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Abstract: Forward stimulated Brillouin scattering (FSBS) is observed in a 

standard 2-km-long highly nonlinear fiber. The frequency of FSBS arising 

from multiple radially guided acoustic resonances is observed up to 

gigahertz frequencies. The tight confinement of the light and acoustic field 

enhances the interaction and results in a large gain coefficient of 34.7 W
−1

 at 

a frequency of 933.8 MHz. We also find that the profile on the anti-Stokes 

side of the pump beam have lineshapes that are asymmetric, which we show 

is due to the interference between FSBS and the optical Kerr effect. The 

measured FSBS resonance linewidths are found to increase linearly with the 

acoustic frequency. Based on this scaling, we conclude that dominant 

contribution to the linewidth is from surface damping due to the fiber jacket 

and structural nonuniformities along the fiber. 
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1. Introduction 

Interactions between tightly confined optical and acoustic waves have attracted much research 

interest over the past few years. A widely studied acousto-optical nonlinear interaction is the 

stimulated Brillouin scattering (SBS) process. Although SBS takes place most efficiently 

when the optical beams counterpropagate with respect to each other and the acoustic 

disturbance is a longitudinal wave in the waveguide [1–3], forward stimulated Brillouin 

scattering (FSBS) is enabled when light waves interacts with transverse acoustic waves that 

are trapped in a waveguide. These so-called guided acoustic modes typically have a flat 

dispersion curve starting from a characteristic cutoff frequency AΩ  at zero axial wavevector 

[4]. This dispersion relation allows automatic phase matching of the three-wave interaction 

involving two co-propagating optical beams and the transverse acoustic excitation. It also 

possibly enables cascaded generation of multiple Stokes and anti-Stokes beams with 

frequency-spacing of AΩ  [5,6]. Furthermore, multiple acoustic resonances exist in typical 

fibers, corresponding to distinct modes of vibration, yielding a rich FSBS spectrum [7]. A 

recent numerical study shows that the acousto-optic interaction between two copropagating 

modes using flexural or torsional acoustic mode in an optical fiber can be used to obtain 

optical delays [8]. Also, current research on FSBS at gigahertz frequencies suggest that the 

process may be used in a wide variety of photonic applications, such as frequency comb 

generation, active phase modulation, optical frequency conversion, and high-frequency mode 

locking of fiber lasers [4,5,9]. 

Forward spontaneous Brillouin scattering in optical fibers was first discussed by Shelby et 

al. [7] in a process known as guided acoustic-wave Brillouin scattering (GAWBS). Since then, 

GAWBS has been extensively explored in fibers with different core dimensions and 

polarization properties [4,9–11]. The FSBS process between two non-degenerate optical 

modes was first characterized by Russell et al. [12], where the frequency shift was of-the-

order-of 17 MHz. More recently, highly efficient FSBS at gigahertz frequencies has been 

demonstrated by Kang et al. [6] using a small-core (diameter~2 μm) photonic crystal fiber 
(PCF) coupling to the TR2(m) torsional and R0(m) radial modes (where m = 1, 2, 3, ... is the 

mode number). The results show that the R0(m) acoustic resonance enhances cascaded Stokes 

and anti-Stokes scattering [5,6]. 

The tight confinement of both light and sound waves in the small core of the PCF enables 

a large overlap between the fundamental transverse radial acoustic and optical modes, thereby 

enhancing the acousto-optical coupling efficiency and simultaneously increasing the FSBS 

resonance frequency up to the application-suitable gigahertz frequency range [5,9]. Because 

the radial acoustic waves R0(m) in standard single mode fibers (SMFs) are mainly confined in 

the fiber cladding (typical diameter 125 µm), these guided acoustic modes in SMFs tend to 

have a much wider spatial distribution than the core-confined optical field. For this reason, it 

is believed that coupling between guided acoustic waves and optical waves in SMFs is weak 

due to their partial spatial overlap [5,7]. Likely for this reason, there has been little research on 

FSBS in standard single-mode fibers. 
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Here, we present observations of FSBS in a standard 2-km-long highly nonlinear fiber 

(HNLF, OFS Inc.) with a cladding diameter of 125 ± 1 μm and an effective optical mode area 
of 11.5 μm2

. We observe multiple radially guided acoustic resonances R0(m), with frequencies 

ranging from ~80 MHz (corresponding to R0(2)) to 1.1 GHz (corresponding to R0(23)), limited 

by our detection scheme. Even though the acoustic waves are only loosely confined in the 

larger cladding area, we find that good overlap between acoustic and optical modes is possible 

because the peak acoustic power is concentrated near the fiber core for larger m. For our 2-

km-long HNLF, the gain coefficient is observed to be 34.7 W
−1

 at a frequency of 933.8 MHz 

(corresponding to R0(20)) when pumped by a 1550-nm-wavelength continuous-wave pump 

beam with a power of ~8 mW. This value is more than two times larger than that obtained by 

Kang et al. [5] for the R0(1) mode in a 10-m-long PCF, enabled though the use of a longer path 

length, which is readily available for commercial HNLFs. The pump power is limited in our 

case by the threshold for backward SBS, which could be suppressed using a pulsed pump 

beam. The lineshape of the FSBS resonances is studied for both the Stokes and anti-Stokes 

scattering processes. We observe asymmetric gain profiles, especially for the anti-Stokes side, 

which is explained by interference between the optical Kerr effect and the FSBS process and 

agrees with the prediction of the analytic solution to the coupled equations. We also find a 

linearly increasing trend for the measured linewidth of the FSBS resonances from 425 MHz to 

1.1 GHz for Stokes scattering. 

In the next section, we develop a theoretic model for the nonlinear optical interactions 

taking place in the fiber where FSBS and the Kerr effect are both important. We then describe 

our experimental system and discuss the gain and linewidth in Sec. 3, and conclude in Sec. 4. 

2. Theoretical description of the FSBS and Kerr effect 

In this section, we derive the coupled amplitude equations for the evolution of optical waves 

in a fiber where both FSBS and the Kerr effect are considered. The interactions of the acoustic 

density variation ,( , , )r z tρ ϕ  and the optical field ,( , , )r z tE ϕ  are described by [13] 

 
22 2 2 NL

eff

2 2 2 2 2

0

1
,

nE E P

z c t c tε
∂ ∂ ∂

− =
∂ ∂ ∂

  (1a) 

 
2

2 2 2 2

0 e2

1
,

2
LV f E

tt

ρ ρ ε γ∂ ∂ − + Γ ∇ = ∇ ⋅ = − ∇ ∂∂  


  (1b) 

where 
NLP  is the total nonlinear polarization, effn  is the effective refractive index, 0ε  is the 

vacuum permittivity, c  is the speed of light in vacuum, LV  is the longitudinal acoustic 

velocity of the fiber, Γ  is the acoustic damping parameter, the source term on the right hand 

side of Eq. (1b) is the divergence of the electrostriction force f


, eγ  is the electrostrictive 

constant, and the over bar denotes the time average over an optical period. Here, we assume 

the optical wave propagates along the z-direction and has slow variation along the ,( )r ϕ  polar 

coordinates. 

We consider the interaction between a strong pump beam and a weak signal beam whose 

frequency is downshifted by Ω with respect to the pump beam. In the FSBS process, it is 

possible to generate cascaded Stokes and anti-Stokes fields with an equal frequency interval Ω 

by interaction with the radial acoustic waves R0(m) [5,6]. A general form of the optical field 
,( , , )r z tE ϕ  in the fiber is thus given by 

 0 0( , , , ) ( , ) ( , ) exp{ [( ) ( ) ]} . .,o kk
E r z t E r a z t i kq z k t c cϕ ϕ β ω= − − − Ω +∑   (2) 
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where ( , )
o

rE ϕ  is the normalized transverse distribution of the optical fundamental (HE11) 

mode, , 2, 1,0,1, 2,k = − −   represents the order of the cascaded optical fields in the fiber 

(negative k’s refer to the Stokes fields, positive k’s refer to the anti-Stokes fields, and 0k =  

refers to the pump beam), ka  is the slowly varying field amplitude of k
th

-order optical beam, 

q  ( Ω ) is the propagation constant (frequency) of the acoustic phonon and 0 kqβ −  

( 0 kω − Ω ) is the propagation constant (frequency) of the k
th

-order optical field. 

We now consider the acoustic waves and the associated nonlinear polarization. We use the 

radial profile of the HE11 mode; we ignore the small azimuthal dependence of these modes 

because the HE11 mode is close to being azimuthally symmetric in our HNLF. Both theoretical 

and experimental results show that there is a series of guided acoustic resonances generated 

over a broad frequency range for fibers with a large cladding diameter [7]. The density 

variation ( , , )m r z tρ  of the m
th

-order acoustic phonons is given in the form of 

 
0( )( , , ) ( ) ( , ) exp[ ( )] . .,m m m mm

r z t r b z t i q z t c cρ ρ= −Ω +   (3) 

where 0( ) ( )m rρ  is the normalized radial profile of the acoustic density variation of the m
th
 

mode R0(m), which is given by the zeroth-order Bessel Functions [14]. Here, 
m

q  ( mΩ ) is the 

propagation constant (frequency) of the m
th

-order acoustic phonons, and mb  is the slowly 

varying acoustic amplitude. We ignore the slight difference in acoustic velocity for the core 

and cladding in our model. The acoustic velocity is different in the core because it is doped 

with germanium, whereas the cladding is assumed to be pure silica. Based on the measured 

backward SBS frequency shift and linewidth and the known change of their quantities with 

germanium concentration [15], we estimate only a 10% difference in the acoustic velocities. 

This difference will only slightly perturb the transverse acoustic vibrations. 

The nonlinear polarization produced by the acoustic vibrations is given as 
acoustic

0 e 0( ) mm
P ε γ ρ ρ=  [13], where 0ρ  is the mean density. Inserting Eqs. (2), (3) and the 

nonlinear polarization into Eqs. (1) and considering all the acoustic resonances, we find that 

the evolution of the k
th

-order optical field amplitude is described by 

 ( )** *
A A1 11 1 ,k

m m nn n nk km n n

da
aa a ai a a

dz
γ γ− −− += +∑ ∑ ∑   (4) 

where , 2, 1,0,1, 2,n = − −   represents the order of the optical fields. The FSBS coupling 

coefficient Amγ  is given by 

 

2

0 0 e 0( ) 1( )
A 2 2

BAeff 0

1
,

2

m m
m

mm m m

Q Q

in c

ε ω γγ
ρ

= ΓΩ −Ω + Ω
  (5) 

where 
2

B Am mΓ = ΓΩ  is the resonance linewidth, and the factors 0( )mQ  and 1( )mQ  are take the 

form 

 
2π

2 2

0( ) 0 0
0 0

, ,
a

m o m o mQ E E rdrdρ ρ ϕ= ≡ ∫ ∫   (6a) 

 
2π

2 2 2 2

1( ) 0 0
0 0

, .
a

m o m o mQ E E rdrdρ ρ ϕ⊥ ⊥= ∇ ∇≡ ∫ ∫   (6b) 

For the case of a pump beam and a single Stokes sideband, evaluating Eq. (4) allows us to 

determine the m
th

-order FSBS Stokes gain, which is given by 
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2

0 e 0( ) 1( )

0( ) 2 2

eff 0 A B

.
2

m m

m

m m

Q Q
g

n c

ω γ

ρ
=

Ω Γ
  (7) 

The factors 0( )mQ , 1( )mQ  and BmΓ  play very important roles in determining the magnitude 

of 0( )mg  in Eq. (7). The linewidth BmΓ  results from acoustic damping mechanisms and will be 

discussed in greater detail in Sec. 3. The factors 1( )mQ  and 0( )mQ  represent the ability of the 

optical field to generate the acoustic excitation and for the acoustic excitation to scatter the 

incident field, respectively. The profiles of the acoustic density variation for different modes 

affect these factors substantially. We plot in Fig. 1 the spatial distribution of the acoustic 

mode and optical mode for our HNLF fiber. The parameters for silica fibers are given by 

[14,16]: e 1.17γ = , 
3 -3

0 2.20 10 kg/m ρ = × , 5590 m/s LV = . Also, we use 

12

0 8.85 10 F/m ε −= ×  and 0 2π 193.5 THz ω = × . As we will discuss in Sec. 3, BmΓ  is a slowly 

increasing function of AmΩ  and is approximately equal to 2π × 7.5 MHz over the range of our 

experiment. We determine effn  by solving for the optical fundamental mode distribution [17]. 

 

Fig. 1. (a) Intensity of the fundamental optical HE11 mode (black line) and the density variation 

0 ( )m
ρ  of the acoustic mode R0(1) (red dash and dot line) and R0(20) (blue dash line). (b) The 

transverse second derivative of the intensity of the fundamental optical mode (black line) and 
the density of acoustic mode R0(1) (red dash and dot line) and R0(20) mode (blue dash line). 

Using these parameters, we find that 0( )mQ  and 1( )mQ  have larger values for mode R0(20) 

(933.8 MHz) than for mode R0(1) (~30 MHz) in the HNLF: 0(20)Q ~4 0(1)Q  and 1(20)Q  ~150 1(1)Q . 

With these values, the gain parameters are calculated to be: 
3 -1 -1

0(1) 2.1 10 W m g −= ×  and 
2 -1 -1

0(20) 2.4 10 W m g −= × . For our 2-km-long HNLF, the gain coefficient (defined 

( ) 0( )m mg g L= , where L  is the fiber length) is found to be ~48 W
−1

 for m = 20. (The value in 

the experiment will be somewhat smaller because of fiber loss, shown in Sec. 3). This 

prediction is three times larger than the experimentally observed value obtained in a 10-m-

long small-core PCF (15 W
−1

) previous reported by Kang et al. [5]. We point out that the gain 

parameter g0(1) of the photonic crystal fiber reported by Kang et al. is higher than g0(20) of the 

HNLF. However, considering the difference in fiber length, the HNLF has a larger value of 

the gain coefficient than the photonic crystal fiber. As we know, the fabrication process of 

PCF with a small core diameter is complex and usually limits the length of the fiber. On the 

other hand, a HNLF can be fabricated in long lengths and therefore can be used for generating 

larger FSBS gain. 

Because our HNLF displays significant Kerr nonlinearity, it is necessary to include the 

possibility of interference between FSBS and the Kerr effect in our model for the evolution of 

optical waves. The Kerr effect couples Stokes and anti-Stokes sidebands via parametric 
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amplification (also known as four-wave mixing). Considering only the nonlinear polarization 

due to the Kerr effect, we find that the evolution of the slowly varying field amplitude ( , )ka z t  

is described by [13,16] 

 
22 * 2 *

K

2
, , ,

[( 2 ) (2 )],pql pqi ik

k p k p q l p q

p k p q l k p q k
p q l k p q k

da
i a a a a a a e a a e

dz

θ θγ
≠ + − = − =

≠ ≠

= + + +∑ ∑ ∑   (8) 

where , , , , 2, 1,0,1, 2,p q l k = − −   represent the order of the optical field and the Kerr 

coefficient is denoted by K eff 0(2 ) In cγ ε γ=  with 
-1 -111.7 km W 

Iγ =  for our HNLF. Because of 

the small frequency difference between the pump and the sidebands (on the order of 1 GHz) 

and the small dispersion of our HNLF at 1550 nm ( 0.089 ps / (nm km) D = − ⋅ ), the parametric 

processes are essentially phase matched. Thus, we take , 0pql pqθ θ ≈ . 

In our HNLF, where both the FSBS and Kerr effect are important, the evolution of the 

optical field amplitudes is described by combining both Eqs. (4) and (8). Consider the case 

when Stokes and anti-Stokes beams are weak compared to the pump beam, energy transferred 

out of the pump beam is small. Also, in this case, the second-order Stokes and anti-Stokes 

beams are much weaker than the first-order beams and thus are ignored. The nonlinear 

coupled equations governing the amplitude of first-order Stokes ( 1a− ) and anti-Stokes waves 

( 1a ) are given approximately by 

 ( )-1 *
1 -1 1

,
2

m m
m

da
a i a a

dz

α
ξ κ−+ = +∑   (9a) 

 ( )1 * * *
1 1 -1

,
2

m m
m

da
a i a a

dz

α
ξ κ+ = +∑   (9b) 

where 
2 *

A K0 ( )2mm
a γ γξ +=  and 

2 *
A K0 ( )mm

aκ γ γ+=  are coupling coefficients for each 

acoustic mode m, α  is the fiber loss and 0a  is the amplitude of pump, which we take as a real 

constant without loss of generality. 

Equation (9) is a pair of coupled equations that describe comprehensively the evolution of 

the optical waves inside the HNLF. When considering the initial condition 1 0 1(0)ta a− = −=  

and 1 0 0ta = =  and ignoring the fiber loss ( 0α = ) the solution to Eqs. (9) is given by 

 
1 1( ) (0) cosh( ) sinh( ) ,m

m m

m

a z a s z i s z
s

ξ
− −

 = + 
 

  (10a) 

 
*

* *

1 1*
( ) (0)sinh( ),m

m

m

a z i a s z
s

κ
−=   (10b) 

where 
2 2 1/2( )m m ms κ ξ= − . To study FSBS alone, we remove the Kerr effect by setting 0K

γ =  

to obtain 

 ( )1 1( ) (0) 1 ,ma z a i zξ− −= ⋅ +   (11a) 

 * *

1 1( ) (0) .ma z a i zκ−= ⋅   (11b) 
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The power of each frequency component is given by 
2

eff 02k kP n c aε= . Using this 

definition and Eqs. (11), the anti-Stokes power at position z is given by 
4 22 2

AA 01 1 0
[ ]( ) (0) 1 2 Im( ) mm aP z P a z zγγ

− −= + +  and the Stokes power at z is given 

by
4 2 2

A01 1( ) (0) maP z P zγ
−= . We notice that the FSBS coefficient Amγ  is a function of 

frequency m
Ω  in Eq. (5), so that both 

-1( )P L  and 
1( )P L  have Lorentzian shapes owing to the 

term 
2 2 2

B B( / 2) / (( ) ( / 2) )m mΓ ∆Ω + Γ  in AIm( )mγ  and 
2

Amγ  of Eqs. (10) with 

Am mΩ −Ω∆Ω = . 

We determine the output gain spectrum of the Stokes and anti-Stokes beams with and 

without the Kerr effect using Eqs. (10) and (11), as shown in Fig. 2. The Stokes and anti-

Stokes powers are normalized to the input Stokes power 1(0)P− . Without the Kerr effect, the 

lineshapes at both the Stokes and anti-Stokes frequencies are Lorentzian, as discussed above. 

However, with the Kerr effect taken into account, the lineshapes for both the Stokes and anti-

Stokes become asymmetric. The asymmetry is caused by the contribution of the Kerr effect to 

the coupling coefficients. The Kerr coefficient Kγ  is a pure real and its contribution to m
ξ  is 2 

times larger than to m
κ . This is explained physically by the nonlinear phase evolution along 

the fiber. It is also observed that the Kerr nonlinearity distorts the anti-Stokes resonance more 

than the Stokes resonance, which is due to the absence of an initial anti-Stokes beam. This 

result is consistent with the experiment results described below. 

 

Fig. 2. Frequency dependence of the Stokes/anti-Stokes gain near the R0(20) resonance at 933.8 

MHz. Stokes beam gain without (a) and with (c) the Kerr effect. Anti-Stokes gain without (b) 
and with (d) the Kerr effect. 

3. Experiment and Discussion 

In the experiment, we use a dual-module Mach-Zender Modulator (DMZM) to generate the 

probe beam. To spectrally resolve the probe beam and the pump beam separately, we generate 

a reference beam from the same laser source using a single-module Mach-Zender modulator 

(SMZM) and measured the beat signal arising from their interference. The setup is shown in 

Fig. 3. 
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Fig. 3. The experiment setup of FSBS in HNLF. DMZM, dual-module Mach-Zender 
modulator; SMZM, single-module Mach-Zender modulator; EDFA, erbium-doped fiber 

amplifier; FBG, fiber Bragg grating; FPC; fiber polarization controllers; PR, photoreceiver; 

SA, electronical spectrum analyzer. 

In greater detail, a part of the beam from the DFB laser is modulated by a DMZM 

(FTM7921ER, Fujitsu, Inc). Sinusoid signals from an electric signal generator are split into 

two sine waves with a 90° phase difference. Modulation of the two optical paths in the 

DMZM by these electrical signals results in the generation of a single sideband beam whose 

frequency is shifted from the carrier frequency by the modulation frequency. Because both the 

probe and the pump beams are generated from a same laser, their relative frequency does not 

jitter. The pump and the probe are then injected into the 2-km HNLF and interact via the 

FSBS process. Another part of the beam from the DFB laser is modulated by a SMZM (EO 

SPACE, Inc.). The bias voltage of the SMZM is set to suppress the carrier frequency and we 

filter out one of the sidebands using a fiber Bragg grating (bandwidth 0.19 nm). By shifting 

the frequency of the reference beam away from the pump beam, we are able to measure the 

Stokes and anti-Stokes signals separately. The other sideband is then amplified and goes 

through a 2-km-long single mode fiber (SMF) for path balancing, and then it is mixed with the 

pump and the probe beams. A 12-GHz fast photoreceiver is used detect the interference and 

an electric spectrum analyzer resolves the beat signal. We scan the probe beam frequency and 

measure the magnitude of the beat signal between the probe and the reference beam. In this 

way, we are able to resolve the FSBS resonance spectrum. It is desirable to increase the pump 

power as high as possible for large FSBS gain. However, once the input power reaches the 

backward SBS threshold, the intensity of the pump beam becomes depleted, thus causing the 

FSBS gain to saturate [18]. As a result, we launched a maximum pump power of 8 mW into 

the fiber, which is the measured backward SBS threshold for our HNLF. This limitation can 

be avoided using a pulse pump beam. 

The gain spectra of the first-order Stokes and anti-Stokes beams are shown in Fig. 4, 

together with the theoretical prediction of Eqs. (9) using the fiber loss α (0.76 dB/km at 1550 

nm) in solving the coupled amplitude equations. We observe a series of resonance peaks 

corresponding to the acoustic frequencies AmΩ  in the experiment from 425 MHz to 1.1 GHz 

(the discontinuity at 700 MHz is due to the fact that we used two different 90° phase shifters). 

The measured resonance frequencies show good agreement with the numerical predictions, as 

shown in Table 1, where we adjust the fiber diameter to find the best agreement. 
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Fig. 4. FSBS Stokes and anti-Stokes gain spectra for a pump power of 8 mW. Blue solid line is 
experimental results and red dashed line is theoretical simulation. 

The FSBS Stokes gain out in/G P P=  (signal output power 1( )outP P L−=  for Stokes beam 

and 1( )P L  for anti-Stokes beam, signal input power in 1( )0P P−= ) is found to be 1.32 at the 

resonant frequency of 933.8 MHz and a pump power of 8 mW, giving a gain coefficient of 

34.7 W
−1

, which agrees with the simulated prediction in Fig. 4 (c) (It is smaller than the 

predicted value given in Sec. 2 because of the fiber loss). The spectra in Fig. 4 (a) also clearly 

shows that G  is a function of the acoustic mode number for the Stokes beam, taking on its 

largest value in the gigahertz frequency range where the acousto-optical coupling is 

maximized. The linewidth is also different for different resonances, which affects the size of 
G , as discussed below. The measured largest gain appears at the frequency of 933.8 MHz 

(corresponding to mode R0(20)), agreeing with theoretical prediction. A separate calculation 

corresponding to the parameters for standard single mode fiber (SMF-28) reveals that the 

largest gain occurs for the R0(8) mode at 275 MHz with a much smaller gain (g0(8) = 8 × 10
−3

 

m
−1

W
−1

) [5], demonstrating that decreasing the core size as in our HNLF gives rise to a large 

increase in G . The fact that we observe good agreement between theory and experiment 

indicates that ignoring the difference in acoustic velocities in the core and cladding is a 

reasonable assumption. 

Table 1. Measured and calculated FSBS resonant frequencies in the HNLF. A cladding 

diameter of 127 μm is used in the calculation. 

Mode number m 11 12 13 14 15 16 17 18 

Experiment 

ΩAm/2π (MHz) 462.2 508.2 555 602.8 650 745 792.1 839.5 

Theory 
ΩAm /2π (MHz) 460.7 508.1 555.4 602.7 650 744.6 791.9 839.2 

 

Mode number m 19 20 21 22 23 24 25 26 

Experiment 
ΩAm /2π (MHz) 886.5 933.8 980.3 1026.5 1074.3 1121.3 1169.5 1216.4 

Theory 

ΩAm /2π (MHz) 886.5 933.8 981.1 1028.4 1075.6 1122.9 1170.2 1217.5 

Figure 5(a) shows the measured Stokes beam resonance around the acoustic frequency 

933.8 MHz. A Lorentz fit gives a linewidth of 7.5 MHz (full width at half maximum, 

FWHM). In this way, we measure the linewidth of the FSBS resonances in the frequency 

#138764 - $15.00 USD Received 29 Nov 2010; revised 16 Feb 2011; accepted 25 Feb 2011; published 7 Mar 2011

(C) 2011 OSA 14 March 2011 / Vol. 19,  No. 6 / OPTICS EXPRESS  5347



range from 425 MHz to 1.1 GHz. Figure 5(b) shows the dependence of BmΓ  on the acoustic 

frequency. The results are fit with a linear model given by 

 B 2π [0.004( 2π)+4.2 (MHz)]/  m mΓ = × Ω   (12) 

 

Fig. 5. (a) The power of the Stokes beam for FSBS at 933.8 MHz. Experiment data are shown 

as blue dot and black dash line is Lorentz fitting. The linewidth nearly 7.5 MHz at frequency 
933.8 MHz. (b) Measured linewidth (blue dot) of the FSBS resonances from 425 MHz to 1.1 

GHz, linear fitting is shown in red line. 

The linewidth of the FSBS resonances depend on the various acoustic damping 

mechanisms in the HNLF, mainly depend on the material, structure and deformations. We 

classify the contributions to the linewith by an inhomogeneous term, a viscose damping term, 

and a surface damping term [19] 

 
B inhomo viscosity surface ,mΓ = Γ + Γ + Γ   (13) 

respectively. The inhomogeneous term comes from structural non-uniformities along the fiber 

length, which plays an important role in the 2-km HNLF. The variation of the fiber diameter 

δφ  causes a change in the acoustic mode frequency and hence the resonance linewidth. As 

shown in Ref. [5], inhomo ( / ) mδφ φΓ = Ω . The first term in Eq. (12) accounts for this effect. The 

coefficient of the linear parameter is consistent with the specified variation in the fiber 

cladding diameter of ± 0.5μm. 
The bulk viscose damping term viscosityΓ  is inversely related to the viscose lifetime viscosityτ  

of acoustic phonons [20]. This term is likely to be a small contribution to the total linewidth in 

HNLFs [5,19], giving a contribution of the order of 100 kHz. Therefore, we neglect this term 

for our HNLF. 

Damping due to acoustic absorption at the surface between the cladding and the plastic 

fiber jacket is another important contribution in our HNLF. For protecting the fiber, there is a 

soft polymer coating between the cladding and air, which strongly damps acoustic vibrations 

[5]. Damping of the acoustic radiation as it passes into the polymer coating only depends on 

the radial displacement, which is nearly constant for higher-frequency modes [19,21]. As a 

result,  

surfaceΓ  is nearly constant, and is determined to be 2π × 4.4 MHz from the experimental fit. 

Based on this scaling, we conclude that the dominant contribution to the linewidth is 

structural non-uniformities along the fiber and surface damping due to the fiber jacket. 

4. Conclusion 

We observe FSBS in a 2-km-long HNLF pumped by a monochromatic pump beam with a 

power of 8 mW. Multiple acousto-optical resonant peaks are observed for both the first-order 

Stokes and the anti-Stokes beams. The resonant frequencies of the FSBS process for the 

Stokes beams extend from ~80 MHz (corresponding to R0(2)) to 1.1 GHz (corresponding to 
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R0(23)), limited by the bandwidth of our detection method. Our results agree well with the 

predicted frequencies of the guided acoustic modes trapped in the fiber. The largest FSBS 

gain coefficient of 34.7 W
−1

 is obtained for the 20th-order resonance at the frequency of 933.8 

MHz. The observed FSBS gain profile is well explained by the theory of the field evolution in 

the HNLF, where both FSBS and the Kerr effect are considered. The analytical solutions for 

the coupled equations are obtained, which explains the observed asymmetric resonances and 

is especially pronounced for the anti-Stokes resonances. We also find a linear increasing trend 

of the linewidth for the FSBS resonances, which is accounted for by contributions from the 

structural non-uniformities along the fiber and surface damping. The results open up new 

possibilities for FSBS in standard fibers for applications such as slow and fast light [8]. 
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