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Abstract—Most existing datasets for sound event recognition
(SER) are relatively small and/or domain-specific, with the excep-
tion of AudioSet, based on over 2M tracks from YouTube videos
and encompassing over 500 sound classes. However, AudioSet is
not an open dataset as its official release consists of pre-computed
audio features. Downloading the original audio tracks can be
problematic due to YouTube videos gradually disappearing and
usage rights issues. To provide an alternative benchmark dataset
and thus foster SER research, we introduce FSD50K, an open
dataset containing over 51k audio clips totalling over 100h of au-
dio manually labeled using 200 classes drawn from the AudioSet
Ontology. The audio clips are licensed under Creative Com-
mons licenses, making the dataset freely distributable (including
waveforms). We provide a detailed description of the FSD50K
creation process, tailored to the particularities of Freesound
data, including challenges encountered and solutions adopted.
We include a comprehensive dataset characterization along with
discussion of limitations and key factors to allow its audio-
informed usage. Finally, we conduct sound event classification
experiments to provide baseline systems as well as insight on the
main factors to consider when splitting Freesound audio data for
SER. Our goal is to develop a dataset to be widely adopted by
the community as a new open benchmark for SER research.

Index Terms—audio dataset, sound event, recognition, classifi-
cation, tagging, data collection, environmental sound.

I. INTRODUCTION

SOUND event recognition (SER) is the task of automati-
cally identifying the sounds occurring in our daily lives,

assigning a label within a target set of sound classes.1 SER has
gained increasing attention in the past few years, becoming a
key component in applications related to healthcare [1]–[3],
urban sound planning [4], bioacoustics monitoring [5]–[7],
multimedia event detection [8], large-scale event discovery
[9], surveillance [10, 11], or noise monitoring for industrial
applications [12]. The SER research community has grown
substantially over the last decade, as evidenced by the increas-
ing traction of the Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge and Workshop [13],
which promote research and evaluation on common publicly
available datasets. Early stage works in SER relied on fea-
ture engineering approaches using standard machine learning
classifiers such as support vector machines [14], Gaussian
mixture models [15] or matrix factorization techniques [16].
This initial trend was followed by the rapid adoption of deep
learning approaches using fully connected neural networks
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1We shall use the expression sound event recognition broadly to encompass
both sound event classification or tagging (SET)—a task requiring to identify
what sound event classes are present in an audio clip, regardless of start time
and end time—as well as sound event detection (SED)—a task requiring to
localize and identify sound events in an audio clip with start and end times.

[17], convolutional neural networks (CNN) [18], recurrent
neural networks (RNN) [19], or combinations thereof [20].
To allow successful exploitation of the data hungry deep
learning approaches, it became evident the need for new,
larger, and more comprehensive data resources for develop-
ment and evaluation of SER models. In contrast, previous SER
datasets were of a more limited size and coverage (e.g. [21]–
[23]). In the current paradigm, datasets in SER are crucial,
similarly as in computer vision [24], as exemplified by the
significant breakthroughs that ImageNet has allowed for image
recognition [25].

To address the lack of large datasets in SER, AudioSet was
released in 2017. AudioSet consists of ≈2.1M audio clips
manually labeled using 527 classes [26]. Its unprecedented
size, coverage and diversity represented a milestone that has
transformed SER research. However, in our view, AudioSet
has the major shortcoming of not being an open dataset,
as we explain next. Specifically, AudioSet is composed of
audio tracks taken from YouTube videos, which are not freely
distributable due to YouTube Terms of Service. This is the
reason why AudioSet is released as a dataset of audio features
(instead of audio waveforms),2 which are extracted at a time
resolution of 960ms using a pre-trained model. This limits the
adoption and flexibility of a number of SER methods. For
this reason, some researchers opt to download and use the
audio tracks from the original YouTube videos, despite the
intrinsic issues entailed in this process. These issues include
the burden of downloading a massive amount of data from a
non-official release, and the fact that the constituent videos are
gradually disappearing. More specifically, videos can become
unavailable due to a variety of reasons such as deletions
of videos or user accounts, privacy issues, copyright claims,
or country-dependant availability. In an attempt to download
the AudioSet audio tracks, we could download 18,205 from
20,371 evaluation segments, and 19,862 from 22,160 balanced
train segments—a loss of 10.6% and 10.4% respectively.3 The
fact that the amount of evaluation and train clips available
decreases over time with non-negligible differences limits
AudioSet suitability for systems’ benchmarking.

After AudioSet, several efforts in dataset creation for SER
have been made (e.g. [27]–[34]). Nonetheless, these recent
datasets are task/domain-specific, or of a much more limited
coverage (e.g., usually featuring few tens of classes), and
some of them are composed of synthetic audio material.
This contrasts with the computer vision field, where major
efforts have been made to collect large and general-purpose

2https://research.google.com/audioset/download.html
3Data from May 11th, 2020.
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datasets as alternatives to ImageNet (e.g. [35]–[37]), allowing
benchmarking on complementary recognition problems. Thus,
the SER field lags far behind in terms of dataset availability,
and we believe that open and sustainable dataset creation ini-
tiatives are needed to foster SER research and, more generally,
machine listening research. In addition, we think it is important
to document at length the main aspects of data collection
and curation when releasing a dataset—a common practice in
computer vision [25, 37] that has also recently been proposed
in audio research [38]. Making this information available
allows researchers to incorporate data-informed decisions in
the design of learning pipelines and in the analysis of results,
and can also serve as inspiration for potential dataset creators.

To address these issues and foster SER resesarch, in this pa-
per we introduce FSD50K (Freesound Dataset 50k): a dataset
containing 51,197 audio clips totalling over 100h of audio
manually labeled using 200 classes drawn from the AudioSet
Ontology. The audio clips are gathered from Freesound and
are licensed under Creative Commons (CC) licenses, which
allow easy sharing and reuse, thereby making the dataset freely
distributable (including audio waveforms). To our knowledge,
this is the largest fully-open dataset of human-labeled sound
events, and the second largest after AudioSet.

A. Contributions

Our contributions are as follows:
1) a human-labeled open dataset primarily designed for the

development and evaluation of multi-label sound event
classification systems, but that also allows a variety of
sound event research tasks,

2) a detailed description of the FSD50K creation process
tailored to the particularities of Freesound data, includ-
ing challenges encountered and solutions adopted (Sec.
III),

3) a comprehensive characterization of the dataset along
with discussion of limitations and key factors to allow
its audio-informed usage (Sec. IV), and

4) a set of sound event classification experiments to provide
baseline systems as well as insight on the main factors
to consider when splitting Freesound audio data for SER
tasks (Sec. V).

The information here presented is useful to researchers
using FSD50K (and in general using Freesound data for
machine learning) as it allows making data-informed decisions
for design choices of machine listening systems. It may also
be useful for researchers working on the creation of large-
vocabulary datasets. In addition to the audio waveforms and
ground truth, FSD50K includes metadata used during the
creation process as well as Freesound metadata for the clips
forming the dataset (Sec. IV-A). All these resources can be
downloaded from Zenodo.4 Likewise, code5 for baseline ex-
periments and a companion site6 for FSD50K is also available.
The companion site allows exploring the audio content of
FSD50K as well as reporting labelling errors.

4https://doi.org/10.5281/zenodo.4060432
5https://github.com/edufonseca/FSD50K baseline
6https://annotator.freesound.org/fsd/release/FSD50K/

II. RELATED WORK

This Section discusses the most important datasets for sound
event tagging (SET),1 listed in Table I. The datasets are
selected based on number of Google Scholar citations, as
well as popularity and/or size for the most recent ones. For
comparison, the proposed FSD50K is listed at the bottom.
The basic common aspect in SET datasets is that labels
are provided at the clip-level (without timestamps), usually
regarded as weak labels. This contrasts with sound event
detection (SED) datasets, where sound events are labeled
using also start and end times (usually regarded as strong
labels). We denote multi-class datasets (m-c) as datasets where
each example is labeled with only one class label, which are
sometimes denoted as single-label datasets. In a multi-label
dataset (m-l), in contrast, each example can be labeled with
one or more class labels.

A. Datasets Released Before AudioSet
Before the release of AudioSet, the most widely used

datasets for SET have been UrbanSound8K [39], ESC-50
[22], and to a lesser extent CHiME-home [21]. All of them
feature short audio chunks and a total duration of less than
10h. Curiously, the two former are one of the few multi-
class balanced datasets in SET—most datasets are unbalanced
and/or multi-label—and also the most widely used (besides
AudioSet). UrbanSound8K and CHiME-home count with a
significant amount of clips per class; nonetheless, part of this
abundance comes from the fact that many clips are actually
time slices coming from the same original recording. For
example, UrbanSound8K is sourced from 1302 Freesound
clips. ESC-50 features a large vocabulary (50 classes) when
compared to other datasets from 2014/2015, but it suffers from
data scarcity (only 40 clips/class). Common to all mentioned
datasets is that they provide a k-fold cross validation setup—a
practice that tended to disappear after the AudioSet release.

B. AudioSet
Google’s AudioSet is the largest dataset of sound events

released to date, consisting of ≈2.1M audio clips manually
labeled using 527 classes of the AudioSet Ontology [26].
AudioSet is the first dataset to put emphasis on general-
purpose SER, enabling sound event recognizers to describe a
large variety of sound classes, thus aiming at the transcription
of most everyday sounds. AudioSet is split into a train and
an evaluation set, and it is highly imbalanced, with some
classes being particularly common (e.g. Music and Speech)
while others are much more scarce (e.g. Toothbrush). The
public release provides a balanced train partition of 22,176
clips in addition to the full unbalanced train set. While the
dataset is manually labeled in full, its unprecedented size and
coverage comes at the expense of a less precise labeling. The
amount of labeling error is estimated at above 50% for ≈18%
of the classes.10 Recently, strong labels for a small portion of
AudioSet (≈81k clips) were released [40].

7http://spandh.dcs.shef.ac.uk//projects/chime/
8https://multimediacommons.wordpress.com/yfcc100m-core-dataset/
9https://wp.nyu.edu/sonyc/
10See https://research.google.com/audioset/dataset/index.html for details on

how the quality is estimated, accessed 25th June 2020.
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TABLE I
A SELECTION OF MOST RELEVANT DATASETS FOR SET. m-c AND m-l CORRESPOND TO MULTI-CLASS AND MULTI-LABEL

dataset clips clip length duration classes task source domain/task

UrbanSound8K [39] (2014) 8732 ≤4s 8.8h 10 bal m-c Freesound urban sounds
ESC-50 [22] (2015) 2000 5s 2.8h 50 bal m-c Freesound
CHiME-home [21] (2015) 6138 4s 6.8h 7 unbal m-l CHiME7 domestic sounds
AudioSet [26] (2017) ≈2.1M ≈10s ≈5731h 527 (un)bal m-l YouTube
FSDnoisy18k [32] (2019) 18,532 0.3-30s 43h 20 unbal m-c Freesound noisy labels
FSDKaggle2019 [33] (2019) 29,266 0.3-30s 103h 80 unbal m-l Freesound/YFCC100M8 noisy labels & domain mismatch
SONYC-UST-V2 [34] (2020) 18,510 10s 51h 31 unbal m-l SONYC9 urban sounds
FSD50K (2020) 51,197 0.3-30s 108h 200 unbal m-l Freesound

C. Datasets Released After AudioSet

After AudioSet, some of the released datasets for SET are
task-dependent, designed to enable the study of particular
problems. Examples include FSDnoisy18k [32] or FSDK-
aggle2019 [33], focused on learning in conditions of noisy
labels and/or acoustic mismatch. Other datasets are domain-
specific, with a vocabulary focused on a specific scope, such
as SONYC-UST-V2 for urban sounds [34]. Compared to
pre-AudioSet datasets, these are slightly larger, especially in
terms of duration as they feature longer clips (sometimes of
variable length), but also in terms of vocabulary. In addition,
they are unbalanced, and the default data split transitioned
to a development/evaluation (or train/test) separation. Lastly,
a recent large-vocabulary dataset with a substantial amount
of data is VGGSound [41], an audio-visual dataset consist-
ing of ≈200k video clips from YouTube encompassing 300
classes. However, VGGSound presents several shortcomings
for SET. The focus is put on audio-visual correspondence
since the dataset is created mostly through automatic computer
vision techniques—hence some classes have a clear visual
connotation, e.g., people eating noodle. Also, while the dataset
is singly-labeled (one machine-generated label per clip), the
authors recognize that clips can contain a mixture of sounds.
Missing labels are a form of label noise found to impact sound
recognizers [42]. While measures can be taken to mitigate their
effect on training, in evaluation they can lead to misleading
results—an issue that we specifically address in FSD50K
(Sec. III-G). In addition, VGGSound suffers from the intrinsic
problems of being based on YouTube (Sec. I).

To our knowledge, all datasets in Table I are labelled man-
ually (except a portion of FSDnoisy18k and FSDKaggle2019
purposely included for the study of noisy labels). FSD50K is
a superset of the human-labeled portions of FSDnoisy18k and
FSDKaggle2019, except for a few audio clips that have been
discarded during FSD50K’s curation process.

III. DATASET CREATION

A. Design Criteria

As design criteria, we set three basic goals and another three
specific goals. The basic goals are: i) the dataset must be open
and fully distributable, ii) it must contain a large vocabulary
of everyday sounds, and iii) it must be expandable in terms
of data and vocabulary. To fulfil these basic goals, we turn to
Freesound as a source of data, and to the AudioSet Ontology as
a vocabulary to organize the data. Not only do these resources
feature a large amount of data and classes, respectively, but
Freesound is constantly growing through user uploads, and

the ontology is large and was designed to be expandable. In
addition, we set three specific goals related to the labeling of
the dataset and to the emphasis put on the evaluation set.

1) Weak Labels: The motivation to label FSD50K with
weak labels (i.e., at the clip-level) is that gathering them
is simpler, less time consuming and less ambiguous than
determining events’ onset/offset (i.e., strong labels). Weakly
supervised learning has demonstrated effectiveness to learn
sound event recognizers, both for classification and detection
[43]. Nonetheless, using weak labels imply certain limitations
on training and evaluation, which we highlight in Sec. IV-B.

2) Label Quality and Dataset Size: The sound event recog-
nition (SER) field has witnessed a transition away from small
and exhaustively labeled datasets (e.g., [21, 22, 39]), in favour
of larger datasets that inevitably include less precise labelling,
such as AudioSet [26]. This occurs mainly because it is not
feasible to exhaustively annotate large amounts of sound event
data. In our case, we want to seek a trade-off by prioritizing
label quality while ensuring a certain amount of data. Yet,
label noise problems also appear in FSD50K, as in any sound
event dataset of a certain size (Sec. IV-C).

3) Emphasis on Evaluation Set: This is perhaps the design
criteria that mostly determines the creation of FSD50K. An
evaluation set defines the target behavior in a recognition
task, which makes it possibly the most critical part of a
dataset. Consequently, having a comprehensive, diverse, re-
liably annotated, and real-world representative evaluation set
is important for meaningful systems’ benchmarking. The im-
portance of reliable evaluation sets is highlighted by recent
research in computer vision which focuses on improving the
evaluation and/or validation sets of widely-used datasets—
[44] for CIFAR-10/-100 [45]; and [46, 47] for ImageNet [48].
In addition, alternative learning paradigms to the traditional
supervised learning (using reliably-labelled datasets) start to be
promising nowadays. In particular, significant progress is being
made in the development of sound event recognizers with
noisy supervision [32, 42] or self-supervision [49]–[51]. While
these alternatives can minimize the problems of labelling
inaccuracies in the development set, or the need for a labeled
development set at all, a carefully curated evaluation set is still
critical for benchmarking. Relatedly, abundant data resources
for training are already available, either from AudioSet, or
directly from web audio repositories such as Freesound or
Flickr (provided appropriate learning strategies are used). By
contrast, to our knowledge, large-vocabulary, carefully-curated
evaluation benchmarks are rare—the most prominent being
AudioSet’s evaluation set, which suffers from issues of label
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Fig. 1. Overall process of the creation of FSD50K. The process starts from Freesound and the AudioSet Ontology. Stages in green involve automatic data
mining, stages in orange correspond to manual annotation tasks, and stages in blue involve data processing to shape the dataset.

noise, stability and/or openness (Secs. I and II). By prioritizing
the curation of the evaluation set, we contribute to fill this gap.

To tackle the task of labelling the dataset, two approaches
are considered: i) manual annotation and ii) semi-automatic
methods based on Active Learning (AL). Manual annotation
is the conventional approach to dataset labelling, as done in
AudioSet [26] or ImageNet [48]. While this option is laborious
and time consuming, when done properly, we believe it leads
to more reliable results than involving automatic methods in
the annotation loop. As an alternative, AL aims at maximizing
performance with limited labelling budget by selecting the
most informative data for the model to learn. Usually, AL
is based on an iterative process involving humans in the
loop where automatic methods select the samples to annotate.
Often, portions of unlabeled data are automatically labelled
via propagation of human-provided labels to similar examples,
or with semi-supervised learning approaches. Recent works
studying AL for SER [52]–[55] report reduced annotation
effort with good performance which, in principle, makes AL
appealing for dataset creation. However, these works focus on
recognition tasks with less than a dozen classes, and most of
them deal with single-label classification and use pre-labeled
datasets, where the human annotation step is simulated by a
simple assignment of the existing ground truth. Extending the
methods to a setting like ours is considered out of the scope
of this work (albeit an interesting topic for future research).

In order to obtain a high-quality labelling, and being aware
of the amount of data to annotate and the budget available, we
decide to annotate the dataset manually, similarly as done with
AudioSet. While this means a higher human effort, it presents
two advantages. First, manually annotating FSD50K gives us
a deeper insight into the data that would not have been gained
otherwise. Second, it allows us to have a greater control of the
labels gathered, as well as to specify not only the labels but
also an estimate of sound predominance (Sec. III-E). Obtaining
a set of labels as reliable as possible for this first release is a
more favorable starting point for potential future expansions,
which could rely on (semi-) automatic methods to scale up
more efficiently at the expense of label noise.

B. Overall procedure
The overall process of the creation of FSD50K is illustrated

in Fig. 1, starting from Freesound and the AudioSet Ontology,
and ending with FSD50K. In every intermediate stage, we
progressively filter out a quantity of audio clips and classes in
the vocabulary. Each stage is described in the next subsections.

C. Data acquisition
The starting point for the creation of FSD50K is an abundant

source of audio clips, a vocabulary to annotate them, and

an infrastructure where they can be loaded and annotation
tasks can be carried out. These items correspond to Freesound,
AudioSet Ontology and Freesound Annotator respectively.

1) Freesound: Freesound11 is an online collaborative audio
clip sharing site [56], with more than 10 million registered
users and over 500,000 audio clips.12 Audio clips shared
in Freesound cover a wide variety of audio content, from
music samples to environmental sounds, human sounds or
audio effects, to name a few. In addition, the users who
upload the clips also provide metadata, e.g., a title, several
tags (at least three per clip), and textual descriptions. We
use the user-provided tags in the creation of FSD50K (Sec.
III-D). Since Freesound is collaboratively contributed, it is
also very heterogeneous in terms of data origin, recording
equipment, and acoustic conditions. All of the content is CC-
licensed, which conveniently allows distribution and reuse.
Several datasets containing Freesound audio have been widely
used by the research community [22, 32, 33, 39, 57, 58],
showing its usefulness for dataset creation.

2) AudioSet Ontology: AudioSet Ontology consists of 632
sound event classes arranged in a hierarchy with a maximum
depth of 6 levels [26].13 The set of classes covers a diverse
range of everyday sounds, from human and animal sounds,
to natural, musical or miscellaneous sounds. Within these
main sound families, the content covered includes several
facets. The predominant classes correspond to sound events
produced by physical sound sources, but there are also some
generated by sound production mechanisms (e.g., deformation
or impact of materials), and other classes that do not corre-
spond to sound events. Each entry in the ontology includes
a textual description among other fields.14 Note that the
AudioSet vocabulary is a subset of 527 classes drawn from
the ontology [26]. We use the ontology because it is the
most comprehensive vocabulary of everyday sounds available,
which makes it convenient to cover Freesound’s heterogeneity.
Yet, upon careful inspection of the ontology, we realize that
improvements could be made in order to make it more suitable
for organization of Freesound. However, this task is left out
of the scope of this work. For FSD50K, we focus on a subset
of the ontology oriented to most common physical sources,
and less oriented to ambiguous or less represented classes in
common everyday situations. Appendix A clarifies relevant
ontology-related nomenclature used in this paper (such as leaf
or intermediate nodes).

11https://freesound.org/
12Data from August 1st, 2021.
13It can be explored at https://research.google.com/audioset/ontology/index.

html. Sometimes we shall refer to the AudioSet Ontology as the ontology.
14https://github.com/audioset/ontology

https://freesound.org/
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3) Freesound Annotator: Freesound Annotator15 (FSA) is
a website that allows the collaborative creation of open audio
datasets based on Freesound content. It serves mainly two
goals: the management and exploration of datasets, and the
creation and verification of annotations. Originally released
on 2017 [59], Freesound Annotator has been the object of
continuous development. It started by providing basic proto-
types for exploring a taxonomy of audio classes and validat-
ing automatically generated annotations. Additional features
were incorporated progressively, including annotation tools
and quality control mechanisms (see Secs. III-E and III-G).
Monitoring tools allow inspection of a dataset progress as well
as debugging capabilities. FSA is an open-source project.16

D. Candidate Labels Nomination

We started building FSD50K by automatically populating
the classes of the ontology with a number of candidate
audio clips from Freesound. Candidate clips were selected by
matching user-provided tags in Freesound to a set of keywords
associated with every class. The goal was to automatically
compile a list of candidate labels per clip, indicating potential
presence of sound events. The process consisted of two steps.

First, we compiled a list of keywords for almost every class.
These are terms related to the class label that are likely to be
provided by Freesound users as tags when describing audio
clips. Suitable keywords were determined by considering class
names and descriptions provided in the ontology, and obtaining
the most frequent Freesound tags that co-occur with each
target class label. After compiling a first version of the per-
class keywords, we manually identified a few classes with very
low precision due to pathological inclusion of false positives
(e.g., in the Turkey class many clips were recordings made
in the Eurasian country, instead of containing sounds of the
large bird). To minimize this issue, a refinement process was
performed by blocking some tags (e.g., “turkish” or “Istanbul”
for Turkey). As an example, the keywords for the Meow class
are: “meow”, “meowing”, “mew”, “miaow”, and “miaou”.

Second, each class was automatically populated with the
corresponding Freesound clips. We use the compiled lists of
keywords as a mapping between clips in Freesound and class
labels in the ontology. Thus, for each clip, all user-provided
tags are examined and, when a tag matches a keyword, the clip
becomes a candidate clip for the dataset, and the corresponding
class label is nominated as a candidate label for the clip. This
process was done by using the Freesound API.17 We employ
the Porter Stemming algorithm for term normalisation to make
our matching process more robust [60].

In this way we were able to map more than 300,000
Freesound clips to the AudioSet classes. We decided to filter
out clips longer than 90s to avoid very large audio clips (this
length limit will be further reduced later on, see Sec. III-E).
No other filters were applied at this stage. This left us with
a total of 268,261 clips with an average of 2.62 candidate
labels. This label nomination system induces potential errors as

15https://annotator.freesound.org/
16https://github.com/MTG/freesound-datasets/
17https://freesound.org/docs/api/

it depends on factors such as class ambiguity and, especially,
the choices of Freesound users when providing tags. However,
it has the advantage of allowing easy and rapid retrieval for a
large variety of classes without training any classifiers.

The outcome of this stage is a list of automatically-
generated candidate labels per clip, indicating the potential
presence of sound events.

E. Validation Task

The goal of this stage is to manually validate the candidate
labels nominated in the previous stage.

1) Initial Prototype of the Annotation Tool: To this end,
we designed an annotation tool that was deployed in FSA.
Essentially, human raters are presented with a number of audio
clips and, for each clip, they must assess the presence of
a given sound class. For each class, the annotation process
consists of two phases. First, a training phase where raters
get familiar with the class by looking at its location in the
AudioSet Ontology hierarchy, the provided textual description,
and representative sound examples. Then, a validation phase,
in which raters are presented with a series of audio clips from
that class (up to 72 clips in 6 pages of 12 clips) and prompted
the question: Is <class> present in the following sounds?.
(Fig. 3 shows 3 clips within a page of the final prototype).
In this initial prototype, raters must select among “Present”,
“Not Present”, and “Unsure”, similarly as done in [26]. Along
with an audio player and its waveform, links to each clip’s
Freesound page were made available, where the original tags
and descriptions could be inspected to aid the process.

2) Internal Quality Assessment (IQA): We used the initial
prototype to run an Internal Quality Assessment (IQA) with
the goal of i) assessing the quality of the candidates produced
by the nomination system, and ii) collecting feedback about
the prototype and annotation task for improvements. The IQA
consisted of validating 12 candidates (1 page of clips) for every
class, covering all classes available. It was carried out by 11
subjects that volunteered to participate, who could leave per-
class comments through a text box. The feedback collected
in the IQA revealed that the annotation task is complex due
to factors such as ambiguity in some class descriptions or the
difficulty of annotating sound events with very high inter- and
intra-class variation.

3) Final Prototype of the Annotation Tool: Based on the
insight from the IQA, we designed the final annotation tool
(Figs. 2 and 3) which incorporates the following improvements
with respect to the previous version:

• Some AudioSet class descriptions were found to be am-
biguous, allowing multiple interpretations and generating
doubts as to the class scope. We decided to include a
list of Frequently Asked Questions (FAQs) in each
class description to help homogenize raters’ judgment and
gather more consistent annotations (see Fig. 2). The full
FAQ list is provided with the dataset.

• In some audio clips, several sound events co-existed
with different predominance or salience levels, making
the “Present” response rather ambiguous for raters. To
address this issue, we decided to split the “Present” re-
sponse into “Present and predominant” (PP) and “Present

https://annotator.freesound.org/
https://github.com/MTG/freesound-datasets/
https://freesound.org/docs/api/
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Fig. 2. Screenshot of the “Training phase” page used for the validation task.

Fig. 3. Screenshot of the “Validation phase” used for the validation task.

but not predominant” (PNP), as specified in Table II.18 A
similar approach was used by Salamon et al. [39]. The
main motivation is to ease the annotation task by miti-
gating a systematic doubt. As an additional benefit, this
distinction allows to separate a subset of clips containing
mostly isolated and clean sound events (PP ratings) vs.
others featuring events from several classes and/or in
more adverse acoustic conditions (PNP ratings). This
could allow defining robustness tasks such as training
or evaluating with a subset of data of more adverse
conditions, similarly as done in [61] for sound event de-
tection (SED) or with ImageNet-A for image recognition
[62]. Further, the PP/PNP distinction can be useful for
source separation studies [63]. We note, however, that
this distinction is subjective and these ratings should be
used as a rough indication.

• To automatically assess the reliability of the submitted
responses, we added quality control mechanisms such
as the periodic inclusion of verification clips. Whenever
the response for one of these clips is wrong, the responses
submitted in a given time span are discarded—a common
practice in crowdsourcing platforms.

• To further ensure high quality annotations, we decided
to require inter-annotator agreement. More specifically,
each candidate label is presented to several raters until
two different raters agree on a response type. Once an
inter-annotator agreement is reached, the label is consid-
ered as ground-truth and it is no longer presented to other
raters. A similar practice is done in [21, 27].

• To facilitate the localisation and recognition of sound

18Hereafter, we shall use “Present” to refer to the union of PP and PNP.

events within the audio clips, we added spectrogram vi-
sualizations, thereby easing the annotation task [64] (the
initial prototype featured less-informative waveforms).

• Some audio clips can present highly variable loudness,
which can be burdensome for the rater and may affect
annotation quality. To mitigate this problem, we nor-
malize the loudness of the sound files following the
recommendation EBU R-128 [65].

• To select which audio clips to present to each rater, we
adopt a prioritization scheme that ranks clips according
to two criteria: i) previously rated label-clip pairs that
have not yet reached inter-annotator agreement are pri-
oritized to obtain ground truth labels; ii) short clips are
prioritized over long ones as shorter clips have a higher
label density—considered more informative for learning.

Beyond these improvements, we took two additional mea-
sures to improve annotation efficiency. First, the selection of
candidates in a number of classes had a very low precision
possibly due to sub-optimality of the nomination system. Thus,
we decided to discard classes with a rate of “Not Present”
responses above 75%, as well as classes with very few can-
didates and others deemed highly ambiguous for annotation.
This left a total of 395 sound classes (a reduction of ≈35%).
Second, participants reported that the initial duration limit of
90s was too long for human validation, and a potential cause
for fatigue. In addition, the supervision given by weak labels
applied to such large lengths is rather vague. Therefore, we
decided to discard clips longer than 30s.

4) Annotation Campaign: With the final annotation tool,
we launched an annotation campaign to validate the candidate
labels at scale. Given that some classes were found to be
much more difficult to annotate than others, we decided to
gather annotations using both crowdsourcing and hired raters.
We divided the classes according to an estimated level of
difficulty, based on feedback from the IQA. Table III lists
the annotation strategies adopted for each subset of classes.
Crowdsourcing consists of gathering validations contributed
by any voluntary participant. We made the classes of easy and
medium difficulty publicly accessible from FSA,19 which was
promoted in Freesound forums and social media. The most
difficult classes, where annotation experience was important
to provide reliable responses, were kept private. They were
validated by a pool of hired raters who also complemented
the crowdsourcing validations in the rest of the classes.

In total, over 350 raters contributed, including voluntary
participants, six hired raters, and the first three authors of
this paper. The hired raters were subjects with background
in audiovisual engineering, including mostly MSc and PhD
students from our group, with self-reported healthy hearing.
We opted for a small pool of raters in order to have more
control over the annotation process and to obtain annotations
that are as consistent as possible. We recognize this may
induce a certain bias, but we rather have consistent annotations
with agreed bias than a certain lack of consistency likely re-
sulting from crowdsourcing annotations for the difficult classes
(i.e., label noise). To this end, the hired raters were trained

19https://annotator.freesound.org/fsd/annotate/

https://annotator.freesound.org/fsd/annotate/
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TABLE II
RESPONSE TYPES FOR THE VALIDATION TASK

Response type Meaning
Present and The type of sound described is clearly present and predominant.
predominant (PP) This means there are no other types of sound, with the exception of low/mild background noise.

Present but not The type of sound described is present, but the audio clip also
predominant (PNP) contains other salient types of sound and/or strong background noise.

Not Present (NP) The type of sound described is not present in the audio clip.

Unsure (U) I am not sure whether the type of sound described is present or not.

TABLE III
ANNOTATION STRATEGIES IN THE VALIDATION TASK

class difficulty example classes annotation strategy

easy Bark 77 crowdsourcing & hired annotators
medium Piano 100 crowdsourcing & hired annotators
difficult Tearing 218 hired annotators

and closely monitored by the authors, discussing doubts and
agreeing on the best course of action. The list of FAQs
were gradually extended as more insight was obtained. For
consistency, raters were asked to validate groups of related
classes (e.g., sibling categories), so they could get familiar with
specific sections of the ontology [66]. They were instructed
to perform the task using high-quality headphones in a quiet
environment, and taking periodic breaks to mitigate fatigue.
During the campaign, the hired raters acquired solid expertise
on the annotation task and a deep knowledge of the ontology.
Therefore, we consider them experts for this task.

The outcome of the annotation campaign was 51,684 clips
considered valid for the dataset, that is, with at least one
“Present” label. All the “Present” labels amount to 59,981, all
of them being the result of inter-annotator agreement, except
3390 which include labels with: i) only one PP rating and one
PNP rating (and nothing else). This can be considered inter-
annotator agreement at the “Present” level; ii) only one PP
rating (and nothing else); iii) only one PNP rating (and nothing
else). The two latter do not meet our definition of ground truth
and could be more prone to errors, but were still considered
to slightly increase the amount of data. It must be noted that
the set of labels at this point comes from the validation of
candidate labels proposed by a simple nomination system,
which ultimately relies on the user-provided Freesound tags.
Hence, it is to be expected that some sound events are not
covered by the user-generated tags, or they are not proposed
by the nomination system, leading to missing “Present” labels,
a common phenomenon in large sound event datasets [42, 67].
That is, the resulting pool of audio clips have labels that
are mostly correct (estimated at 94.3% in Sec. IV-C), albeit
potentially incomplete which is problematic in evaluation. To
address this issue, after splitting the data into development
and evaluation sets (Sec. III-F), the latter is refined using
another annotation tool (Sec. III-G). We define correct label as
a label accompanying an audio clip that accurately identifies
a corresponding sound source in the clip. We define complete
labels for an audio clip as the set of labels that identify all the
target sound sources in the clip as per a predefined vocabulary.

F. Data Split

The input to this stage is a pool of 51,684 audio clips
with mostly correct labels (albeit potentially incomplete). The
goal is to split the data into two subsets: development and
evaluation. The development set will be used for training and
validation. The evaluation set will be used for system bench-
marking after exhaustive annotation. As stated in Sec. III-A,
the evaluation set is our priority. A high quality evaluation set
must be comprehensive, varied, and representative [68], while
being free from contamination from the development set in
order to allow testing models’ generalization capabilities.

1) Split Criteria: We set four criteria for the split.
Non-divisibility of uploaders. The issue of contamination

must be considered when splitting audio data, especially if
portions of the data share a common pattern that brings
acoustic similarity among its constituents. In Freesound, audio
content is uploaded by users (in the following, uploaders). The
uploaders can be very diverse: some are small—they upload a
small number of audio clips (e.g., up to only few tens)—while
other uploaders contribute with hundreds of clips. In the latter
case, it can happen that some of the uploaded clips share the
same sound source and/or physical location and/or recording
gear (e.g., several notes of the same music instrument or
vocalizations of the same pet). If some of these recordings are
used for training and others for evaluation, their similarity may
lead to overly optimistic performance, reflecting the classifier’s
ability to overfit development examples. As a result, this classi-
fier may suffer from performance drop when tested on unseen
data. This issue can be called weak contamination between
development and evaluation, although, for simplicity, we will
refer to it as contamination hereafter.20 This phenomenon has
been detected in computer vision benchmarks like CIFAR-10
and CIFAR-100 [44]. Another example of this in the field of
music recognition is the denominated “album effect” [69, 70]
or “artist effect” [71]. To avoid this issue, we make sure
that all the content of each uploader is allocated either in
the development or evaluation set. By doing this we assume
that the evaluation performance reflects the model’s ability to
generalize to new audio material and recording conditions.

Small uploaders for evaluation. To obtain a varied eval-
uation set, it seems reasonable to allocate the content from
small uploaders as it guarantees a higher diversity of sound
sources, acoustic environments and recording equipment. In
addition, a closer look at the Freesound data distribution
revealed that recordings uploaded by small uploaders tend to

20This should not be confused with data leakage, which happens when the
same (not similar) examples are used for both training and evaluation.
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be slightly longer. It can therefore be expected that, in general,
these longer recordings tend to contain more sound events
when compared to shorter clips—a considerable portion of
Freesound consists of short clips of few seconds featuring a
single event. Under this assumption, longer recordings would
be more real-world representative (see Sec. IV-B). Also, this
is a more interesting content to further annotate exhaustively,
and also with timestamps to allow future SED evaluations.

A coarse class distribution is enough. A fine-level split
carefully matching a target class distribution is not needed at
this point, as during the exhaustive labelling of the evaluation
set we expect some classes to grow (Sec. III-G). This will
create an imbalance that will need to be compensated.

Focus on leaf nodes. Among the classes available at this
point, we focus on the subset of 113 leaf nodes with more than
100 clips as they are considered the most important classes.

2) Split Method: Given the many constraints, off-the-shelf
methods such as random sampling, iterative stratification [72]
or combinatorial optimization algorithms like knapsack prob-
lems [5, 73] are not well suited. Therefore, we implement an
ad hoc approach consisting of iteratively allocating uploaders’
content to the evaluation set after sorting them appropriately.
First, we compute a score per uploader u as:

scoreu = n labelsumax +
1

Ku

Ku∑
k=1

n labelsuck , (1)

where n labelsumax is the maximum number of labels provided
by the uploader u in any class, n labelsuck is the number of
labels provided by u in the class ck, and Ku is the number
of classes touched by u (i.e., those to which u contributes).
Uploaders are sorted in ascending score order and the content
of low-score uploaders is transferred first. With the first term
we prevent uploaders with abundant content concentrated in
one specific class, and with the second term preference is
given to users with low average number of labels per class for
diversity. We found out that, by splitting the target 113 leaf
nodes, some content corresponding to the remaining classes is
automatically allocated due to the uploaders contributing also
to them. This content is deemed sufficient as a fine-level class
distribution is not the target at this point. We then proceed to
allocate data to the evaluation set following the process shown
in Algorithm 1. We traverse the C = 113 classes starting from

Algorithm 1: Data allocation to evaluation set
Data: Empty evaluation set per-class

E = {eci = 0}Ci=1, uploaders ranking u
1 for class ci ∈ C do
2 get current evaluation target tci
3 while eci < tci do
4 get next uploader u in ranking u with data in ci
5 eci ← eci + data from u in ci
6 for class ck ∈ Ku do
7 eck ← eck + data from u in ck
8 end
9 end

10 end
Result: A candidate evaluation set

the least-represented ones since they have less flexibility for
data allocation. For each class ci, we progressively allocate
content from the ranked uploaders u until a target amount
of data tci is reached. tci is proportional to the total class
label count, and rectified to lie in the range from 50 to 100
labels per class. By default, the maximum uploader size per
class ci (i.e., the maximum number of clips that one uploader
u is allowed to contribute to ci) is set to 0.1tci . Thanks
to the proposed sorting, uploaders in the evaluation set do
not reach such a maximum in the majority of classes (they
often provide one single clip)—if they do, excess clips are
discarded in most cases. However, due to the high uploader
diversity, the maximum uploader size had to be increased in
a few exceptions. Using the proposed scheme, we processed
all the 7229 uploaders and we allocated 2794 of them to the
evaluation set, totalling 11,466 clips.

The result is two pools of clips disjoint in terms of upload-
ers: a candidate development set and a candidate evaluation
set. The latter is exhaustively labeled in the refinement task.

G. Refinement Task

As mentioned in Sec. III-E, in some clips, the current label
sets could be an underrepresentation of the audio content,
biased by the idiosyncrasies of the labeling pipeline. When
evaluating classifiers’ predictions against these incomplete
label sets, classifiers can be penalized when predicting a
correct label that happens to be missing from the ground truth.
To address this issue, we refine the labels in the evaluation set.
The goal is to obtain an exhaustive labelling, that is, a labelling
as close as possible to the correct and complete transcription
of the audio content (for the considered vocabulary of 395
classes).

1) Annotation Tool: We designed and implemented an
annotation tool that allows two subtasks: i) to review the
existing labels, and ii) to add missing “Present” labels. The
subtask of adding missing “Present” labels has a considerable
complexity since audio clips can sometimes contain very
different sound events. Therefore, the success of this task relies
on two key factors: i) raters with a deep understanding of the
ontology, the agreed FAQs, and the particularities of the audio
material; ii) an interface that facilitates exploration of the large
vocabulary of the ontology. In regard to the first factor we turn
to the pool of hired raters (4 of the initial 6), who acquired a
solid expertise by extensive participation in the validation task
(Sec. III-E). As for the second factor, the refinement task we
implemented in FSA includes a tool to interactively explore
different depth levels of the ontology (Fig. 4). This tool is
based on a previous version described in [74]. A search input
box allows to quickly navigate to classes in the table, where
their hierarchical context is shown. For each class, textual
descriptions and representative sound examples are displayed.
The interface facilitates the comparison of different classes by
simultaneously displaying their information.

2) Annotation Process: Clips were presented grouped by
sound class to facilitate the task. For every class:

1) raters were instructed to go through a training phase
(same as in the validation task—see Fig. 2).
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Fig. 4. Table for exploring the ontology in the refinement task.

2) For every clip, they would first review existing labels
and modify them if needed. Then, they would add any
missing labels by exploring the ontology (Fig. 4).

Raters were instructed to provide the most specific labels
possible (typically leaf labels) as they are the most informative
type of supervision. The quality assurance practices described
for the validation task were also applied in the refinement task.
Following this procedure, each evaluation label was verified
or reviewed by between two and five different annotators
(considering both validation and refinement tasks), including at
least one expert. As a result, labels are expected to be correct
and complete in the vast majority of cases (see Sec. IV-C).
The exhaustive labelling carried out has two implications.
First, absence of labels means absence of sound events (except
human error)—a desired feature. Second, some classes are now
much more represented than before as they are prevalent but
were underrepresented, thus creating a class imbalance.

The outcome of this stage is a pool of exhaustively labeled
clips (for the considered vocabulary), the majority of which
will form the evaluation set.

H. Post-processing

This stage starts from two sets of data: a candidate de-
velopment set with correct but potentially incomplete labels,
and an exhaustively-labeled candidate evaluation set. The
vocabulary used so far comprises 395 classes, yet many of
them have little data (few tens of clips). While they may not
be adequate for deep learning approaches, they can be useful
for other practices, e.g., few shot learning [75]. Likewise, this
information can provide insight as to the specific content of
the dataset. Therefore, we provide two different formats for the
annotations in FSD50K: i) The raw outcome of the annotation
process, featuring all generated class labels without any re-
striction. These include classes with few data. We call this the
sound collection format. ii) The outcome of curating the raw

annotations into a machine learning dataset with emphasis in
sound event recognition tasks. This process involves, mainly,
merging low prior classes into their parents thus ensuring a
minimum amount of per-class data. This is what we define as
ground truth for FSD50K, with a vocabulary of 200 classes.
In Appendix B we describe the post-processing carried out
to obtain what’s finally released as FSD50K (consisting of a
set of audio clips and corresponding ground truth). The post-
processing stage includes determining FSD50K’s vocabulary,
balancing development/evaluation sets, creating a validation
set, and propagating the labels hierarchically. Further technical
details about the sound collection format can be found in
FSD50K’s Zenodo page.4

IV. DATASET DESCRIPTION

FSD50K is an open dataset of human-labeled sound events
containing 51,197 clips unequally distributed in 200 classes
drawn from the AudioSet Ontology. The dataset is freely
available from Zenodo.4 Hereafter, we refer to development
(composed of training and validation) and evaluation sets
described in the previous Sections as dev, train, val, and eval.

A. Characteristics

FSD50K is composed mainly of sound events produced by
physical sound sources and production mechanisms. It also
includes some classes that can inherently encompass several
more specific sources (e.g., Train), some classes that do not
relate to a specific source but to the perception of sound
(e.g., Clatter), and few abstract classes (e.g., Human group
actions). The dataset has 200 sound classes (144 leaf nodes
and 56 intermediate nodes) hierarchically organized with a
subset of the AudioSet Ontology [26]. The vocabulary can be
inspected in Fig. 7. Note, however, that in some cases one
leaf node in FSD50K (e.g., Camera) may be an intermediate
node in AudioSet due to the fusion of low-occupancy classes
(e.g., Single-lens reflex camera) with their parents. Following
AudioSet Ontology’s main families, the FSD50K vocabulary
encompasses mainly Human sounds, Sounds of things, An-
imal, Natural sounds and Music. The vast majority of the
content corresponds to sounds recorded from a sound field,
while a small portion corresponds to sounds captured directly
from electronic devices, typically in the context of musical
instruments, e.g., some bass drums are generated with drum
machines. The main characteristics of FSD50K in terms of
number of clips, labels, duration and uploaders are listed in
Table IV.

TABLE IV
MAIN STATISTICS FOR FSD50K

total dev eval

clips 51,197 40,966 (80%) 10,231 (20%)
labels (unpropagated) 62,657 45,607 (72.8%) 17,050 (27.2%)
avg labels/clip 1.22 1.11 1.67
labels (propagated) 152,867 114,271 38,596
clips w/ leaf label(s) 40,461 31,310 9151
duration 108.3h 80.4h (74.2%) 27.9h (25.8%)
avg duration/clip 7.6s 7.1s 9.8s
uploaders 7225 4936 2289
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Fig. 5. Label distributions in dev (left) and eval (right) sets. Clips in eval tend to have more labels (by dataset curation). Xaxis scale is logarithmic. Number
of labels is reported in the unpropagated form. Note that visualization span differs among plots.
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Fig. 6. Audio clip length distributions in dev (left) and eval (right) sets. Clips in eval tend to last slightly longer (by dataset design). Bins correspond to 1/3
second. Note that visualization span differ among plots.

The audio clips are grouped into a dev split and an eval
split such that they do not have clips from the same uploader.
Eval is exhaustively labeled, that is, annotations are correct
and complete for the considered vocabulary (except human
error). In dev, a small amount of content is exhaustively
labeled, but the vast majority is composed of labels that are
correct but could be potentially incomplete (see Sec. IV-C for
label noise estimations). The number of labels is expressed in
unpropagated and propagated forms. The number of unprop-
agated labels includes only the most specific labels per clip. It
must be noted that this way of counting labels ignores a few
labels in cases where a sound event co-occurs with: i) events
from low prior siblings that were merged with their parent;
ii) events that do not fit semantically in any other sibling
provided by the ontology, hence they are annotated with their
parent. While these cases are not frequent, the true number
of human-provided labels describing sound events would be
slightly larger than the one reported here. Propagated labels
refer to the labels after hierarchical propagation (App. B). We
use the unpropagated version to compute the average number
of labels per clip. Note the increased number of labels per
clip in eval due to the exhaustive labelling process, as can
also be seen by comparing the label distributions in Fig. 5.
In eval, all classes are present in both the singly-labeled data
and the multi-labeled data forming it, except five classes that
only appear in the multi-labeled data. In dev, all classes are
present in both the singly-labeled data and the multi-labeled
data forming it, except four classes that only appear in the
singly-labeled data. A total of 31,310 clips are labeled with,
at least, one leaf label in dev—the remaining 9656 clips are
labeled only with intermediate node labels. This proportion

changes significantly in eval, where the majority of clips
have leaf labels (9151 out of 10,231)—this is because in the
refinement task raters were instructed to provide the most
specific labels possible. All provided ground truth labels are
hierarchically propagated, i.e., consistently propagated to their
ancestors in the hierarchy. PP/PNP ratings are provided for the
labels validated in the validation task. Out of the 108.3 hours
of human-labeled audio, 31.5 are exhaustively labelled, most
of them used for evaluation purposes (eval and val). The audio
clips are of variable length ranging from 0.3 to 30s. Note the
increased average duration of eval clips due to the allocation
process (Sec. III-F), which can also be noticed by comparing
the clip length distributions in Fig. 6. The ground truth labels
are provided at the clip-level (i.e., weak labels). The dataset
is sourced from 7225 Freesound users and the content was
uploaded from Freesound’s launch in 2005 until early 2019.

The number of clips per leaf class varies, roughly, from
40 to 200 in eval, and from 50 to 500 in dev, with a few
exceptions. The number of clips in the intermediate nodes
grows much more depending on the hierarchy. Therefore,
class imbalance comes from two sources: non-uniform class
distribution and variable-length of clips. The dataset is licensed
under CC-BY license—nonetheless, each clip has its own
specific license (CC0, CC-BY, CC-BY-NC or CC Sampling+,
where CC0 and CC-BY amount to 84.7% of the dataset).
When original audio clips have more than one channel, they
are downmixed to mono. All clips are provided as uncom-
pressed PCM 16 bit 44.1 kHz mono audio files. Further
details about data licenses, ground truth format, and additional
provided metadata can be found in the FSD50K Zenodo page.4
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B. Discussion

1) Variable Clip Length and Weak Labels: Labels in
FSD50K are provided at the clip-level (i.e., weak labels).
However, unlike other sound event datasets featuring audio
clips of same or similar lengths [26, 39, 76], FSD50K is
composed of variable-length clips in the range [0.3, 30]
seconds (Fig. 6). This provides FSD50K with a particular
feature. On the one hand, some clips contain sound events
where the acoustic signal fills almost the entirety of the file,
which can be understood as strong labels. To give a sense
of this, 12,357 clips in the dev set are shorter than 4s and
bear one single label validated only with PP ratings. Thus,
we estimate that the dev set is composed mainly of weakly
labeled data and a portion of strongly labeled data, in a rough
proportion of 70%/30%. On the other hand, another small
portion of the data presents a much weaker supervision—e.g.,
9494 dev clips are longer than 10s (Fig. 6). The longer the
clips, the lesser the certainty of where the labeled event is
actually happening. This is referred to as label density noise
[77], defined as a measure of the weakness of labels for a given
weakly labeled clip. The impact and limitations of weak labels
in sound event recognition (SER) are discussed in [32, 78].
Audio processing can be done by handling the variable-length
clips as is, or by slicing the clips into fixed-length patches.
Utilizing variable-length inputs in the context of deep networks
entails certain architectural constraints, such as using fully
convolutional networks or appropriate pooling strategies. To
avoid these constraints, variable-length clips are sometimes
split into fixed-length patches, which can be processed in
several ways. A simple way consists of inheriting the clip-level
labels by every constituent patch (a practice called false strong
labeling in [79]), which can generate false positives if the label
is not active in a given patch. In this case, for evaluation, patch-
level scores must be aggregated into clip-level predictions
to be compared against the weak labels. Another alternative
to process fixed-length patches belonging to weakly-labelled
clips is to adopt a multiple-instance learning strategy [43].

2) Audio Quality: Given the heterogeneity of Freesound
audio it is difficult to make strong objective claims about
audio quality in FSD50K. Nonetheless, upon inspection of
the clips’ metadata, it can be seen that many Freesound
users utilize (semi-) professional recording equipment (e.g.,
microphones or preamplifiers of brands such as Neumann,
Rode or Tascam). Our experience after annotating the dataset is
that the audio generally has relatively high SNR and dynamic
range. To put this into context, we note that the notion of audio
quality in sound recognition datasets has changed over time. In
early DCASE Challenges, datasets recorded with professional
equipment dominated, some of them being recorded with one
single microphone model [13, 23, 80, 81]. Then, AudioSet
became popular, in which a large variety of devices are
used for recording YouTube videos (where audio quality is
not necessarily a priority), and often including lower SNR
conditions. We extracted the global SNR for FSD50K and
AudioSet (its eval set and balanced train set) using the ITU-
T P.563 [82]. It must be noted that P.563 is designed for
evaluating human speech, while the content of both datasets

is much more diverse. Therefore, strong claims cannot be
made based on this measurement. We use it as a common-
referenced, rough indication of SNR given that it is not trivial
to accurately compute SNR for the different types of audio
under consideration. SNR values reported in Table V are
mean and median of per-clip SNR values. The mean SNR
for FSD50K is greater than that of AudioSet. For AudioSet, it
can also be seen that the mean SNR is greater than the median,
suggesting that the SNR distribution is positively skewed, i.e,
lower SNR values are more frequent.

3) Real-world Audio: Many clips in Freesound are real-
world recordings of sound events happening in the wild, e.g.,
a car passing by. However, it is not uncommon that some
sound events are recorded under careful conditions in order
to obtain clean and isolated high-quality sounds, as in a foley
sound setting (e.g., the sound of tearing paper carefully located
in front of a microphone). Further, a few clips in Freesound
consist of sound events purposely generated with the sole
objective of being recorded, e.g. a faked laughter. While
these recordings are valuable for sound design, in some cases
they could feature a lack of naturalness or acoustic mismatch
with respect to sound events in the wild. This may question
the suitability of a portion of the data for learning sound
recognizers to be deployed in the wild, where more adverse
generation and recording conditions can be encountered. To
what extent this affects models’ generalization to adverse
scenarios is an open question. Mitigating this potential issue
could be a research problem involving, for example, data
augmentation [83] or domain adaptation [84] techniques.

C. Limitations

1) Label Noise: Throughout this paper we have discussed
the correctness/completeness of labels in the dataset. While
we aimed at full label correctness and completeness, this is
unrealistic as it would mean perfect accuracy of the nomina-
tion system that proposes candidate labels (Sec. III-D), and of
the human-provided labels. As supervised learning research
moves towards larger datasets, issues of label noise become
inevitable. For instance, labeling error in AudioSet is estimated
at above 50% for ≈18% of the classes.10 Similarly, ImageNet
data are often presumed to have correct labels, but it has been
estimated that at least 100k images could be labeled incorrectly
[85]. In SER, label sets in not-small datasets are inherently
noisy due to reasons like sub-optimality of automatic methods
used in the creation, or the difficulty of annotating audio—
especially without visual cues, with large vocabularies, and
because the annotation process is, sometimes, inherently sub-
jective and ambiguous.

Despite our efforts to mitigate label noise in FSD50K, there
are still a few label noise problems. The main problem is
the existence of missing “Present” labels (false negatives).
These are labels that would be included in an ideal exhaustive
annotation but which are missing from the current set. Recent
work identifies this as a pathology in AudioSet as well, and
proposes a method to tackle it [42]. This problem affects
the dev set more due to the annotation process based on
validation of previously nominated labels—if sound events are
not nominated by the system, they lack labels (Sec. III-E).
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This may happen with sound events that tend to be less
represented by the Freesound user-provided tags, such as
human or bird sounds when they are not the most relevant
events in a clip. Because the eval set received exhaustive
annotation, this problem is minimized there. To a much lesser
extent, two additional sources of missing labels exist. First,
the impossibility of propagating labels in the hierarchy when
multiple ambiguous paths are encountered—again, this affects
more the dev set (see App. B). Second, missing labels can
occur as a result of annotating with a finite vocabulary—
there may be additional acoustic content out-of-vocabulary.
In particular, in the annotation process, when we encounter
a sound event out-of-vocabulary, two cases can happen: i) if
the event is alone in the clip (or with other out-of-vocabulary
events), the clip is discarded; ii) if the event co-occurs with
other events in-vocabulary, then the clip is kept, but the out-
of-vocabulary event remains unlabeled. Apart from missing
labels, the other label noise problem is incorrect “Present”
labels (a false positive, and potentially a false negative if
the true class is in-vocabulary). This is the result of human
annotation errors. Because we adopted mechanisms to boot-
strap human annotation quality (Secs. III-E and III-G), we
expect incorrect labels to be rare (see below). Both missing
and incorrect labels would be class-conditional as some classes
are clearly more ambiguous than others. More details about
label noise characterization can be found in [32].

We can use the refinement task processing to quantify the
label noise at the output of the validation task. A total of
11,847 audio clips (carrying a total of 13,681 labels) were
processed with the refinement task, the majority of which
ended up in the eval set. The processing undergone by these
clips in this task in order to approach a complete sound event
transcript is summarized next, in order to quantify the label
noise at this point. First, we estimate the amount of missing
labels. A total of 6030 clips (50.9%) received at least one
additional label, indicating that there was some unlabeled
material. For these 6030 clips, a total of 10,473 labels were
generated. Second, we estimate the amount of incorrect labels.
The incoming 11,847 audio clips before the refinement task
featured a total of 13,681 labels, out of which 773 (5.7%) were
then rejected by the annotators. This means that 94.3% of the
incoming labels were verified as correct. This gives a sense
of the level of label correctness obtained with the validation
task (and therefore, the dev set). In sum, after the validation
task, for a pool of 11,847 audio clips mostly selected for eval
(carrying a total of 13,681 labels), 94.3% of the incoming
labels were verified as correct, and 50.9% of the incoming
clips had one or more missing labels. This indicates that in
the dev set the labels are mostly correct, yet there is a large
amount of clips featuring missing labels. However, the actual
number of clips with missing labels in the dev set is estimated
as less than 50.9% because, as explained earlier, clips selected
for dev tend to have less average number of sources per clip
than those selected for eval. For the eval set, we have not
quantified the amount of correctness and completeness due
to lack of resources. However, the amount of correctness is
expected to be not very different from the 94.3% estimated
at the output of the validation task. We expect this because

the hired raters are more qualified at the refinement task than
during the previous validation task, as they have gained more
annotation experience and a deeper knowledge of the ontology.
Labelling errors in FSD50K can be reported via its companion
site.6 In this way, future dataset releases can include fixes
reported in a collaborative way.

2) Data Imbalance: While some classes are abundant,
others are much less represented due to the data scarcity in
Freesound and/or low performance of the nomination system.
Another source of imbalance is the variable length of clips—
some classes tend to contain shorter/longer clips depending on
the sound events and the preferences of Freesound users when
recording them. Finally, the hierarchy of the ontology favours
data imbalance between classes at different levels.

3) Data Bias in Development Set: Because we prioritized
the allocation of small uploaders in the eval set to increase its
diversity (Sec. III-F), the development portion of a few classes
is dominated by a few large uploaders. Under the assumption
that this signifies similar training examples in certain cases,
this could create a data bias, which could be learned by models
[86]. This happens mainly in a few musical instruments, e.g.,
Trumpet, due to the fact that Freesound users tend to upload
many clips for these classes. Further analysis would be needed
to determine if and how much this potential bias causes lack
of generalization for these classes.

4) Lack of Specificity in the Vocabulary: Some leaf nodes in
the ontology were merged to their parents due to data scarcity.
For instance, leaf nodes such as Blender, Chopping (food),
and Toothbrush had to be merged with their parent Domestic
sounds, home sounds. This motivated us to keep the latter class
as a valid class despite that it is blocked in the ontology [26].

D. Applications

FSD50K allows evaluation of approaches for a variety of
sound recognition tasks. The most evident is multilabel sound
event classification with large vocabulary [33, 87]. In this con-
text, the proposed dataset supports several approaches such as
learning sound event representations directly from waveforms
[88, 89]; analysis of label noise mitigation methods leveraging
the non-exhaustive labeling of the dev set [32, 42, 90];
multimodal approaches using audio and text information (e.g.,
using the provided Freesound tags, title, and textual description
for the clips) [91, 92]; evaluation of hierarchical classification
via ontology-aware learning frameworks [5, 93, 94]; or ap-
proaches specifically combining strong and weak labels [95].
By leveraging the common vocabulary between FSD50K and
AudioSet, we hope that a number of tasks become possible,
such as experimenting with domain adaptation techniques
[96], or cross-dataset evaluation [97] under different acoustic
conditions. Other tasks include search result clustering in
large vocabulary datasets [98] or universal sound separation
[99]. In addition, FSD50K has already accomplished several
milestones. A subset of the data has been used for a number
of smaller datasets for classification [32, 33, 58, 100] and
source separation [63]. Likewise, subsets of FSD50K have
enabled several sound recognition Challenges—specifically,
DCASE 2018 Task 2 “General-purpose tagging of Freesound
audio with AudioSet labels” [58], DCASE 2019 Task 2 “Audio
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tagging with noisy labels and minimal supervision” [33] and
Task 4 “Sound event detection in domestic environments with
weakly labeled data and soundscape synthesis” [28], and
DCASE 2020 Task 4 “Improving sound event detection in
domestic environments using sound separation” [101].

E. FSD50K and AudioSet
As FSD50K and AudioSet are based on the same ontology

and thus are partially compatible, we discuss the main sim-
ilarities and differences between both. Table V summarizes
some of them. Both datasets use the AudioSet Ontology for

TABLE V
COMPARISON OF SOME PROPERTIES OF FSD50K AND AUDIOSET

FSD50K AudioSet

classes 200 527
content waveform features
dev clips 40,966 ≈2M
eval clips 10,231 20,383
clip length 0.3-30s ≈10s
dev labeling CpI CpI
eval labeling exhaustive CpI
source Freesound audio Youtube video
train/val split X -
P.563 SNR (mean, median) [dB] (26, 25) (14, 10)

organization, however FSD50K uses a smaller subset. All
classes in FSD50K are represented in AudioSet, except Crash
cymbal as well as four classes that are blocked in AudioSet
but not in FSD50K (Human group actions, Human voice,
Respiratory sounds, and Domestic sounds, home sounds).
The official AudioSet release consists of audio features pre-
computed at 960ms-resolution, released under CC-BY-4.0
license. FSD50K provides audio waveforms under several CC
licenses as decided by Freesound users. In terms of stability,
FSD50K is downloadable as several zip files from its Zenodo
page.4 AudioSet features can be downloaded as a tar.gz file
from the AudioSet website.2 The original YouTube video
soundtracks are gradually disappearing as they are subject to
deletions and other issues, and their usage may be affected by
copyright policies (Sec. I). AudioSet’s dev set is significantly
larger than FSD50K’s whereas AudioSet’s eval set is roughly
twice that of FSD50K. Since AudioSet has a vocabulary 2.6
times larger, this means that in some classes there is more
evaluation content in FSD50K. Clips in AudioSet last ≈10s,
whereas in FSD50K their length varies from 0.3 to 30s. Thus,
label weakness is more homogeneous in AudioSet, whereas it
varies significantly in FSD50K, yielding quasi-strong labels as
clips get shorter, and much weaker labels in the longest clips.

In terms of labeling, FSD50K provides event predominance
annotations (“Present and predominant” & “Present but not
predominant”, Sec. III-E) while AudioSet only provides pres-
ence annotations (“Present”). While it is not easy to objectively
compare label quality in both datasets, we speculate that the
labeling of both dev sets could be generally regarded as Cor-
rect but Potentially Incomplete (CpI), i.e., both dev sets would
be affected by a certain amount of missing labels. However,
it seems reasonable to assume that, in the FSD50K portion of
rather short sounds with PP annotations (see Sec. IV-B), the
amount of missing labels is minimal. This assumption is con-
sistent with our observations from the annotation experience.

The eval set of FSD50K was exhaustively annotated; therefore,
absence of labels means absence of sound events (except
human error). By contrast, the eval annotations in AudioSet
would be in general CpI, similar to those of the AudioSet
train set. Unlike AudioSet, FSD50K consistently provides all
relevant labels in a hierarchical path, except in a few specific
cases of ambiguous ancestors. As additional resources, we
provide additional metadata (e.g., Freesound tags and class-
wise annotation FAQs) and allow flagging labeling errors.6

Finally, despite both datasets being highly heterogeneous,
we make the following conjectures. Freesound clips are typi-
cally recorded with the goal of capturing audio, which is not
necessarily the case in YouTube videos. Additionally, given the
AudioSet size, its audio clips are presumably recorded with
a higher diversity of devices. This would provide AudioSet
with a higher diversity of audio qualities, often including
more real-world and lower SNR conditions than Freesound
audio (see Table V for a rough SNR estimation described in
Sec. IV-B). Thus, a certain acoustic mismatch between both
datasets may be expected. In our view, both datasets suppose
complementary resources for sound event research.

V. EXPERIMENTS

In this Section, we conduct a set of multi-label sound event
tagging (SET) experiments to give a sense of the performance
that can be achieved with FSD50K using a baseline pipeline
(Sec. V-B), and to learn about the main challenges to consider
when splitting Freesound audio for sound event recognition
(SER) tasks (Sec. V-C). For reproducibility, implementation
details of evaluation metrics, learning pipeline, and networks
can be inspected in the open-source code.5

A. Evaluation

Some common evaluation metrics for SET (e.g., F-score or
overall error ratio) depend on an operating point, i.e., a deci-
sion threshold applied on the per-class output scores. These
metrics encompass evaluation of the model’s performance
and of the decision threshold tuning. However, we believe
that decoupling these two factors is desirable as, strictly,
they are two different issues and the optimality of the latter
can be application-dependent. Thus, we propose metrics able
to evaluate a model’s performance globally, integrating all
possible operating points such that setting a decision threshold
is not needed. This trend has been adopted in other fields such
as speaker recognition [102] and also recently in sound event
detection (SED) [103].

On the one hand, we use common within-class metrics, i.e.,
metrics that rank all test samples according to the classifier
score for one given class. These metrics deal with only
one classifier output at a time, such that calibration across
different classifier outputs is irrelevant. Following [26, 104],
we use mean Average Precision (mAP) and d′. mAP is the
mean across classes of the Average Precision (AP), which
summarises the precision-recall (PR) curve as the classifier
decision threshold is varied. AP is calculated as the Precision
(i.e., the proportion of positive samples in a ranked list)
averaged across all the lists just long enough to recall a new
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positive sample [104, 105]. AP is very similar to the area
under precision-recall curve (PR-AUC), both being the most
common ways of summarising a PR curve—the difference
between them lies in implementation details [106, 107]. d′ (d-
prime) measures the separation between the means of two unit-
variance normal distributions (corresponding to the scores for
positive and negative examples) that would achieve the same
ROC-AUC [108]. d′ is computed as a monotonic transform of
ROC-AUC [104, 108]:

d′ =
√
2F−1(ROCAUC), (2)

where F−1 is the inverse cumulative distribution function for
a unit Gaussian. To complement the within-class metrics, we
propose to use a between-class metric, i.e., which evaluates
the overall ranking across all classifier outputs for every test
sample. Specifically, we use Label-weighted label-ranking av-
erage precision (lωlrap), recently introduced for DCASE2019
Task 2 [33]. Let C(s) be the set of reference labels for test
sample s, Prec(s, c) be the label-ranking precision for the list
of labels up to class c, and Rank(s, c) be the rank of class
label c in that list. Prec(s, c) is equal to 1 if all the top-ranked
labels down to c are part of C(s), and at worst case equals
1/Rank(s, c) if none of the higher-ranked labels are correct.
Then, lωlrap can be expressed by

lωlrap =
1∑

s |C(s)|
∑
s

∑
c∈C(s)

Prec(s, c) (3)

where |C(s)| is the number of reference labels for sample s.
A Python implementation of lωlrap is provided online.21 For
all metrics, larger is better. mAP ∈ [0, 1], non-pathological
d′ ∈ [0,∞), and lωlrap ∈ [0, 1]. All metrics are computed on
a per-class basis, then averaged with equal weight across all
classes to yield the overall performance (i.e., balanced a.k.a.
macro averaging), as in [26, 42, 104].

B. Baseline Systems

Next, we benchmark several commonly used deep networks
on the proposed FSD50K.

1) Learning Pipeline: Incoming audio is downsampled to
22.050 kHz and transformed to 96-band, log-mel spectrogram
as input representation. To deal with the variable-length clips,
we use time-frequency (T-F) patches of 1s (equivalent to
101 frames of 30ms with 10ms hop)—thus the input to
all models is of shape TxF=101x96. Clips shorter than 1s
are concatenated until such length, while longer clips are
sliced in T-F patches with 50% overlap inheriting the clip-
level label (a.k.a. false strong labeling [79]). We adopt the
train/val split designed in App. B. We implement a learning
pipeline in TensorFlow [109]. Models are trained using Adam
optimizer [110] to minimize binary cross-entropy loss, with
initial learning rate depending on the network (see Table VI),
which is halved whenever the validation PR-AUC plateaus
for 5 epochs (no tolerance). Models are trained up to 100
epochs, earlystopping the training whenever the validation

21https://colab.research.google.com/drive/1AgPdhSp7ttY18O3fEoHOQKlt
3HJDLi8

PR-AUC is not improved in 10 epochs. We use a batch
size of 64 and shuffle training examples between epochs.
Once the training is over, the model checkpoint with best
validation PR-AUC is selected to predict scores and evaluate
performance on the eval set. We optimize PR-AUC (instead
of other metrics based on ROC curves) because PR curves
can be more informative of performance when dealing with
imbalanced datasets [111]. Likewise, we use PR-AUC (instead
of mAP) for simplicity as it is a built-in metric in TensorFlow.
For inference, we pass each (eval or val) T-F patch through the
model to compute output scores, which are then averaged per-
class across all patches in a clip to obtain clip-level predictions,
as in [26, 42]. We note this aggregation must be done also for
validation—preliminary experiments validating at patch-level
using inherited clip-level labels revealed misleading results.
Extensive hyper-parameter tuning (beyond learning rate) is not
conducted.

2) Network Architectures: Current trends in SER encom-
pass mainly CNNs [87, 104, 112]–[114] and CRNNs [20, 115].
We run experiments with the following networks, all of
them ending with a fully connected layer of 200 units (the
vocabulary size) with sigmoid activation to support multi-label
classification. Main parameters for CRNN and VGG-like ar-
chitectures are set via non-exhaustive preliminary experiments.

CRNN. This is one of the most used architectures for SED
[20], and to a lesser extent for SET [116]. Our model, inspired
by [20], has three convolutional layers of 128 filters with
a receptive field of (5,5), each of them followed by Batch
Normalization (BN) [117], ReLU activation and max-pooling.
The max-pooling sizes are (t, f) = (2, 5), (2, 4) and (2, 2)—
since we are not interested in detecting events’ timestamps, we
pool also in the time dimension which reduces dimensionality
without harming performance in our experiments. To model
events’ temporal structure in the incoming feature maps, the
convolutional stack is followed by a bidirectional GRU layer
of 64 units, returning the last output of the output sequence.

VGG-like. VGG-based architectures have been widely used
for both SET [87, 118] and SED [119]. We use a model
inspired by the original architecture [120] from computer
vision, but reduced to a much smaller size. In particular,
this model has three convolutional layers of 32 filters, two
convolutional layers of 64 filters, and one convolutional layer
of 128 filters. All convolutional layers have a receptive field of
(3,3) and are followed by BN and ReLU activation. Between
each group of convolutional layers with same number of filters,
max-pooling of size (2,2) is applied. Output feature maps
are summarized by concatenating global max pooling and
global average pooling per channel. Summarizing the learnt
audio representation via combination of these two poolings
provided a small mAP boost with respect to using either of
them individually. Then, the outcome is passed through a fully
connected layer of 256 units.

Finally, we also experiment with two architectures taken
off-the-shelf from the computer vision literature. While the
two previous networks received some tuning in their design,
the next ones are the original architectures without any tuning
whatsoever—only the input/output shapes to match our task.

https://colab.research.google.com/drive/1AgPdhSp7ttY18O3fEoHOQKlt_3HJDLi8
https://colab.research.google.com/drive/1AgPdhSp7ttY18O3fEoHOQKlt_3HJDLi8
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TABLE VI
EVALUATION PERFORMANCE FOR THE ARCHITECTURES CONSIDERED

Model lr weights mAP d′ lωlrap

CRNN 5e-4 0.96M 0.417 ± 0.003 2.068 ± 0.015 0.519 ± 0.002
VGG-like 3e-4 0.27M 0.434 ± 0.002 2.167 ± 0.011 0.514 ± 0.003
ResNet-18 1e-5 11.3M 0.373 ± 0.001 1.883 ± 0.020 0.465 ± 0.001
DenseNet-121 5e-5 12.5M 0.425 ± 0.002 2.112 ± 0.032 0.505 ± 0.004

ResNet-18. ResNets [121] have been sucessfully used for
SER [42, 51, 112].

DenseNet-121. DenseNets are reported to outperform
ResNets for image recognition [122], and have been recently
used for SET [90, 123].

3) Results: Table VI lists the results for the considered
architectures, along with the learning rates used (after tuning)
and the number of weights. Each network is trained from
scratch three times with different random initialisation and
different orderings in the training data. We report average and
standard deviation of the evaluation performance across the
three trials. The following results and discussion are based on
the particular train/val/eval split used. Interestingly, the best
overall model across all metrics is VGG-like, despite being
less modern and more lightweight than the other architectures.
This result accords with similar recent findings in music
genre recognition [124]. The building blocks of VGG-like are
very similar to those of the CNN14 network in [112], which
rivals state-of-the-art results in AudioSet classification [112].
However, CNN14 is much deeper and heavier (81M weights).
The VGG-like model is closely followed by DenseNet-121,
which has many more weights, and then by the CRNN, which
shows the best lωlrap. CRNN architectures are also used in
some top SED systems, e.g., in recent DCASE Challenge
Task 4 editions [28, 101]. ResNet-18 is found to be the worst
performing model. Curiously, we also observe that the optimal
learning rates tend to be rather low for this architecture. We
also tried ResNet-34 in preliminary experiments, obtaining
similar results (at the expense of many more weights). Our
results contrast with the successful results of [112, 125], which
achieved state-of-the-art performance for AudioSet classifi-
cation using ResNet architectures. Factors possibly influenc-
ing this different behaviour include the different amount of
training data (much larger in AudioSet) or the data itself.
Results in Table VI suggest that, for our scale of data, smaller
models with basic tuning and audio-informed design choices
can outperform much larger off-the-shelf computer vision
architectures; however, DenseNet-121 with no tuning provides
good performance.

Fig. 7 shows the per-class AP (averaged across three trials)
for all classes in FSD50K, using the best-performing VGG-
like model (dark blue), and the CRNN model (light blue).
Leaf nodes with top recognition include Applause, Burping,
eructation, Purr, and Computer keyboard, with AP over 0.75.
The worst performance is shown in Boat, Water vehicle,
Cowbell, Speech synthesizer, Tap and Tick. After inspection of
the latter classes, we conjecture this is due to aspects such as
high intra-class variation, confound with other similar classes,
ambiguity in the class definitions, or very short length of sound
events—all of them being relevant challenges in SER. Finally,
it can be seen that most per-class APs by the CRNN are

slightly lower than those of the VGG-like model—as expected
since VGG-like has a higher overall mAP. However, there
are a few exceptions in which the CRNN performs better,
such as in different types of speech (either spoken, sung,
screamed, yelled or whispered). This is interesting as CRNNs
were originally proposed for speech recognition [126] before
being adapted for SER [20]. Other exceptions include some
human sounds (e.g., types of laughter (Chuckle, chortle or
Giggle), Gasp, or Crying, sobbing), as well as some animal
vocalizations (e.g., Bark, Meow or Chicken, rooster). These
sounds share a marked temporal behaviour. These results
highlight the different behaviour, for some classes, of a model
including a recurrent layer with respect to another relying only
on convolutional layers.

C. Impact of Train/Validation Separation

In App. B we discuss some factors to consider when split-
ting Freesound audio data for machine learning, and we design
a validation set emphasizing the issue of data contamination.
Here, we experimentally analyze the impact of contamination
in this setting. To this end, we pick one architecture from
Sec. V-B (the CRNN) and we train and evaluate it utilizing
three different train/validation splits in order to show their dif-
ferences. Specifically, let us consider three candidate validation
sets obtained with different approaches:

1) val random is computed via random sampling. We run
3000 trials of a train/validation separation and we select
the validation set with minimum Jensen-Shannon (JS)
divergence22 with respect to the development set.

2) val is is computed via iterative stratification [72]. We
run 3000 trials of a train/validation separation and we
select the validation set with the minimum number of
shared uploaders between training and validation.23

3) val is the validation set proposed in App. B.
In all cases, the validation set is initialized with most of the

data that was transferred from the first evaluation set prototype
to the development set for balancing purposes (App. B).
Since this content is exhaustively labeled, it is well suited
for evaluation purposes. The main characteristics of the three
validation sets are listed in Table VII. The sets val random and
val is amount to ≈15% of the development data associated
with leaf nodes (Table IV); val is slightly lower (13.3%) due
to allocating less validation data for the most abundant classes
as well as some approximations (App. B). All validation sets
have a similar duration. In terms of stratification, the split done
through iterative stratification, val is, yields more similar class

22The JS divergence is based on the Kullback-Leibler divergence but it is
symmetric. We use it as a distance metric to measure similarity between the
development and validation distributions, similarly as in [5].

23Minimizing the JS divergence is not needed here as stratification is
already the objective of this method, hence all separations have a fairly
consistent JS divergence.



IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022 16

Acce
ler

ati
ng

, re
vvi

ng
, v

roo
m

Acco
rdi

on

Acou
stic

 gu
ita

r

App
lau

se Bark

Bass
 dr

um

Bass
 gu

ita
r

Bath
tub

 (fi
llin

g o
r w

ash
ing

)

Bicy
cle

 be
ll

Boa
t, W

ate
r v

eh
icle

Boili
ng

Boo
m

Bow
ed

 st
rin

g i
nst

rum
en

t

Burp
ing

, e
ruc

tat
ion Bus

Buzz

Cam
era

Car 
pa

ssi
ng

 by

Cha
tte

r

Che
eri

ng

Che
wing

, m
ast

ica
tio

n

Chic
ken

, ro
ost

er

Child
 sp

ee
ch,

 kid
 sp

ea
kin

g

Chin
k, 

clin
k

Chir
p, 

tw
ee

t

Chu
ckl

e, 
cho

rtle

Chu
rch

 be
ll

Clap
pin

g

Coin
 (d

rop
pin

g)

Com
pu

ter
 ke

yb
oa

rd

Con
ve

rsa
tio

n
Cou

gh

Cow
be

ll
Crac

k

Crac
kle

Cras
h c

ym
ba

l

Cric
ket Crow

Crow
d

Crum
plin

g, 
cri

nk
ling

Crus
hin

g

Cryi
ng

, so
bb

ing

Cup
bo

ard
 op

en
 or

 clo
se

Cutl
ery

, si
lve

rw
are

Dish
es,

 po
ts,

 an
d p

an
s

Doo
rbe

ll

Draw
er 

op
en

 or
 clo

se Drill

0.25

0.50

0.75

AP

Drip

Drum
 kit

Ele
ctr

ic g
uit

ar

En
gin

e s
tar

tin
g

Far
t

Fem
ale

 sin
gin

g

Fem
ale

 sp
ee

ch,
 wom

an
 sp

ea
kin

g

Fill
 (w

ith
 liq

uid
)

Fin
ge

r s
na

pp
ing

Fir
ew

ork
s

Fix
ed

-wing
 ai

rcr
aft

, a
irp

lan
e

Fro
g

Fry
ing

 (fo
od

)
Gasp

Gigg
le

Gloc
ken

spi
el

Gon
g

Grow
ling

Gull,
 se

ag
ull

Gun
sho

t, g
un

fire

Gurg
ling

Ham
mer

Harm
on

ica Harp
Hi-h

at Hiss
Idl

ing

Ke
ys 

jan
glin

g
Kn

ock

Liv
est

ock
, fa

rm
 an

im
als

, w
ork

ing
 an

im
als

Male
 sin

gin
g

Male
 sp

ee
ch,

 m
an

 sp
ea

kin
g

Mari
mba

, x
ylo

ph
on

e

Mech
an

ica
l fa

n
Meo

w

Micr
ow

av
e o

ve
n

Moto
rcy

cle
Orga

n

Pa
cki

ng
 ta

pe
, d

uct
 ta

pe
Pia

no
Pri

nte
r

Pu
rr

Race
 ca

r, a
uto

 ra
cin

g

Rain
dro

p

Ratc
he

t, p
aw

l
Ratt

le

Ratt
le 

(in
str

um
en

t)

Ring
ton

e

0.25

0.50

0.75

AP

Run
Sa

wing

Sci
sso

rs

Scr
atc

hin
g (

pe
rfo

rm
an

ce 
tec

hn
iqu

e)

Scr
ea

ming

Scr
ee

ch

Sh
att

er Sig
h

Sin
k (

filli
ng

 or
 wash

ing
)
Sir

en

Sk
ate

bo
ard Sla

m

Slid
ing

 do
or

Sn
are

 dr
um
Sn

ee
ze

Sp
ee

ch 
syn

the
siz

er

Sp
las

h, 
spl

att
er

Sq
ue

ak

Str
ea

m
Str

um

Su
bw

ay
, m

etr
o, 

un
de

rgr
ou

nd
Ta

bla

Ta
mbo

uri
ne Ta

p

Te
ari

ng

Th
um

p, 
thu

d

Th
un

de
r

Tic
k

Tic
k-t

ock

To
ilet

 flu
sh

Tra
ffic

 no
ise

, ro
ad

way
 no

ise Tra
in

Tri
ckl

e, 
dri

bb
le

Tru
ck

Tru
mpe

t

Ty
pe

write
r

Veh
icle

 ho
rn,

 ca
r h

orn
, h

on
kin

g

Walk
, fo

ots
tep

s

Wate
r ta

p, 
fau

cet

Wav
es,

 su
rf

Whis
pe

rin
g

Who
osh

, sw
oo

sh,
 sw

ish Wind

Wind
 ch

im
e

Wind
 in

str
um

en
t, w

oo
dw

ind
 in

str
um

en
t

Writi
ng Ye

ll

Zipp
er 

(cl
oth

ing
)

0.25

0.50

0.75

AP

Airc
raf

t
Alar

m
Anim

al Bell

Bicy
cle Bird

Bird
 vo

cal
iza

tio
n, 

bir
d c

all,
 bi

rd 
son

g

Bras
s in

str
um

en
t

Brea
thi

ng Car Cat
Chim

e
Cloc

k

Cym
ba

l
Dog

Dom
est

ic a
nim

als
, p

ets

Dom
est

ic s
ou

nd
s, h

om
e s

ou
nd

s
Doo

r
Drum

En
gin

e

Ex
plo

sio
n

Fir
e
Fow

l
Glas

s
Guit

ar
Han

ds

Hum
an

 gr
ou

p a
cti

on
s

Hum
an

 vo
ice
Ins

ect

Ke
yb

oa
rd 

(m
usi

cal
)

Lau
gh

ter
Liq

uid

Malle
t p

erc
uss

ion

Mech
an

ism
s

Moto
r v

eh
icle

 (ro
ad

)
Musi

c

Musi
cal

 in
str

um
en

t
Ocea

n

Pe
rcu

ssi
on

Plu
cke

d s
trin

g i
nst

rum
en

t
Po

ur

Po
wer 

too
l

Rail 
tra

nsp
ort Rain

Resp
ira

tor
y s

ou
nd

s
Sh

ou
t

Sin
gin

g

Sp
ee

ch

Te
lep

ho
ne

Th
un

de
rst

ormTo
ols
Ty

pin
g

Veh
icle

Wate
r

Wild 
an

im
als

Woo
d

0.25

0.50

0.75

AP

VGG-like
CRNN

Fig. 7. Per-class average precision for all classes in FSD50K, using the best-performing VGG-like model (dark blue) and the CRNN model (light blue). Top
3 rows show the 144 leaf nodes and bottom row comprises the 56 intermediate nodes.
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TABLE VII
MAIN STATISTICS FOR THE CONSIDERED VALIDATION SETS

Validation Set clips duration JS shared PR-AUC
uploaders drop

val random 4697 9.7h 1.8× 10−2 930 0.15
val is 4543 9.3h 6.8× 10−3 857 0.14
val (proposed) 4170 9.9h 2.1× 10−2 641 ≈ 0

distributions than the other two, which are on par. The main
differences lie in the uploaders “shared” between train and
validation, both in number and in their nature. In particular,
val random and val is suffer from within-class (WC) and
between-class (BC) contamination as no measure is taken
to prevent them. By contrast, val is designed to minimize
WC contamination while being relatively flexible with BC
contamination (see App. B for definitions of WC and BC
contamination, as well as for the design of val). Therefore, not
only is the number of shared uploaders less in the proposed
val, but also the contamination is limited mostly to BC.

To compare the candidate splits, we train the CRNN of the
previous Section using the three of them (in this case, with a
learning rate of 1e-4 and no learning rate scheduling). Fig. 8
illustrates the learning curves (PR-AUC for train, validation,
and evaluation) using each of the splits. We display 60 training
epochs allowing validation and evaluation performance to
roughly stabilise. From Fig. 8 and Table VII several observa-
tions can be made. In the left and middle plots of Fig. 8 (corre-
sponding to val random and val is), validation performance
is substantially better than evaluation performance. In these
cases, the classifier is trained and validated on clips from the
same uploader and the same class (i.e., WC contamination).
We call this the “uploader effect” (following the analogy of
the “album effect” [70] or “artist effect” [71]). In Table VII,
it can be seen that the number of uploaders shared between
train and validation is positively correlated with the validation-
evaluation PR-AUC drop. In the cases of val random and
val is we observe substantial performance drops, whereas
with val the performance drop is very small. Results from
Fig. 8 and Table VII suggest that, when contamination is
considered and minimized, validation performance is a good
proxy of evaluation performance—otherwise, it can be overly
optimistic. Consequently, if the model is tuned using the
validation set it may occur that, depending on the type and
amount of contamination, the tuning reflects model’s ability
to partially overfit train data rather than to generalise to
unseen data. In addition, our results indicate that the distinction
between WC and BC contamination seems reasonable in the
context of Freesound audio organized with a large vocabulary,
confirming our initial hypothesis that WC is the most harmful
type while BC has lesser impact (see App. B).

Lastly, we observe a slightly higher train performance and
slightly lower validation and eval performances when using
val (right plot of Fig. 8), which content comes mostly from
a variety of small uploders. Under the assumption that not all
training examples are equally informative (which is the basis
for disciplines like instance selection [127]), this may occur
because the content transferred to val includes some highly in-
formative examples. Yet, we propose this train/validation split

for systems’ benchmarking because we deem it more method-
ologically correct than the others given that data contamina-
tion is minimized. In summary, carefully splitting Freesound
audio is important as it can have a non-negligible impact on
learning and performance. Therefore, for reproducibility and
fair comparability of results, system benchmarking should be
done explicitly specifying the validation split that was used.

VI. SUMMARY AND CONCLUSION

In this paper, we introduced FSD50K, a dataset containing
51,197 Freesound clips totalling over 100h of audio manually
labeled using 200 classes drawn from the AudioSet Ontology.
The audio clips are CC-licensed, thereby making the dataset
freely distributable (including audio waveforms). We proposed
a methodology for creating datasets of sound events based
on human validation and refinement, and using a mixture
of crowd-sourcing and recruited trained annotators. In this
process, we experienced how human labeling of a large
vocabulary of everyday sounds is a laborious and complex
task. Special emphasis was put on the careful curation of the
evaluation set content and labels, so that it can serve as a
reliable evaluation benchmark. We showed how it is important
to adapt the dataset creation process to the specifics of the
source data—in our case, Freesound audio and metadata, and
the AudioSet Ontology—and how a deep knowledge of these
data is crucial to identify data challenges and limitations,
and to avoid pitfalls in the creation of the dataset. Finally,
through experimental results we showed that, for FSD50K
classification, smaller models with basic tuning and audio-
informed design choices can outperform larger off-the-shelf
computer vision architectures. We also showed that within-
class data contamination must be considered when splitting
Freesound audio as it can have a considerable effect on the
evaluation of sound event classifiers. FSD50K is an open
and stable dataset aimed at complementing AudioSet in order
to foster reproducible large-vocabulary SER research. In the
future, dataset extensions could be carried out. More data
could be added via semi-automatic methods by leveraging
models trained on FSD50K to scale up efficiently. Likewise,
the vocabulary could be extended by growing the merged leaf
nodes in FSD50K.

APPENDIX A
ONTOLOGICAL NOMENCLATURE

We clarify next some basic (albeit relevant) ontology-related
terms used in this paper. We shall refer to the 632 classes in
the ontology as nodes (either leaf nodes when they are located
at the very bottom of the hierarchy, or intermediate nodes
otherwise). We shall also use the ontological terms children
and parents, as widely used in ontology-related genome re-
search [128]. Note that, by definition, leaf nodes do not have
children nodes, while the intermediate nodes do. Similarly,
given a node, we refer to all the parent nodes connecting
it to the root of the ontology as ancestors. As an example,
let us consider the hierarchical path: Root → Natural sounds
→ Thunderstorm → Thunder. In this path, Thunder is a leaf
node; Natural sounds and Thunderstorm are both intermediate
nodes; Thunderstorm is child of Natural sounds and parent of
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Fig. 8. Learning curves (PR-AUC for train, validation, and evaluation) for the CRNN model using the three train/validation splits specified in Table VII
(val random (left), val is (middle), and the proposed val (right)). Validation performance is substantially better than evaluation performance when using
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type of contamination is minimized (val), validation performance is a good proxy of evaluation performance.

Thunder; and Thunderstorm and Natural sounds are all the
ancestors of Thunder.

APPENDIX B
POST-PROCESSING STAGE FOR FSD50K

The outcome of the refinement task (Sec. III-G) is two sets
of data: a candidate development set with correct but poten-
tially incomplete labels, and an exhaustively-labeled candidate
evaluation set, using a vocabulary of 395 classes. Here, we
describe the post-processing carried out to obtain what’s finally
released as FSD50K, using a vocabulary of 200 classes.

A. Determine FSD50K vocabulary
We define valid leaf nodes as those meeting two require-

ments: a minimum of 100 clips and without extreme de-
velopment/evaluation imbalance. This is a trade-off between
abundant per-class data and preserving a lot of leaf nodes.24

We take the following measures.
Merge non-valid leaf nodes with their parents. There are

two variants of this process, depending on the type of branch
in the hierarchy. First, non-valid siblings of valid leaf nodes
are merged with their parents. In these branches, the level
of specificity is fixed by the valid sibling. For instance, Yip,
a class with few data which is sibling of Bark and child of
Dog, is merged with Dog and the most specific label in this
branch is the valid leaf Bark. Then, in branches without any
valid leaf nodes, all leaf nodes are merged with their parents,
which in turn become new leaf nodes (since they no longer
have children). This process is repeated recursively, pruning
the branch by moving upwards in the hierarchy, until a new
leaf node becomes valid. While we ideally want to prune the
branches as little as possible to preserve the most specific
nodes, some low-level nodes are inevitably merged with non-
specific parents, e.g., Domestic sounds, home sounds. The
minimum data requirement is enforced at the leaf node of
every branch, but not at its ancestors, which are intrinsically
valid because the leaf node provides enough data. This means
that, occasionally, the data explicitly associated with one
ancestor may be scarce. This is due to the nomination system
and annotation processes, which favour more specific labels.

24Given the particularities of some classes, the requirements to consider a
leaf node valid are relaxed in a few exceptions.

Remove some valid leaf nodes to obtain a more semanti-
cally consistent vocabulary. As a result of the pruning, some
parents with various children in the ontology end up having
very few children in the candidate dataset. In most cases, this is
not a problem as children are rather independent semantically.
However, in other cases, children constitute a pre-established
subset of closely related classes that makes more sense when
all of them co-exist, e.g., the classes Light engine (high
frequency), Medium engine (mid frequency), and Heavy engine
(low frequency), where only the former is valid. Considering
the real operation of trained models, the fact that only one
of these children is valid could potentially lead to unnatural
predictions biased by the choice of the vocabulary. To prevent
this issue, we merge some “isolated” valid leaf nodes with
their parents. Hence, despite having a substantial number of
light engine sounds, they are not part of the vocabulary—only
Engine is. Note however that these more specific annotations
are indeed available in the sound collection format.

Discard some intermediate nodes. This includes classes of
abstract nature or with ambiguous children and few data, e.g.,
Digestive or Arrow, respectively. The outcome is a vocabulary
of 200 classes (144 leaf nodes and 56 intermediate nodes).

B. Balancing development/evaluation sets

As a result of exhaustively labelling the evaluation set,
the proportion of some frequently occurring sound events
increased substantially, sometimes exceeding the number of la-
bels in the development set. To obtain a better balance between
development and evaluation sets, we first identified a set of 40
leaf nodes which benefit from transferring data from evaluation
to development. Then, we selected a set of evaluation clips
such that: i) their content encompasses mainly the 40 target
classes with a minimal impact on the remaining ones—note the
clips are multilabel; ii) they are disjoint from the remaining set
of clips in terms of uploaders. Specifically, we transferred 1182
clips, resulting in an evaluation set of 10,231 clips, and a per-
class development/evaluation proportion ranging from 50/50%
to 75/25% in the vast majority of leaf nodes. The per-class
split proportion depends on data availability, ubiquity of the
sound events, degree of multilabelness of the audio clips, and
non-divisibility of content from the same uploader. Exceptions
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include Chatter, Chirp, tweet and Male speech, man speaking,
for which there are more evaluation than development labels
due to the exhaustive labelling of these ubiquitous events. With
this transfer, we also make available some exhaustively labeled
content for validation.

C. Validation Set

Some recent large audio datasets do not provide predefined
validation sets [26, 129] allowing dataset users to create their
own. Nonetheless, for easier dataset consumption and repro-
ducibility we propose a candidate split of the development
set into train and validation. We consider that a validation set
should ideally meet the following criteria:
• Proportion. The validation set typically amounts to a

given proportion of the development set, often between
10 and 20%. Note that due to the multilabel and variable-
length nature of Freesound audio, the proportion can be
different in terms of audio clips, labels, and duration.

• Stratification. It is usually desirable that the class label
distribution is similar in both train and validation sets.

• Contamination. As explained in Sec. III-F, contamina-
tion across splits should be minimized.

Typical ways to make train/validation splits include random
sampling or iterative stratification [72]. Both can produce
desired data proportions and class distributions, the latter being
popular for multilabel data.25 However, they fail to keep non-
divisibility of uploaders’ content, thus generating contamina-
tion. The distribution of number of clips per uploader is very
varied in the development set. However, since we already allo-
cated a large amount of small uploaders into the evaluation set
(Sec. III-F), preserving uploader non-divisibility at this point
means deviating from the target class distribution. In other
words, it is difficult to strictly meet the three above criteria
simultaneously, hence we need to relax their application.

We focus on the contamination criteria and distinguish two
types of contamination: i) within-class contamination (WC,
when content from the same uploader and belonging to the
same class is placed at both train and validation sets); ii)
between-class contamination (BC, when content from the same
uploader but not from the same class is placed at both train
and validation sets). We hypothesize WC is more harmful as it
could imply having the same sound source, physical location
and/or recording gear in both sets. By contrast, BC would
have less impact as, in most cases, the audio material would
be different, and also possibly the acoustic environment. Under
this hypothesis, we focus on minimizing WC contamination
while being flexible with BC. To do this, we employ a method
similar to that of Sec. III-F. We first define the content from
one uploader labeled with the same class label as the minimum
non-divisible unit. Then, we adopt an iterative process in
which, after sorting the uploaders per-class appropriately, we
progressively allocate their content to the validation set.

As preprocessing, we initialize the validation set with most
of the data transferred from evaluation to development—
this content is well suited for evaluation purposes as it is

25Random sampling does not account for stratification per se, but a
workaround is to compute many train/validation splits and choose the one
that minimizes a distance between the respective class distributions.

exhaustively labeled. We then compute a score per uploader
and per class. The score for uploader u in class ci is given by:

scoreuci = αn labelsuci + β
1

Ku

Ku∑
k=1

n labelsuck , (4)

where n labelsuci represents the number of labels provided by
uploader u in class ci, Ku is the number of classes touched
by u, and α and β are tunable weights to set the relevance of
each term, both ∈ [0, 1]. The first term is the amount of data
in ci by u, whereas the second term is the average number
of labels per class, accounting for the scattering of u across
classes. Uploaders are sorted in ascending score order and the
content of low-score uploaders is transferred first. By tuning
α and β we aim to promote the uploaders providing a small
amount of data in the class under question, ci, with minimal
or no scattering. This facilitates the adjustment to a target
class distribution while minimizing contamination (both WC
and BC). This first group of uploaders is followed by others
with smooth scattering across classes, avoiding uploaders with
large contributions concentrated in specific classes. This again
facilitates adjusting to a target distribution while minimizing
the need to split content from the same uploader in one class
(i.e., WC contamination), but allowing BC contamination.

Once the validation set is initialized and the uploaders are
sorted per-class, we allocate data to the validation set as shown
in Algorithm 2. We traverse the classes in several passes, and,

Algorithm 2: Data allocation to validation set
Data: Initialized validation data per-class

V = {vci}
C
i=1, uploaders ranking in

development set per-class U = {uci}
C
i=1

1 for pass n = 1, 2, . . . N do
2 for class ci ∈ C do
3 get current validation target tci
4 while vci < tci do
5 get next uploader u in ranking uci

6 vci ← vci + data from u in ci
7 if data is multilabel to class cj then
8 vcj ← vcj + data from u in cj
9 end

10 end
11 end
12 end

Result: A candidate validation set

for each class ci, we progressively allocate content from the
ranked uploaders until a target data amount tci is reached.
Note that when separating the class ci, the algorithm does not
care about a given uploader u contributing to another class cj
(BC contamination), unless there is at least one clip bearing
labels for both ci and cj . WC contamination can be produced
in lines 6 and 8. We designed the step in line 6 so that, if
adding the content from u implies exceeding the validation
target tci by more than 15%, two things can happen. If the
current validation amount is vci > 0.75tci , the content is
not transferred, vci is deemed sufficient and the procedure
halted for ci. This flexibility allows the minimization of WC
contamination at the expense of deteriorating stratification.
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Else, if vci <= 0.75tci , the content from u in ci is split
and the amount needed to reach tci is allocated, causing WC
contamination. Similar heuristics are adopted for line 8.

Using the proposed scheme, we process clips from the 4936
uploaders in the development set. Due to the high variability
of users, the process needs initial debugging with a subset
of classes in order to tune the weights α and β. We finally
use α = 0.4 and β = 0 when an uploader contributes only
to one class, and α = 0.3 and β = 0.7 otherwise. We use
N = 2 passes starting from classes in need of more validation
data, which allows us to reach a reasonable stratification. The
target validation proportion is 15% of the development labels
per-class, except for the largest 17 classes where we reduced
this percentage progressively. The first-pass target is to fill
60% of the 15%-target, which is the goal in the second-pass.
We only consider the leaf nodes for this process (C = 144).
This is done for simplicity and because the leaf nodes are
the most specific data that will receive labels from the rest of
the ontology levels upon propagation to their ancestors. In this
way, validation data at all levels of the ontology is guaranteed.

The outcome is a validation set which represents a tradeoff
between stratification and contamination. Composed of 4170
audio clips, it amounts to 13.3% of the content associated with
leaf nodes and 10.2% of the entire development set. Its main
statistics are listed in Table VIII. Out of the 2224 uploaders
with content in the validation set, 641 also have content in
the train set—mostly corresponding to BC contamination. Sec.
V-C describes sound event tagging experiments comparing the
proposed split to others obtained via off-the-shelf approaches.

TABLE VIII
MAIN STATISTICS FOR CANDIDATE VALIDATION SET

clips duration uploaders

4170 9.9h 2224

D. Hierarchical Label Propagation

At this point, the labels in train, validation and evaluation
sets are usually from classes corresponding to lower levels of
the ontology, especially for the evaluation set (see Sec. III-G).
To obtain an exhaustive labelling hierarchy-wise, we need to
propagate the current labels in the upwards direction to the root
of the ontology, determining the ancestors in the hierarchical
path and automatically assigning them to the corresponding
audio clips. This hierarchical label propagation process is
sometimes referred to as label smearing [40, 130]. In most
cases, this is straightforward as there is one single unequivocal
path from a given low-level node to the root. However, in
other cases, nodes and root are connected by more than one
path. Among these multiple-path cases, some have all the paths
valid by default according to the semantics of the node. This
allows straightforward propagation as in the single-path case,
e.g., Doorbell can be directly propagated to Door and Alarm.
However, in the majority of cases, only a subset of the paths is
valid (often only one path), or even none of the paths is valid
by default due to the parents-node relationship. For instance,
Buzz cannot be directly propagated to its parents Fly, housefly
or Bee, wasp, etc. unless we have explicit information about

the source of the buzz sound. In these cases, we need knowl-
edge of the correct immediate parent(s) to unambiguously
infer ancestors for a complete hierarchical labelling. Parents
disambiguation can be carried out in different ways depending
on the annotation task. In the clips annotated only with the
validation task, the disambiguating parents will exist if and
only if the nomination system proposed them. For the clips
annotated also with the refinement task, raters were instructed
to specify the disambiguating parents when needed; however,
we detected that they were not always specified.

As a result, in these cases, ancestors cannot be inferred from
the leaf node, leading to hierarchical paths featuring missing
parts. For example, Growling is connected directly to Animal
in several cases where information of the source animal is not
available. The policy followed in case of ambiguous ancestors
was to not include these labels (hence potentially creating
missing “Present” labels in the mid- or high-levels of the
ontology) instead of possibly generating incorrect labels. In
the development set, these cases are provided as is since it is
less critical. By contrast, because the cases in the evaluation set
are more critical, they were partially reviewed and corrected.

To finalize this process, we filter out labels beyond the
200 selected. In the majority of cases, these correspond to
abstract or blacklisted classes of the ontology [26]. This is
another reason why some clips have labels up to the ontology
root while others only have a portion of the ancestors or
even one single label. For example, Whoosh, swoosh, swish
has no hierarchy as all class labels in its path were either
removed previously due to specified constraints (Arrow) or
removed in this last step (as classes above Arrow are abstract).
This can be easily spotted in the provided ground truth CSV
files.4 The number of labels before/after the hierarchical label
propagation process can be seen in Table IV (unpropagated
and propagated, respectively). The outcome is a set of hi-
erarchically propagated labels consistently encompassing all
relevant levels of the ontology. Note the considerable increase
of labels, despite that we are ignoring parts of the ontology.
This is the final ground truth provided for FSD50K.
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