 1.1 4.96 6.34 4.78 5.36

FSA-Caps-Fusion 5.1 4.50 6.08 4.64 5.07

Table 1. Comparisons with the state-of-the-art methods on the

AFLW2000 dataset. All are trained on the 300W-LP dataset.

MB Yaw Pitch Roll MAE

3DDFA [48] - 36.2 12.3 8.78 19.1

KEPLER [22] - 8.80 17.3 16.2 13.9

Dlib (68 points) [20] - 16.8 13.8 6.19 12.2

FAN (12 points) [3] 183 8.53 7.48 7.63 7.89

Hopenet (α=2) [35] 95.9 5.17 6.98 3.39 5.18

Hopenet (α=1) [35] 95.9 4.81 6.61 3.27 4.90

SSR-Net-MD [45] 1.1 4.49 6.31 3.61 4.65

FSA-Caps (w/o) 2.9 4.56 5.15 2.94 4.22

FSA-Caps (1×1) 1.1 4.78 6.24 3.31 4.31

FSA-Caps (var.) 1.1 4.56 5.21 3.07 4.28

FSA-Caps-Fusion 5.1 4.27 4.96 2.76 4.00

Table 2. Comparisons with the state-of-the-art methods on the

BIWI dataset. All are trained on the 300W-LP dataset.

4.4. Results with protocol 1

In this scenario, pose estimation methods are trained

with the 300W-LP dataset. Table 1 and Table 2 com-

pare our FSA-Net with the state-of-the-art methods on the

AFLW2000 and BIWI datasets, respectively. The mean ab-

solute error (MAE) is used as the evaluation metric. In

this protocol, the characteristics of the training and test-

ing datasets are quite different. The training dataset is syn-

thetic while the testing datasets are real. The landmark-free

approaches can better accommodate the domain discrep-

ancy between training and testing. Thus, the landmark-free

methods (Hopenet, SSR-Net-MD and FSA-Net) perform

better than landmark-based ones on both AFLW2000 and

BIWI datasets. Figure 4 compares our model with Hopenet

by showing a few examples. Both SSR-Net-MD and FSA-

Net are more compact than Hopenet. All FSA-Net variants

perform better than SSR-Net-MD. FSA-Caps denotes FSA-

Net that uses capsule [36] for feature aggregation. There are

three options for the scoring function: w/o for not applying

fine-grained feature mapping, 1×1 for 1×1 convolution and
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Figure 4. Pose estimation on the AFLW2000 dataset (protocol

1). From top to bottom, they are ground truth, results of Hopenet

and our results. The blue line indicates the direction the subject

is facing; the green line for the downward direction while the red

one for the side. Best view in color.

var. for variance. Although 1×1 convolution has the poten-

tial for learning a better mapping from data, it could suffer

from overfitting. Thus, from the experiments, it does not

always lead to the best performance. We found that their

fusion with simple average, denoted as FSA-Caps-Fusion,

produces the most robust results. KEPLER [22] also in-

tends to find the structure relation between keypoints, but

our scheme of learning fine-grained structure mapping is

much more effective than their iterative method.

4.5. Results with protocol 2

The BIWI dataset contains information from multiple

modalities. Other than using color information within a

single frame, it is possible to leverage depth or temporal

information for improving performance. Table 3 reports

performance of methods using different modalities. The

RGB-based group only uses a single RGB frame while

RGB+Depth and RGB+Time respectively utilize depth and

temporal information in addition to color information.

Our method (FSA-Caps-Fusion) only uses a single RGB

frame and outperforms all other methods in its peer group.

VGG16 is close but its model size is much bigger. Our

model does not perform as well as methods using multi-

modality information, but not too far from them. In addi-

tion, our method is the best on predicting the yaw angle,

even outperforming those with multi-modality information.

4.6. Visualization

Figure 5 visualizes the fine-grained structures captured

by our method. The model is the FSA-Caps (1×1) model

trained on the 300W-LP dataset. The first column shows the

estimated poses. The rests are visualizations for how some

representative features are aggregated from pixel-level fea-

tures, one column for one feature. The heatmaps are the

reshaped versions of the row vectors of Mk recovered in

Method MB Yaw Pitch Roll MAE

RGB-based

DeepHeadPose [28] - 5.67 5.18 - -

SSR-Net-MD [45] 1.1 4.24 4.35 4.19 4.26

VGG16 [16] 500 3.91 4.03 3.03 3.66

FSA-Caps-Fusion 5.1 2.89 4.29 3.60 3.60

RGB+Depth

DeepHeadPose [28] - 5.32 4.76 - -

Martin [25] - 3.6 2.5 2.6 2.9

RGB+Time

VGG16+RNN [16] >500 3.14 3.48 2.60 3.07

Table 3. Comparisons with the-state-of-art methods on the BIWI

dataset. 70% of videos are used for training (16 videos) and 30%

for testing (8 videos). There are three groups of methods that use

information from different modalities: RGB-based, RGB+Depth

and RGB+Time.

(a) (b) (c) (d) (e)

Figure 5. Visualizations of the discovered fine-grained spatial

structures. The model is the FSA-Caps (1×1) trained on the 300W-

LP dataset. The first column shows the estimated head poses.

The other four columns display four spatial structures by heatmaps

which visualize the folded versions of some rows of Mk discov-

ered by the model. They show how pixels are aggregated for a

specific representative feature. The examples of the first two rows

are from the AFLW2000 dataset, and those of the last two rows

come from the BIWI dataset.

Section 3.5. For example, the heatmaps in Figure 5(c) show

that the forehead and the region of eyes are aggregated for

the specific feature. The detected regions are similar across

images but slightly different due to the head poses. As an-

other example, Figure 5(e) focuses on the right cheek.

4.7. Ablation Study

We have conducted the ablation study for understanding

the influence of individual components, including different
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testing set AFLW2000 (protocol 1) BIWI (protocol 1)

method SSR FSA-Net SSR FSA-Net

aggregation - - Capsule [36] - - Capsule [36]

pixelwise scoring - w/o 1×1 var. w/o 1×1 var. - w/o 1×1 var. w/o 1×1 var.

model size (MB) 1.1 0.5 0.8 0.8 2.9 1.1 1.1 1.1 0.5 0.8 0.8 2.9 1.1 1.1

MAE 6.01 5.54 5.48 5.41 5.75 5.25 5.36 4.65 4.61 4.53 4.16 4.22 4.31 4.28

MAE (late fusion) - 5.14 5.07 - 4.19 4.00

Table 4. Ablation study for different aggregation methods (no aggregation and Capsule) and the different pixelwise scoring functions for

protocol 1. The results are the MAEs of the yaw, pitch, and roll angles. SSR denotes SSR-Net-MD [45].

testing set BIWI (protocol 2)

method SSR-Net-MD [45] FSA-Net

aggregation - - Capsule [36] NetVLAD [1]

pixelwise scoring - w/o 1×1 var. w/o 1×1 var. w/o 1×1 var.

model size (MB) 1.1 0.5 0.8 0.8 2.9 1.1 1.1 0.6 0.8 0.8

MAE 4.26 3.95 4.01 3.83 3.84 3.77 3.92 3.97 3.88 3.88

MAE (late fusion) - 3.75 3.60 3.68

Table 5. Ablation study over different aggregation methods (no aggregation, Capsule and NetVLAD) and the different pixelwise scoring

functions under protocol 2. The results are the MAEs of the yaw, pitch, and roll angles.
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(a) AFLW2000 (protocol 1) (b) BIWI (protocol 1) (c) BIWI (protocol 2)

Figure 6. Comparisons over each angle for different testing datasets and corresponding protocols. We divide the components of FSA-

Caps-Fusion into three parts, 1×1, var., and w/o variants. The legend “mix” represents the fusion model.

aggregation methods (none, capsule, NetVLAD), and dif-

ferent pixelwise scoring functions (none, 1×1 convlution,

or variance). Table 4 and Table 5 report the results. Since

our method is based on SSR-Net-MD, its performance is

also listed as a reference. The results are improved by us-

ing capsule or NetVLAD as the feature aggregation. This

means that state-of-the-art aggregation methods can be nat-

urally combined with our method. Figure 6 shows detailed

comparison over the yaw, pitch and roll angles for several

settings. While a single scoring function model does not al-

ways achieve good results, the fusion ensemble model guar-

antees the best result in every case, showing that comple-

mentary information is learned in different model variants.

5. Conclusion

In this paper, we propose a new way to acquire more

meaningful aggregated features with the fine-grained spatial

structures. By defining learnable and non-learnable scoring

functions of the pixel-level features, we are able to learn

complementary model variants. Experiments show that

the ensemble of these variants outperforms the state-of-the-

art methods (both landmark-based and landmark-free ones)

while its model size is around 100× smaller than those of

previous methods. Furthermore, its estimation on the yaw

angle is even more accurate than those methods with multi-

modality information such as the RGB-D or RGB-Time re-

current model. We show that it is possible to improve re-

gression results by learning meaningful intermediate fea-

tures. Although we only demonstrate on the pose estima-

tion problem, we believe that the idea can be extended to

other regression problems as well.
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