
https://doi.org/10.1007/s11042-020-10367-w

FSDroid:- A feature selection technique to detect
malware from Android using Machine Learning
Techniques

FSDroid

Arvind Mahindru1,2 ·A.L. Sangal2

Received: 4 September 2019 / Revised: 20 August 2020 / Accepted: 22 December 2020 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

With the recognition of free apps, Android has become the most widely used smartphone
operating system these days and it naturally invited cyber-criminals to build malware-
infected apps that can steal vital information from these devices. The most critical problem
is to detect malware-infected apps and keep them out of Google play store. The vulnerabil-
ity lies in the underlying permission model of Android apps. Consequently, it has become
the responsibility of the app developers to precisely specify the permissions which are going
to be demanded by the apps during their installation and execution time. In this study, we
examine the permission-induced risk which begins by giving unnecessary permissions to
these Android apps. The experimental work done in this research paper includes the devel-
opment of an effective malware detection system which helps to determine and investigate
the detective influence of numerous well-known and broadly used set of features for mal-
ware detection. To select best features from our collected features data set we implement ten
distinct feature selection approaches. Further, we developed the malware detection model

by utilizing LSSVM (Least Square Support Vector Machine) learning approach connected
through three distinct kernel functions i.e., linear, radial basis and polynomial. Experiments
were performed by using 2,00,000 distinct Android apps. Empirical result reveals that the
model build by utilizing LSSVM with RBF (i.e., radial basis kernel function) named as
FSdroid is able to detect 98.8% of malware when compared to distinct anti-virus scan-
ners and also achieved 3% higher detection rate when compared to different frameworks or
approaches proposed in the literature.

Keywords Cyber-security · Machine learning · Dynamic-analysis · Feature selection ·

Permissions based analysis · Intrusion-detection

� Arvind Mahindru
er.arvindmahindru@gmail.com

1 Department of Computer Science and Applications, D.A.V. University, Sarmastpur 144012,
Jalandhar, India

2 Department of Computer Science and Engineering, Dr. B.R. Ambedkar National Institute
of Technology, Jalandhar 144011, India

Multimedia Tools and Applications (2021) 80:13271–13323

Published online: 202January14 1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-020-10367-w&domain=pdf
http://orcid.org/0000-0002-2129-4509
mailto: er.arvindmahindru@gmail.com

1 Introduction

Today, smartphone is not only a cellular telephone, but it can integrate with the computer-

like operating system, which is also able to perform various tasks with the help of apps.

Symbian was the first modern mobile operating system for smartphones that entered the

market in the year 2000. After that, limited mobile phone companies, like Nokia, Microsoft,

Apple, and Google, has followed them and launched their own mobile operating systems in

the market. Among these, Android operating system1 launched by Google in the year 2008

is quite popular as it is freely available, open source, and has a wide range of free apps in

its play store. According to Stat Counter,2 Android covers 74.92% share in the market till

date. However, the success of Android in the market is mainly due to its apps. Currently,

about 2.6 million apps are present in the official play store of Android,3 which users can

download and install for various purposes.

Android is a privilege-separated operating system where every app has its own individual

system identity, i.e., Group-ID and Linux user-ID.4 Each app of Android runs in a proce-

dure sandbox and accesses the permissions to use the resources which are not present in

its sandbox. Depending upon the sensitivity of permissions, the system automatically grant

permissions or may prompt the users to approve or reject the requests for permissions. By

taking the advantage of these permissions cyber-criminals target the user privacy. As stated

in,5 G-Data Security expert counted 3,246,284 malware apps until the end of the year 2018

and discovered over 7,50,000 new malware apps at the end of 2019. To defend Google play

store6 from malware apps, Google introduced Google Bouncer in the year 2012, which

scans new apps at the time of their launch. However, it has limitations, e.g., Bouncer can eas-

ily fingerprint.7 It is not hard to bypass Google’s security check, so that malicious Android

apps can make their way to Google Play store 8 and ultimately to users’ devices. By tak-

ing advantage of these permissions, cyber-criminal build malware apps on a daily basis and

invite users to install these apps. More than two billion active Android devices are present

in the market.9 To overcome the drawback of the bouncer and to protect Android devices,

Google introduced Google play protect in the market.10 It has the capability to scan the apps

in real-time. But it also have the limitations as stated in [28].

Android apps work on the principle of permission-model [11]. In addition to that, it

provides protection at four level, that categorize permissions as11 “signature”, “signature

or system”, “normal” and “dangerous”. In our study, we do not consider “signature” and

“signature or system” because they are system granted. We only consider “normal” and

“dangerous” permissions which are granted by the user. Normal permissions does not pay

any risk to the user’s privacy. If the permission is listed in its manifest, then it is granted

by the system automatically. On the other hand, dangerous permissions give access to the

1https://en.wikipedia.org/wiki/Android (operating system)
2http://gs.statcounter.com/os-market-share/mobile/worldwide
3 https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
4https://source.android.com/security/overview/kernel-security
5https://www.gdatasoftware.com/news/2017/04/29715-350-new-android-malware-apps-every-hour
6https://play.google.com/store?hl=en IN
7http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/
8http://gs.statcounter.com/os-market-share/mobile/worldwide
9https://source.android.com/security/reports/Google Android Security\ 2017 Report Final.pdf
10https://source.android.com/security/reports/Google Android Security\ 2017 Report Final.pdf
11https://developer.android.com/training/permissions/requesting.html

13272 Multimedia Tools and Applications (2021) 80:13271–13323

https://en.wikipedia.org/wiki/Android_(operating_system)
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://source.android.com/security/overview/kernel-security
https://www.gdatasoftware.com/news/2017/04/29715-350-new-android-malware-apps-every-hour
https://play.google.com/store?hl=en_IN
http://blog.trendmicro.com/trendlabs-security-intelligence/a-look-at-google-bouncer/
http://gs.statcounter.com/os-market-share/mobile/worldwide
https://source.android.com/security/reports/Google_Android_Security _2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security _2017_Report_Final.pdf
https://developer.android.com/training/permissions/requesting.html

Fig. 1 Systematic approach of our proposed work

user’s confidential data. However, it is purely dependent upon the user to give access or

revoke the use of permission or set of permissions.

Performance of malware detection rely on selecting the right set of features. The features

which are selected as an input to detect malware have a great effect on the performance of

the malware detection. To select appropriate features or feature sets, in this study we use dis-

tinct feature selection approaches. Feature selection approaches are divided into two distinct

classes, one class contains feature ranking approaches, and second class contains feature

subset selection approaches. Feature ranking approaches are based on conclusive factors to

arrange each feature according to its rank, further high ranking features are selected for a

specified work. On the other side feature subset selection approaches depend upon the prin-

ciple of selection of features’ subset, which collectively improve detection capability. In this

work, six distinct kinds of feature ranking and four distinct kinds of feature subset selection

approaches are used to select the right features sets. Further, selected feature sets helps in

minimizing the value of misclassification errors since it eliminates irrelevant features and

holds only those features which have excellent discriminative power.

In the literature, a number of researchers applied different machine learning algorithms

to detect malware. Some of the broadly used algorithms are decision tree learning algo-

rithms [60], neural networks [54, 59], clustering [14], regression and classification. The

construction of an appropriate malware detection model which can help to detect apps that

are really infected with malware is still a challenging task in the field of cyber-security. So

in this work, we implement LSSVM using three distinct kernel functions viz., polynomial,

linear, and RBF to build a model for malware detection. LSSVM is the variant of the SVM

that is established on the hypothesis of statistical learning.

The list of phases pursued by us in building an effective Android malware detection

model is demonstrated in Fig. 1. To conduct an empirical study on the collection of large

data set, we collect Android application packages (.apk) files from distinct promised repos-

itories. After that, we divide collected .apk files into two classes, i.e., benign and malware

based on the results of different anti-virus scanners (Microsoft window defender12 and

VirusTotal13). In the next phase, we extracted permissions and API calls (consider as fea-

tures in our work) by using distinct tools available publicly. Additionally, the right set of

features is selected by implementing feature selection approaches on our collected data set.

Further, the selected feature sets (i.e., permissions and API calls) are used as an input to form

a model by considering LSSVM having three distinct kernel functions. At last, to validate

that our proposed model is capable to detect malware or not we validate it with some exist-

ing frameworks or approaches developed in the literature and also compared our proposed

framework with different anti-virus scanners available in the market.

The novel and unique assistance of this research work is presented as follows:

12https://www.microsoft.com/en-in/windows/comprehensive-security
13https://www.virustotal.com/

Multimedia Tools and Applications (2021) 80:13271–13323 13273

https://www.microsoft.com/en-in/windows/comprehensive-security
https://www.virustotal.com/

– To the best of our knowledge, this is the first work in which 2,00,000 unique apps are

collected that further belongs to thirty different categories of Android apps. To build

effective and efficient malware detection model we extract permissions and API calls

and consider them as features in this research paper.

– In this research paper, we proposed a new framework that works on the principle

of machine learning algorithm by selecting relevant features using feature selection

approaches. Empirical result reveals that our proposed framework is able to detect

98.75% unknown malware from real-world apps.

– Our proposed framework is capable to detect malware from real-world apps in less

time-period when compared to distinct anti-virus scanners available in the market.

– Our proposed framework is able to detect 3% higher detection rate when compared to

different frameworks or approaches proposed in the literature.

– In this study, we applied t-test analysis to investigate that features selected by feature

selection approaches are having significant difference or not.

The rest of the paper is summarized as follows. Section 2 of this paper, discusses about

the perviously developed approaches or frameworks used for malware detection along with

the gaps present in the literature. Also, this section provides a brief structure of our pro-

posed model based on the gaps in the literature. Section 3, explains the different feature

raking approaches. Section 4, explains the different feature subset selection approaches used

in this paper. Section 5 explains the LSSVM having different kernels to detect malware. In

Section 6, we discuss different comparison methods of the proposed framework with exist-

ing techniques available in the literature. Performance parameters used for evaluation in this

study are mentioned in Section 7. Sections 8 and 9 give the experimental setup of our pro-

posed framework and the outcomes. In Section 10, we have discussed threats to validity and

summarized our work with future scope in Section 11.

2 Related work and overview of proposed framework

Approaches or frameworks which were developed by the previous researchers to detect mal-

ware from Android apps are presented in this section. To find and overcome the gaps in the

existing approaches, we divide this section in to two subsections. In the first subsection, we

discuss about the frameworks or approaches, developed in the literature. In the second subsec-

tion, we first discuss about the data sets used in earlier studies and then we present the descrip-

tion about the collection of Android apps, formulation of our data set, extraction and formula-

tion of feature sets, capability of features, feature selection approaches implemented in the

literature. The research questions answered in this study are also formulated in this section.

2.1 Related work

In this subsection, we discuss about the analysis and its types which are used for Android

malware. Later, we discuss about the detection techniques which were suggested by the

previous researchers and academicians.

2.1.1 Analysis of Android apps

There are three different ways to carry out the analysis of Android apps i.e., static [29,

50, 72], dynamic [29] and hybrid [9, 34]. Static analysis is the one which analyzes the

13274 Multimedia Tools and Applications (2021) 80:13271–13323

app without executing it. In dynamic analysis, it analyzes the app during its execution. The

hybrid approach is the combination of both the static and dynamic analysis. Petsas et al.

[68] have explored that malicious apps targeting the Android platform can evade dynamic

analysis. They applied and tested heuristics of sophistication by integrating them in existing

malware samples, which attempt to conceal the presence when examined in an emulated

environment. Bläsing et al. [12] suggested Android Application Sandbox (AASandbox)

that execute on both static and dynamic analysis to automatically identify the suspicious

apps from Android. In this study, we perform dynamic analysis of Android apps to build a

malware detection model.

2.1.2 Android Malware detection

Chen et al. [18] suggested Pegasus which use the app permissions to detect malware apps.

They formed Permission Event Graph (PEG) by using the fundamentals of static analy-

sis and applied models of the APIs. Peiravian and Zhu [67] employed machine learning

methods to detect malicious Android apps. They perform experiment on 1200 real malware-

infected apps and validated their performance. Chakradeo et al. [17] introduced Mobile

Application Security Triage (MAST), a framework which supports to manage malware

resources toward the apps by the most significant potential to exhibit malicious behavior.

The MAST is a statistical method that measures the correlation between multiple categorical

data using Multiple Correlation Analysis (MCA).

Wang et al. [84] studied the risk of single permission and the group of permissions.

They employ feature ranking methods to rank individual Android permissions based on the

risk involved. Enck et al. [25] build a framework named Kirin which used the principles

of light-weight certification of apps to detect malware at the time of installation. Ongtang

et al. [65] presented Secure Application INTeraction (Saint), that governs installation and

run-time permissions. Grace et al. [35] proposed Woodpecker which examined the Android

permission-based security model applied to pre-installed apps. Bugiel et al. [13] developed

a model for a policy-driven and system-centric runtime monitoring of communication chan-

nels among apps at multiple layers. Zhou et al. [98] presented a systematic characterization

of existing Android malware, such as, collecting charges from the devices by subscribing

the services and mistreating SMS related Android permissions. Barrera et al. [8] proposed

permission-based security models which helps to control access to different resources of

system. They presented a methodology by doing empirical analysis of 1,100 Android apps

for permission-based security models which make unique usage of self-organizing maps.

In recent study [52] Papilio introduced, a new approach for visualizing permissions of

real-world Android apps. They build a new specific layout approach that includes node-

link diagrams, matrix layouts and aspects of set membership. Matsudo et al. [61] presents a

system model for supporting users’ approval decision when an app is installed. They intro-

duced a reputation-based security evaluation first, which analyzes permissions to judge app

is malicious or not. Arp et al. [4] proposed DREBIN, a lightweight approach for the detec-

tion of Android malware. They combined concept of machine learning and static analysis,

which makes malware development better. DERBIN can scan a number of apps and can

protect users to install apps from untrusted sources. Jeon et al. [40] address the issues of

finer-grained permissions of Android. There proposed framework was based on four major

groups of Android permissions and experiments were performed by taking top Android

apps to differentiate between benign or malware-infected apps. PUMA presented in [74], is

a new framework for detecting malware-infected Android apps by implementing machine

learning algorithms after analyzing the extracted permissions from the Android apps itself.

Multimedia Tools and Applications (2021) 80:13271–13323 13275

Grace et al. [34] developed RiskRanker, a proactive approach to accurately and scalably sift

over a number of apps in existing App stores, to spot zero-delay malware. They conclude

that 118,318 apps among 322 zero-day specimens from 11 distinct families were success-

fully discovered. TaintDroid [26] is a information flow tracking tool that can concurrently

track multiple sources of sensitive data. A new model to protect smartphones was discussed

in [70]. This model execute attack detection on a remote server where the implementa-

tion of the app on the smartphone mirror in a virtual machine. Schmidt et al. [5] presented

anomaly detection using machine learning to monitor system-based information and sys-

tem gathering behavior that is processed by a remote system. Zheng et al. [95] focused on

the demanding task of triggering a particular behavior through automated UI interactions.

They proposed a hybrid analysis approach to display UI-based trigger conditions in Android

apps. To discover malware at kernel-level and user-level, a technique, named MADAM, has

been developed in [24], which is capable to distinguish malware or benign apps. A fine-

grained dynamic binary instrumentation tool named as DroidScope is presented in [91], for

Android that reconstructs two levels of semantic information i.e., Java and operating system.

A framework to monitor system calls named as Crowdroid is introduced in [14]. Crowdroid

can see the track of information flows and API analysis which paid great impact to find

malware activities in the network.

A root privilege management scheme called Root Privilege Manager (RPM) were pro-

posed by [80]. It prevents Android apps from the risk raised by the permissions i.e.,

normal or dangerous. Wang et al. [82] analyses the used permissions and support-based

permissions candidate method to detect Android malware. A hybrid feature selection

approach which work on Rough Set Quick Reduct algorithm to detect malware was pro-

posed in [10]. Wang et al. [85] collected 11 kind of static features by extraction from

each type of app to characterize its behavior. By collecting the behavior, they applied

classification algorithms to categorize malware and benign apps. Kirubavathi et al. [46]

proposed a structural-based analysis learning approach, which accepts machine learn-

ing algorithms to detect malware and benign apps. They adopt botnet linked patterns

of requested permissions as a feature to evaluate benign and malware apps. Jerlin et al.

[41] suggested a new approach to detect malware by using its Application Programmable

Interfaces (APIs). They adopt upper and lower boundaries as one of its feature to detect

malware from Android. Mahindru and Singh [60] applied supervised machine learning

algorithm on 172-permissions extracted during its installation and start-up time from

Android apps.

Xiao et al. [88] proposed an approach that was based on deep learning to distinguish

between benign and malware apps. In their approach, they consider system call as fea-

ture and trained it with the help of Long Short-Term Memory (LSTM) classifier. In their

study, they trained LSTM models with system call sequences from malware and benign

apps. Experiments were performed on 3567 malware-infected and 3536 benign apps and

achieved recall of 96.6%. Mahindru and Sangal [54] proposed a framework DeepDroid

that works on the principle of deep learning. They extract permissions and API calls as

features from collected Android application packages (.apk). To select significant features

to develop malware detection model six distinct feature ranking approaches are applied

on extracted features. Experiments were performed on 1,00,000 benign apps and 20,000

malware-infected apps. Framework developed using Principal component analysis (PCA) as

feature ranking approach achieved a detection rate of 94%. Letteri et al. [49] proposed a bot-

net detection methodology for internet of things (IOT) based on deep learning techniques,

tested on a new, SDN-specific data set with a high (up to 97%) classification accuracy.

13276 Multimedia Tools and Applications (2021) 80:13271–13323

Devpriya and Lingamgunta [23] proposed a novel hash-based multifactor secure mutual

authentication scheme that includes hashing properties, certificates, nonce values,traditional

user ids, and password mechanisms that resist MITM attacks, replay attacks, and forgery

attacks.

Ma et al. [53], presented Android malware detection model based on the principle

of API information. In their study, with the help of API information they construct

three distinct data sets that are related to boolean, frequency and time-series. Based on

these three data sets, three distinct detection models are developed. Experiments were

performed by using 10010 benign and 10683 malware apps and achieved an accuracy

of 98.98% by considering an ensemble approach. Mahindru and Sangal [59] proposed

PerbDroid that developed by using features selected by feature ranking approaches and

deep learning as machine classifier. Experiments were performed on 2,00,000 distinct

Android apps and achieved a detection rate of 97.8%. Wang et al. [86] proposed a hybrid

model based on convolutional neural network (CNN) and deep autoencoder (DAE). To

improve the accuracy of malware detection model, they employed multiple CNN to select

features from high-dimensional features of Android apps. Experiments were performed

on 10,000 benign and 13,000 malware-infected apps and trained it with the help of

serial convolutional neural network architecture (CNN-S). Mahindru and Sangal [56] pro-

posed malware detection model with semi-supervised machine learning techniques. They

applied LLGC algorithm on 2,00,000 distinct Android apps and achieved an accuracy

of 97.8%.

Yamaguchi and Gupta [90] discussed properties of IOT device which make it more

vulnerable for malware attacks i.e., large volume and pervasiveness. In their study, they

proposed method to mitigate the attack on IOT based devices. Gupta et al. [36] proposed

a book that is related to security measure and challenges faced by different communica-

tion devices. They also discussed different methods to mitigate the attacks. In [32], it was

seen that feature selection approach paid a great effect in developing the model. Authors

implemented Principal Component Analysis (PCA) to reduce the complexity of the model.

With the advancement in the machine learning algorithms like SVM [20, 94], Deep learn-

ing model [32, 38, 96], it not only helped in detecting intrusion detection [45], cyber attacks

but it also helped in health sector and in wireless routing too. Distinct researchers applied

deep learning model and hybrid methods [32, 38, 96] in their study and achieved remarkable

results.

Arora et al. [3] proposed PermPair, in which they construct and compare the graphs

by extracting permissions from benign and malware-infected apps. Empirical result reveals

that proposed malware detection model achieved an accuracy of 95.44% when compared to

other similar approaches and favorite mobile anti-malware apps. Mahindru and Sangal [55]

proposed DLDroid malware detection model, that is based on feature selection approaches

and Deep Neural Network (DNN) machine learning algorithm. In their study, they collected

Android apps that are developed during COVID-19. Experiments were performed on 11,000

distinct Android apps and model developed using DNN and Rough set analysis achieved

a detection rate of 97.9% when compared to distinct anti-virus scanners available in the

market.

Table 1 describes the brief details of some existing Android malware detection tech-

niques present in literature. It also includes the type of monitoring and type of analysis used

for these techniques. The conclusions made from these techniques are presented in the last

column of the table.

Multimedia Tools and Applications (2021) 80:13271–13323 13277

Ta
b
le
1

B
ri

ef
d
es

cr
ip

ti
o
n

o
f

so
m

e
ex

is
ti

n
g

A
n
d
ro

id
m

al
w

ar
e

d
et

ec
ti

o
n

fr
am

ew
o
rk

s
o
r

ap
p
ro

ac
h
es

F
ra

m
ew

o
rk

/
A

p
p
ro

ac
h
es

D
et

ec
ti

o
n

ty
p
e

M
o
n
it

o
ri

n
g

ty
p
e

A
n
al

y
si

s
ty

p
e

O
b
se

rv
at

io
n
s

A
A

S
an

d
b
o
x

(2
0
1
0
)

[1
2
]

D
y
n
am

ic
S

y
st

em
an

d
L

ib
ra

ry
C

al
ls

C
lu

st
er

in
g

C
lu

st
er

in
g

is
u
se

d
to

tr
ai

n
ed

th
e

d
at

a,
b
u
t

te
st

in
g

is
n
o
t

p
er

fo
rm

ed

T
ai

n
tD

ro
id

(2
0
1
0
)

[2
6
]

D
y
n
am

ic
P

ro
g
ra

m
T

ra
ce

s
E

x
p
er

t
T

ra
ck

in
g

o
f

la
b
el

-b
as

ed
v
ar

ia
b
le

s,
m

et
h
o
d
s,

fi
le

s
an

d
IP

C
b
y

d
y
n
am

ic
an

al
y
si

s

P
ar

an
o
id

A
n
d
ro

id
(2

0
1
0
)

[7
0
]

D
y
n
am

ic
P

ro
g
ra

m
T

ra
ce

s
E

x
p
er

t
D

et
ec

ti
o
n

o
n

a
re

m
o
te

se
rv

er
w

h
er

e
th

e

ex
ec

u
ti

o
n

o
f

so
ft

w
ar

e
o
n

p
h
o
n
e

as
a

v
ir

tu
al

m
ac

h
in

e

S
ch

m
id

t
et

al
.
(2

0
1
1
)

[5
]

S
ta

ti
c

an
d

D
y
n
am

ic
S

y
st

em
C

al
ls

C
lu

st
er

in
g

S
V

M
-l

ig
h
t

m
ac

h
in

e
le

ar
n
in

g
te

ch
n
iq

u
e

ap
p
li

ed

C
ro

w
d
ro

id
(2

0
1
1
)

[1
4
]

D
y
n
am

ic
S

y
st

em
C

al
ls

C
lu

st
er

in
g

C
lu

st
er

in
g

b
as

ed
K

-m
ea

n
s

ap
p
li

ed

o
n

ex
p
er

im
en

ta
l

an
d

W
il

d
m

al
w

ar
e

W
o
o
d
p
ec

k
er

(2
0
1
2
)

[3
5
]

S
ta

ti
c

P
er

m
is

si
o
n
s

D
ep

en
d
en

cy
G

ra
p
h
s

U
se

s
C

F
G

fo
r

d
et

ec
ti

n
g

ex
p
li

ci
t

le
ak

ag
es

an
d

p
er

m
is

si
o
n

an
al

y
si

s
fo

r
im

p
li

ci
t

ca
p
ab

il
it

y
le

ak
ag

e

R
is

k
R

an
k
er

(2
0
1
2
)

[3
4
]

S
ta

ti
c

In
st

ru
ct

io
n
s,

P
er

m
is

si
o
n
s

D
ep

en
d
en

cy
G

ra
p
h
s

A
se

t
o
f

p
re

-d
ef

in
ed

m
al

ic
io

u
s

o
p
er

at
io

n
s

an
d

A
P

I
ca

ll
s

to
ra

te
ap

p
s

in
w

h
ic

h
fa

m
il

y
th

ey
b
el

o
n
g

S
m

ar
tD

ro
id

(2
0
1
2
)

[9
5
]

S
ta

ti
c

an
d

D
y
n
am

ic
P

ro
g
ra

m
T

ra
ce

s
D

ep
en

d
en

cy
G

ra
p
h
s

Im
p
ro

v
ed

d
et

ec
ti

o
n

b
y

g
en

er
at

in
g

U
I-

b
as

ed

tr
ig

g
er

co
n
d
it

io
n

M
A

D
A

M
(2

0
1
2
)

[2
4
]

D
y
n
am

ic
K

er
n
el

-l
ev

el
an

d
M

ac
h
in

e
L

ea
rn

in
g

5
%

F
P

ra
te

an
d

9
3
%

d
et

ec
ti

o
n

ra
te

U
se

r-
L

ev
el

D
ro

id
S

co
p
e

(2
0
1
2
)

[9
1
]

D
y
n
am

ic
K

er
n
el

-l
ev

el
an

d
U

n
av

ai
la

b
le

E
v
al

u
at

io
n

sh
o
w

ed
th

e
b
en

ef
it

o
f

U
se

r-
le

v
el

d
y
n
am

ic
al

ly
d
is

ab
li

n
g

JI
T

fo
r

ta
rg

et
ed

an
al

y
si

s

A
p
p
G

u
ar

d
(2

0
1
2
)

[7
]

D
y
n
am

ic
P

ro
g
ra

m
T

ra
ce

s
U

n
av

ai
la

b
le

A
n
al

y
si

s
is

d
o
n
e

o
ff

li
n
e,

p
ri

o
r

to
re

p
ac

k
ag

in
g

th
e

ap
p

A
n
d
ro

m
al

y
(2

0
1
2
)

[7
6
]

D
y
n
am

ic
B

eh
av

io
u
ra

l
M

o
n
it

o
ri

n
g

M
ac

h
in

e
L

ea
rn

in
g

T
ra

in
in

g
M

et
h
o
d
:

C
la

ss
if

ic
at

io
n

w
it

h
la

b
el

ed
d
at

a

13278 Multimedia Tools and Applications (2021) 80:13271–13323

Ta
b
le
1

(c
o
n
ti

n
u
ed

)

F
ra

m
ew

o
rk

/
A

p
p
ro

ac
h
es

D
et

ec
ti

o
n

ty
p
e

M
o
n
it

o
ri

n
g

ty
p
e

A
n
al

y
si

s
ty

p
e

O
b
se

rv
at

io
n
s

A
u
ra

si
u
m

(2
0
1
2
)

[8
9
]

D
y
n
am

ic
B

eh
av

io
u
ra

l
R

ep
ac

k
ag

in
g

1
0
0
%

su
cc

es
s

ra
te

T
st

ru
ct

D
ro

id
(2

0
1
3
)

[7
7
]

D
y
n
am

ic
P

ro
ce

ss
C

o
n
tr

o
l

B
lo

ck
M

ac
h
in

e
L

ea
rn

in
g

M
ac

h
in

e
le

ar
n
in

g
cl

as
si

fi
ca

ti
o
n

te
ch

n
iq

u
e

is
ap

p
li

ed

A
p
p
sP

la
y
g
ro

u
n
d

(2
0
1
3
)

[7
1
]

D
y
n
am

ic
S

y
st

em
C

al
ls

U
n
av

ai
la

b
le

H
eu

ri
st

ic
b
as

ed
U

I
in

te
ra

ct
io

n

an
d

P
ro

g
ra

m
T

ra
ce

s
ap

p
ro

ac
h

is
fo

ll
o
w

ed

A
p
p
P

ro
fi

le
r

(2
0
1
3
)

[7
3
]

S
ta

ti
c

an
d

D
y
n
am

ic
P

ro
g
ra

m
T

ra
ce

s
an

d
E

x
p
er

t
U

si
n
g

si
g
n
at

u
re

A
P

I
ca

ll
s

A
P

I
C

al
ls

ar
e

an
al

y
se

d

A
n
d
ru

b
is

(2
0
1
4
)

[5
1
]

S
ta

ti
c

an
d

D
y
n
am

ic
D

al
v
ik

an
d

S
y
st

em
le

v
el

E
x
p
er

t
U

se
d

d
at

a
se

t
o
f

1
,0

0
0
,0

0
0

A
n
d
ro

id
ap

p
s

w
h
er

e
4
0
%

ar
e

m
al

ic
io

u
s

ap
p
s

A
n
d
ro

g
u
ar

d
(2

0
1
5
)

[2
2
]

S
ta

ti
c

D
is

as
se

m
b
le

an
d

C
o
n
tr

o
l

F
lo

w
G

ra
p
h
s

O
p
en

-s
o
u
rc

e,
fi

n
d
s

d
if

fe
re

n
ce

s
an

d
si

m
il

ar
it

ie
s

D
ec

o
m

p
il

e
ap

p
s

o
f

tw
o

su
sp

ec
te

d
cl

o
n
es

C
o
p
p
er

D
ro

id
(2

0
1
5
)

[7
9
]

D
y
n
am

ic
S

y
st

em
C

al
l

H
ie

ra
rc

h
ic

al
2
,9

0
0

re
al

-w
o
rl

d
m

al
w

ar
es

-i
n
fe

ct
ed

ap
p
s

u
se

d

M
A

D
A

M
(2

0
1
6
)

[7
5
]

S
ta

ti
c

an
d

D
y
n
am

ic
M

u
lt

ip
le

F
ea

tu
re

s
M

ac
h
in

e
L

ea
rn

in
g

1
1
,0

0
0

A
n
d
ro

id
ap

p
s

w
er

e
co

n
si

d
er

ed

H
in

D
ro

id
(2

0
1
7
)

[3
9
]

D
y
n
am

ic
A

P
I

ca
ll

M
ac

h
in

e
L

ea
rn

in
g

L
im

it
ed

d
at

a
se

t
u
se

d

D
ro

id
C

at
(2

0
1
8
)

[1
5
]

D
y
n
am

ic
In

te
rp

ro
ce

ss
C

o
m

m
u
n
ic

at
io

n
M

ac
h
in

e
L

ea
rn

in
g

3
4
,3

4
3

ap
p
s

w
er

e
u
se

d

M
al

D
o
ze

r
(2

0
1
8
)

[4
4
]

D
y
n
am

ic
A

P
I

ca
ll

s
M

ac
h
in

e
L

ea
rn

in
g

L
im

it
ed

d
at

a
se

t
w

er
e

u
se

d

D
ro

id
D

et
(2

0
1
8
)

[1
0
0
]

S
ta

ti
c

A
P

I
ca

ll
s

an
d

P
er

m
is

si
o
n
s

M
ac

h
in

e
L

ea
rn

in
g

2
,1

3
0

A
n
d
ro

id
ap

p
s

w
er

e
co

n
si

d
er

ed
.

D
ee

p
D

ro
id

(2
0
1
9
)

[5
4
]

D
y
n
am

ic
A

P
I

ca
ll

s
an

d
P

er
m

is
si

o
n
s

M
ac

h
in

e
L

ea
rn

in
g

1
,2

0
,0

0
0

A
n
d
ro

id
ap

p
s

w
er

e
u
se

d

P
er

b
D

ro
id

(2
0
2
0
)

[5
9
]

D
y
n
am

ic
S

y
st

em
ca

ll
an

d
p
er

m
is

si
o
n
s

M
ac

h
in

e
L

ea
rn

in
g

2
,0

0
,0

0
0

d
is

ti
n
ct

A
n
d
ro

id
ap

p
s

u
ti

li
ze

d

G
A

d
ro

id
(2

0
2
0
)

[5
7
]

D
y
n
am

ic
S

y
st

em
C

al
l

an
d

p
er

m
is

si
o
n
s

M
ac

h
in

e
L

ea
rn

in
g

C
o
n
si

d
er

2
5
,0

0
0

m
al

w
ar

e-
in

fe
ct

ed
ap

p
s

Multimedia Tools and Applications (2021) 80:13271–13323 13279

2.2 Gaps and overview of our proposed framework

In this subsection of the paper, we discuss about the gaps that are present in the previous

studies and how we can overcome these gaps while developing an efficient and effective

Android malware detection framework.

2.2.1 Gaps present in the previous frameworks/approaches

The research done earlier in this field had the following limitations: use of limited

data set, high computation burden and unable to detect sophisticated malware. To over-

come the first limitation, in this study, we collect 2,00,000 Android apps which belong

to thirty different categories from different promised repositories mentioned in Table 3.

Further, to select significant features which help to reduce computation burden, we

implement ten distinct feature selection approaches on extracted feature data set (i.e.,

Permissions, API calls, number of user download the app and rating of an app). Next,

selected features are considered as input to build model by using distinct machine learn-

ing algorithms so that suitable framework is build to detect malware from real-world

apps. In the previous studies, developed frameworks/approaches were not tested on

real-world apps.

2.2.2 Description of the collected Android apps

Pervious frameworks or studies mentioned in Table 2, used only limited data sets of

Android apps to examine its associations with malware or benign class. Therefore, it is

not able to draw generic conclusion relevant to all Android apps and its system. To over-

come this gap, we collect apps that belongs to thirty different categories which are used

to generalize and strengthen our outcomes. In this study to develop efficient and effec-

tive Android malware detection model, we collect Android Application packages (.apk)

from different promised repositories. We collected 2,00,000 of .apk files, from Google’s

Table 2 Previous developed studies/framework for Android malware detection

Previous Work Data set used Implementation

Kirin [25] 311 apps On-device

Scandroid [31] — On-device

TaintDroid [26] 1,100 apps Off-device

AASandbox [12] 150 apps Off-device

Crowdroid [14] Self-written Off-device

malware apps

DroidMOSS [97] 68,187 apps Off-device

Andromaly [76] Self-written On and Off-device

malware apps

AndroSimilar [27] 7324 apps Off-device

PUMA [74] 1811 Off-device

CopperDroid [79] 2900 + apps Off-device

13280 Multimedia Tools and Applications (2021) 80:13271–13323

Table 3 Categories of .apk files belong to their respective families (.apk)

ID Category Normal Trojan Backdoor Worms Botnet Spyware

D1 Arcade and Action (AA) 6291 440 100 204 130 600

D2 Books and Reference (BR) 5235 200 250 56 150 150

D3 Brain and Puzzle(BP) 4928 820 54 28 50 50

D4 Business (BU) 8308 152 150 150 22 22

D5 Cards and Casino(CC) 2886 76 65 81 100 44

D6 Casual(CA) 2010 321 69 46 150 140

D7 Comics (CO) 7667 65 95 35 3 0

D8 Communication (COM) 8414 250 50 500 3 3

D9 Education (ED) 8744 560 68 50 50 68

D10 Entertainment(EN) 4222 500 500 500 100 42

D11 Finance (FI) 3999 50 200 99 65 92

D12 Health and Fitness(HF) 8551 98 65 45 140 140

D13 Libraries and Demo (LD) 5655 70 100 100 6 500

D14 Lifestyle (LS) 7650 155 200 100 193 192

D15 Media and Video (MV) 8019 100 123 162 450 71

D16 Medical(ME) 6000 12 13 12 24 25

D17 Music and Audio (MA) 8621 65 100 65 165 165

D18 News and Magazines (NM) 8164 100 100 100 100 32

D19 Personalization (PE) 4334 500 42 500 200 22

D20 Photography (PH) 9133 100 120 50 96 500

D21 Productivity (PR) 9850 100 516 250 250 62

D22 Racing (RA) 7766 50 100 210 100 180

D23 Shopping (SH) 2673 100 100 120 150 50

D24 Social (SO) 6159 100 50 210 150 150

D25 Sports (SP) 2669 100 240 100 450 112

D26 Sports Games (SG) 3889 100 145 145 650 198

D27 Tools (TO) 3346 120 500 550 475 563

D28 Transportation (TR) 3796 2 500 100 100 20

D29 Travel and Local (TL) 3180 500 220 150 48 100

D30 Weather (WR) 2841 120 23 700 50 25

Malware families are identified by anti-virus scanners

play store, hiapk,14 appchina,15 Android,16 mumayi,17 gfan,18 slideme19 and pandaapp.20

Among these 2,00,000 benign .apk files, 1,75,000 are distinct. Further, the features are

14http://apk.hiapk.com/
15http://www.appchina.com/
16http://android.d.cn/
17http://www.mumayi.com/
18http://apk.gfan.com/
19http://slideme.org/
20http://download.pandaapp.com/?app$=$soft&controller$=$android#.V-p3f4h97IU

Multimedia Tools and Applications (2021) 80:13271–13323 13281

http://apk.hiapk.com/
http://www.appchina.com/
http://android.d.cn/
http://www.mumayi.com/
http://apk.gfan.com/
http://slideme.org/
http://download.pandaapp.com/?app$=$soft &controller$=$android#.V-p3f4h97IU

extracted after deleting viruses infected apps, reported by VirusTotal and Microsoft Win-

dows Defender. VirusTotal identify malware affected apps by antivirus engines, it contains

the definition of 70 antivirus softwares. A total of 35,000 malware samples, are collected

from three different promised repositories. Kadir et al. [43], introduced Android sample set

of 1929 botnets, consisting of 14 distinct botnet families. Android Malware Genome project

[98] contains a data set of 1200 malware samples that cover the currently present Android

malware families. We collected about 17,871 samples from AndroMalShare21 along with

their package names. After removing duplicate packages from the collected data set, we

have 25,000 unique malware samples left in our study. Both benign and malware apps being

collected from the above mentioned sources at the end of December 2018. Table 3 shows

the number of .apk files belonging to different categories i.e., business, comics, commu-

nication, education and so on. To better differentiate between benign and malware apps

we consider .apk files belonging to normal, trojan, backdoor, worms, botnet and spyware

families22 mentioned in Table 3.

2.2.3 Formulation of data set

After collecting a unique samples of .apk files from various sources mentioned in previous

subsection, we extract permissions and API calls from each of the .apk file. Extraction of

permissions and API calls have been performed with the help of an emulator (in our study

we use Android studio). Emulator provides the same API level and execution environment

as our smartphones provide to us. In our study, to extract permissions and API calls from

Android apps we use Android system version 6.0 Marshmallow (i.e., API level 23) and

form our data set for experiments. Previous developed frameworks or approaches used the

previous version of Android to extract features from them. There are two reasons for select-

ing this Android version: first, it asks the user to revoke or grant the permission to use the

resources of smartphones and second it covers 28.1% of Android devices which is higher

than other versions present in the market23. A flowchart showing that how an app gets

installed and demand permissions on Android 6.0 is presented in Fig. 2. When we start the

installed app at the very first time, it demands some of the permissions which are required

by the app to function properly. Next, SDK level is checked if the version of SDK is ≥ 23

then Android ask from the user to grant or revoke the permission to the app. If the user grant

the permissions to the app, then call command is executed otherwise not. This facility was

not available in the earlier versions of Android.

Figure 3 demonstrates the phases which are followed in extracting features from Android

apps. In the first phase, to extract features from collected .apk, we perform dynamic anal-

ysis by using Android studio as an emulator. To extract permissions and API calls, we use

Android 6.0, i.e., Marshmallow mentioned above. Further, we write a program in java lan-

guage and extract permissions and API calls from them and save into the .csv file [58] that

are publicly available for researchers and academicians.24 These permissions are demanded

by apps during their installation and start-up time. By using the same process again and

again, we extract permissions from 2,00,000 different Android apps and record them in the

.csv file format. Previous researchers used limited set of features to develop a model for

21http://202.117.54.231:8080/
22Malware families are identified by VirusTotal.
23https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
24https://data.mendeley.com/datasets/9b45k4hkdf/1

13282 Multimedia Tools and Applications (2021) 80:13271–13323

http://202.117.54.231:8080/
https://www.statista.com/statistics/271774/share-of-android-platforms-on-mobile-devices-with-android-os/
https://data.mendeley.com/datasets/9b45k4hkdf/1

Fig. 2 Android API level 23 working flow chart

Fig. 3 Extraction of features from .apk files

Multimedia Tools and Applications (2021) 80:13271–13323 13283

malware detection. To overcome this gap, in this study we collect 1532 permissions, 310

API calls, number of user download the app and rating of an app 25 which helps to build a

model by using feature selection approaches. Hence, each of the collected app can be rep-

resented as a 1844-dimensional Boolean vector, where “1” implies that an app requires the

permission and “0” implies that the permission is not required. It is very common that dis-

tinct apps may request the similar set of permissions for its execution. Permissions overview

given by Google26 is used to describe the behavior of a permission i.e., “dangerous” or

“normal”.

2.2.4 Formulation of feature sets

Several approaches had been developed for Android malware detection [1, 8, 87]. In this

study, we divide the extracted API calls and permissions in to thirty different feature sets

which helps

in developing malware detection model.27 Table 4 displays the basic description of the

feature sets that are considered in our work.

2.2.5 Capability of features

The objective of this work is to study, the relationship among the features and its associated

classes (i.e., benign or malware) which helps in malware detection. In this paper, malware

is considered as dependent variable and feature sets are taken into consideration as indepen-

dent variables. Malware is supposed to be a work of numerous set of features for instances

S1, S2, S3, S4, S5,...., up to S30. To investigate the efficacy of the feature sets utilized, they

are further classified into three different groups which are written as under:

a. Analysis 1 (A1): The efficacy of feature sets is utilized to dat the level of class. The

relationship among malware and feature sets is possibly outlined as below:

Malware=f (S1, S2, S3, S4, S5,...., S30)

b. Analysis 2 (A2): Reduced feature attributes attained by utilizing feature ranking

approaches are considered as an input for building a malware detection model for

Android. To rank the features based on their performance, in the present work we con-

sider six distinct feature ranking approaches. According to the study, [33, 76], it may be

relevant to choose top ⌈log2 q⌉ set of features by utilizing feature ranking approaches.

In the present study, we also use top ⌈log2 q⌉ set of features to detect either the app is

benign or normal. Here “q” indicates the set of features present in a novel data set. The

association can be presented in the following way:

Malware= f (reduced set of features utilizing feature ranking approaches)

25 In this study, we use the Min-max normalization approach to normalize the data. This approach is based
on the principle of linear transformation, which bring each data point Dqi

of feature Q to a normalized value
Dqi

, that lie in between 0 − 1. Following equation is considered to find the normalized value of Dqi
:

Normalized(Dqi
) =

Dqi
− min(Q)

max(Q) − min(Q)
,

where min(Q) & max(Q) are the minimum and maximum significance of attribute Q, respectively.
26https://developer.android.com/guide/topics/permissions/overview
27Name of the extracted feature sets are available at url: https://github.com/ArvindMahindru66/
Computer-and-security-dataset for reserachers and academicians.

13284 Multimedia Tools and Applications (2021) 80:13271–13323

https://developer.android.com/guide/topics/permissions/overview
https://github.com/ArvindMahindru66/Computer-and-security-dataset
https://github.com/ArvindMahindru66/Computer-and-security-dataset

Ta
b
le
4

F
o
rm

u
la

ti
o
n

o
f

S
et

s
co

n
ta

in
in

g
(p

er
m

is
si

o
n
s,

A
P

I
ca

ll
s,

N
u
m

b
er

o
f

u
se

r
d
o
w

n
lo

ad
th

e
ap

p
an

d
ra

ti
n
g

o
f

th
e

ap
p
)

as
an

fe
at

u
re

s

S
et

n
u
m

b
er

D
es

cr
ip

ti
o
n

S
et

n
u
m

b
er

D
es

cr
ip

ti
o
n

S
1

R
el

at
ed

to
S

Y
N

C
H

R
O

N
IZ

A
T

IO
N

D
A

T
A

S
2

R
el

at
ed

to
C

O
N

T
A

C
T

IN
F

O
R

M
A

T
IO

N

S
3

R
el

at
ed

to
P

H
O

N
E

S
T

A
T

E
an

d
P

H
O

N
E

C
O

N
N

E
C

T
IO

N
S

4
R

el
at

ed
to

A
U

D
IO

an
d

V
ID

E
O

S
5

R
el

at
ed

to
S

Y
S

T
E

M
S

E
T

T
IN

G
S

S
6

R
el

at
ed

to
B

R
O

W
S

E
R

IN
F

O
R

M
A

T
IO

N

S
7

R
el

at
ed

to
B

U
N

D
L

E
S

8
R

el
at

ed
to

L
O

G
F

IL
E

S
9

R
el

at
ed

to
L

O
C

A
T

IO
N

IN
F

O
R

M
A

T
IO

N
S

1
0

R
el

at
ed

to
W

ID
G

E
T

S
1
1

R
el

at
ed

to
C

A
L

E
N

D
A

R
IN

F
O

R
M

A
T

IO
N

S
1

2
R

el
at

ed
to

A
C

C
O

U
N

T
S

E
T

T
IN

G
S

S
1
3

R
el

at
ed

to
D

A
T

A
B

A
S

E
IN

F
O

R
M

A
T

IO
N

S
1
4

R
el

at
ed

to
IM

A
G

E

S
1

5
R

el
at

ed
to

U
N

IQ
U

E
ID

E
N

T
IF

IE
R

S
1
6

R
el

at
ed

to
F

IL
E

IN
F

O
R

M
A

T
IO

N

S
1
7

R
el

at
ed

to
S

M
S

M
M

S
S

1
8

R
el

at
ed

to
R

E
A

D

S
1
9

R
el

at
ed

to
A

C
C

E
S

S
A

C
T

IO
N

S
2

0
R

el
at

ed
to

R
E

A
D

A
N

D
W

R
IT

E

S
2

1
R

el
at

ed
to

Y
O

U
R

A
C

C
O

U
N

T
S

S
2

2
R

el
at

ed
to

S
T

O
R

A
G

E
F

IL
E

S
2
3

R
el

at
ed

to
S

E
R

V
IC

E
S

T
H

A
T

C
O

S
T

Y
O

U
M

O
N

E
Y

S
2

4
R

el
at

ed
to

P
H

O
N

E
C

A
L

L
S

S
2
5

R
el

at
ed

to
S

Y
S

T
E

M
T

O
O

L
S

S
2
6

R
el

at
ed

to
N

E
T

W
O

R
K

IN
F

O
R

M
A

T
IO

N

an
d

B
L

U
E

T
O

O
T

H
IN

F
O

R
M

A
T

IO
N

S
2

7
R

el
at

ed
to

H
A

R
D

W
A

R
E

C
O

N
T

R
O

L
S

S
2
8

R
el

at
ed

to
D

ef
au

lt
g
ro

u
p

S
2
9

C
o
n
ta

in
in

fo
.

R
el

at
ed

to
A

P
I

ca
ll

s
S

3
0

C
o
n
ta

in
in

fo
.

R
el

at
ed

to
ra

ti
n
g

an
d

d
o
w

n
lo

ad
s

Multimedia Tools and Applications (2021) 80:13271–13323 13285

c. Analysis 3 (A3): Feature subset selection approaches are considered to reduce the size

of feature sets which further can be considered as an input to build a model for detecting

malware from Android. In the present research, we consider four distinct feature subset

selection approaches to discover abbreviated subset of features. The association can be

presented in the following way:

Malware= f (reduced set of features utilizing feature subset selection approaches)

2.2.6 Feature selection approaches

On the basis of Table 5, it is seen that in previous studies a number of authors applied

different feature ranking approaches to detect malware from Android apps and achieved a

good detection rate. This indicates that the outcome of malware detection model rely on

the features that are taken as an input to design a model. Selecting the suitable feature

sets is essential for data preprocessing task in machine learning. In the field of mal-

ware detection, some researchers have used selection approaches to select appropriate set

of features. Allix et al. [2] performed an empirical validation of Android apps for mal-

ware detection. They performed the static analysis of Android apps’ bytecode to withdraw

an illustration of the program control-flow graph (CFG). Further, the extracted CFG is

stated as character strings in their study on establishing similarity between Android app.

They derived that string representation of the CFG is an abstraction of the app’s code

that keeps information related to structure of the code, on the other hand they discards

low-level details such as variable names or registered numbers. This is a desirable prop-

erty in the context of malware detection. They performed malware detection on 50,000

Android apps. Shabtai et al. [76] investigated whether the feature extraction at app level,

operating system level, scheduling level etc. helps them to detect malware or not. They

performed experiment on a small number of Android apps, used less number of fea-

tures and implemented less number of feature selection approaches to detect malware.

Also, none of the researches done earlier in this direction have used feature subset selec-

tion approaches. So, in this paper we implemented ten distinct types of feature selection

approaches on a large collection of 1842 features (divided in to thirty distinct feature sets)

to identify the best subset of features which assist us to detect malware detection with

better detection rate and also minimize the figure of misclassification errors. Feature rank-

ing approaches and Feature subset selection approaches can be defined in the following

manner:

– Feature ranking approaches: These approaches, use certain conclusive elements to rank

the features. Further, on the basis of their ranks appropriate features can be selected to

build the model.

– Feature subset selection approaches: These approaches aim to search subset of features

which can have good detective capability.

2.2.7 Research questions

To develop a malware detection model for Android malware detection from real-world apps

with better detection rate and to cover the gaps in the literature (i.e., selection of right feature

sets to develop a model, implementation on large collection of data set and implementation

of proposed framework on real-world apps), we consider the following research questions

in this research paper:

13286 Multimedia Tools and Applications (2021) 80:13271–13323

Ta
b
le
5

F
ea

tu
re

se
le

ct
io

n
m

et
h
o
d
,

te
ch

n
iq

u
e

an
d

fe
at

u
re

s
u
se

d
in

th
e

li
te

ra
tu

re
fo

r
m

al
w

ar
e

d
et

ec
ti

o
n

A
u
th

o
r/

A
p
p
ro

ac
h

F
ea

tu
re

se
le

ct
io

n
m

et
h
o
d

u
se

d
T

ec
h
n
iq

u
es

u
se

d
F

ea
tu

re
s

u
se

d

In
fo

rm
at

io
n

g
ai

n
N

aı̈
v
e

B
ay

es
(N

B
),

S
y

st
em

ca
ll

K
-n

ea
re

st
N

ei
g
h
b
o
u
r

(K
N

N
),

D
ec

is
io

n
T

re
e

(J
4
8
),

M
u
lt

i-
L

ay
er

P
er

ce
p
tr

o
n

(M
L

P
)

an
d

R
an

d
o
m

F
o
re

st
(R

F
)

Y
er

im
a

et
al

.
[9

2
]

M
u
tu

al
In

fo
rm

at
io

n
B

ay
es

ia
n

cl
as

si
fi

ca
ti

o
n

P
er

m
is

si
o
n
s

an
d

A
P

I
ca

ll
s

Y
er

im
a

et
al

.
[9

3
]

In
fo

rm
at

io
n

g
ai

n
B

ay
es

ia
n

cl
as

si
fi

er
P

er
m

is
si

o
n
s

an
d

A
P

I
ca

ll
s

M
K

L
D

ro
id

[6
2
]

C
h
i-

sq
u
ar

ed
k
er

n
el

m
et

h
o
d
s

P
er

m
is

si
o
n
s,

A
P

I
ca

ll
s,

et
c.

A
ll

ix
et

al
.
[2

]
In

fo
rm

at
io

n
g
ai

n
R

an
d
o
m

F
o
re

st
,

C
4
.5

,
R

IP
P

E
R

te
x
tu

al
re

p
re

se
n
ta

ti
o
n
s

o
f

an
d

S
u
p
p
o
rt

V
ec

to
r

M
ac

h
in

e
(S

V
M

)
b
as

ic
b
lo

ck
s

ex
tr

ac
te

d
fr

o
m

th
e

C
o
n
tr

o
l-

F
lo

w
G

ra
p
h

o
f

ap
p
s’

b
y
te

co
d
e

A
n
d
ro

m
al

y
[7

6
]

C
h
i-

sq
u
ar

e,
F

is
h
er

sc
o
re

D
ec

is
io

n
T

re
e

(J
4
8
),

N
aı̈

v
e

B
ay

es
(N

B
),

F
ea

tu
re

ex
tr

ac
ti

o
n

at

an
d

In
fo

rm
at

io
n

g
ai

n
B

ay
es

ia
n

n
et

w
o
rk

,
k
-M

ea
n
s,

ap
p

le
v
el

,
o
p
er

at
in

g

H
is

to
g
ra

m
o
r

L
o
g
is

ti
c

R
eg

re
ss

io
n

sy
st

em
le

v
el

,

sc
h
ed

u
li

n
g

le
v
el

et
c.

A
zm

o
o
d
eh

et
al

.
[6

]
In

fo
rm

at
io

n
G

ai
n

D
ee

p
E

ig
en

sp
ac

e
le

ar
n
in

g
ap

p
ro

ac
h

O
p
er

at
io

n
al

C
o
d
e

(O
p
C

o
d
e)

se
q
u
en

ce

C
h

en
et

al
.
[1

9
]

M
an

u
al

p
ru

n
in

g
al

o
n
g

S
u
p
p
o
rt

V
ec

to
r

M
ac

h
in

e
(S

V
M

),
S

y
n
ta

x
fe

at
u
re

s

w
it

h
in

fo
rm

at
io

n
g
ai

n
R

an
d
o
m

F
o
re

st
(R

F
),

an
d

K
-N

ea
re

st
N

ei
g
h
b
o
r

(K
N

N
)

N
ar

u
d
in

et
al

.
[6

3
]

C
la

ss
if

ie
rS

u
b
se

tE
v
al

B
ay

es
n
et

w
o
rk

,
M

u
lt

i-
la

y
er

p
er

ce
p
tr

o
n
,

J4
8
,

N
et

w
o
rk

tr
af

fi
c

fe
at

u
re

s

K
-N

ea
re

st
n
ei

g
h
b
o
u
rs

an
d

R
an

d
o
m

fo
re

st

A
N

A
S

T
A

S
IA

[3
0
]

E
n
se

m
b
le

o
f

ra
n
d
o
m

iz
ed

d
ec

is
io

n
S

u
p
p
o
rt

V
ec

to
r

M
ac

h
in

e
(S

V
M

),
S

y
st

em
co

m
m

an
d

tr
ee

s
(i

.e
.,

E
x
tr

a
T

re
es

-C
la

ss
if

ie
r)

D
ec

is
io

n
T

re
e

(J
4
8
),

P
er

m
is

si
o
n
s

an
d

A
P

I
ca

ll
s

L
o
g
is

ti
c

R
eg

re
ss

io
n
,

N
aı̈

v
e

B
ay

es
(N

B
),

R
an

d
o
m

F
o
re

st
(R

F
),

K
-N

ea
re

st
n
ei

g
h
b
o
u
rs

,

A
d
ab

o
o
st

an
d

D
ee

p
L

ea
rn

in
g

Multimedia Tools and Applications (2021) 80:13271–13323 13287

RQ1. Which malware detection model is most appropriate to detect malware from real-

world apps?

This question helps in finding the most appropriate model which is suitable for

malware detection in Android. In this work, we build 30 distinct models by consid-

ering ten distinct feature selection approaches and three different machine learning

techniques. Further, to identify that which model is more appropriate for malware

detection we consider two performance parameters i.e, F-measure and Accuracy in

our study.

RQ2. Whether the presented malware detection framework is effective or not to detect

malware from Android devices?

The goal of this question is to investigate the performance of our malware detec-

tion approach. For this, we compare the performance of our developed model with

some existing techniques available in the literature.

RQ3. Does a subset of feature perform better than all extracted features for the task of

detecting the app is malware or not?

The aim of this question, is to evaluate the features and investigate their rela-

tionship among benign and malware apps. Distinct kinds of feature reduction

approaches are being considered for finding subset of features which are able to

detect either the app is benign or not.

RQ4. Among different implemented feature ranking approaches which approach work

best for the task to detect either the Android app belong to benign or malware class?

In feature ranking approach, efficiency of the machine learning algorithms

is affected by the characteristics and nature of the malware data set. Dis-

tinct approaches are being implemented with various criterions to rank the

collected feature sets. Two distinct performance criterions i.e., F-measure and

Accuracy are considered in this study, to compare distinct feature-ranking

approaches.

RQ5. Among applied feature subset selection approaches which approach performs

foremost for the task of detecting malware from Android apps?

To determine the subset of features which are appropriate to detect either the

Android app is benign or malware we consider feature subset selection approaches.

In this work, we compare distinct approaches by using two performance criterions

i.e., F-measure and Accuracy.

RQ6. How do the feature subset selection approaches compare with feature ranking

approaches?

In this paper, pair-wise t-test being used to determine either the feature subset

selection approaches are appropriate than feature ranking approaches or both of

them behave equally well.

RQ7. Do the feature selection approaches effect on the outcome of the supervised

machine learning approaches?

It is seen that number of feature selection approaches perform extremely well

with specific supervised machine learning methods. Therefore, in this research

work distinct feature selection approaches are evaluated using distinct super-

vised machine learning approaches to measure their performance. Further, it also

emphases on variation of performance of supervised machine learning approach

over distinct supervised machine learning approaches.

13288 Multimedia Tools and Applications (2021) 80:13271–13323

3 Feature ranking approaches

These approaches rank features separately without applying any training algorithm. Rank-

ing of features depends upon their score. On the basis of our investigation of the previous

studies, the majority of approaches are capable to calculate the grading of every feature.

In this research, we employ six different ranking approaches to rank the features. Feature

ranking approaches are explained below:

3.1 Gain-ratio feature selection

In this selection approach, feature ranking work on the prediction of the gain-ratio in relation

to the class [64]. The “Z” known as the gain-ratio of feature is determined as:-

Gain-Ratio =
Gain(Z)

SplitInf oZ(X)
, (1)

where Gain(Z) = I (X) − E(Z) and X depicts the set including m numbers of instances

with n different classes. The forthcoming statistics necessary to categorize a given sample

is calculated by utilizing succeeding equation:

I (X) = −

m∑

i=1

Pi log2(pi). (2)

Here in this equation Pi is the chance that a random sample can be a member of class Ci

and is measured by zi/z.

The number of instances is given by zij of class Ci in subset Nj . The foreseen knowledge

is relying on the partition of subsets by F, and is presented by

E(Z) = −

M∑

i=1

I (X)
n1i + n2i + . . . + nmi

n
. (3)

SplitInf oF (X) is measured by utilizing following equation:

SplitInf oF (X) = −

t∑

i=1

|Xi |

X
log2(

|Xi |

X
) (4)

The value of SplitInf oF (X) show us the details achieved by dividing the data set of

training X into t portions equivalent to t results of a test on the attribute Z.

3.2 Chi-Squared test

This test is employed to examine the self-determination among two events [69], and in our

work, ranking of features is predicted by the significance of its statistic in relation to the

class. Higher the calculated value implies the denial of the outliers and consequently these

features can be analyzed as better relevance to detect malware from Android apps.

3.3 Information-gain feature selection

In Info-gain features are selected on its relation with respect to the class [64].

Multimedia Tools and Applications (2021) 80:13271–13323 13289

3.4 OneR feature selection

OneR feature selection approach is used for grading the features [64]. To rank individ-

ual features it utilizes the classification mechanism. In it valuable features are considered

as constant ones and divide the set of values into a few dissociate intervals made by

straightforward method. In this study, we consider features with better classification rates.

3.5 Principal Component Analysis (PCA)

Reduction of attribute is accomplished by implementing PCA on our collected data set. PCA

helps in transforming a high dimension data space into a low dimension data space. Features

which are present in low dimension have extreme importance in detecting malware [83].

Correlation among several features are high, so PCA is utilized to relocate these features

that are not extremely correlated. The features obtained are named as principal component

domain features. Further, to identify significant patterns in the data a small value of principal

components is sufficient. The detailed phases of PCA are demonstrated in Fig. 4.

Feature data set is collected in the form of m ∗ n matrix, that contains n number of

data sample and m number of extracted features. In the second phase, normalization of the

feature data set is performed by using equation

µj =
1

n

n∑

i=1

x
j
i

and replace xj with (xj −µj). Next, we calculate eigen value and eigen vector by using mat-

lab environment. Next, to select first k number of principal components from the covariance

matrix we performed following steps

while(i=1 to m) do evaluate cumvar =

k∑

i=1

λii

m∑

i=1

λii

if (cumvar ≥ 0.99)or(1 − cumvar ≤ 0.01)

return k 99% of variance is retained

end if

end while

cumvar denotes (cumulative variance) and (λ) represents eigen values sorted in descending

order.

After evaluating this, reduced feature sets are selected for training purpose.

3.6 Logistic regression analysis

For feature ranking, Univariate Logistic Regression (ULR) analysis being considered to

verify the degree of importance for every feature sets [21]. In the current work, we consider

two benchmarks of LR model; to discover the importance of every feature and to rank each

feature sets. Parameters for Logistic regression analysis are as follows:

1. Value of regression coefficient: The coefficient measure of features indicates the degree

of correlation of every feature sets with malware.

2. P-value: P-value i.e., level of significance shows the correlation significance.

13290 Multimedia Tools and Applications (2021) 80:13271–13323

Fig. 4 Framework of PCA calculation

4 Feature subset selection approaches

These approaches are employed to detect appropriate subset of features which jointly have

best detective capability. These are established on the hypothesis that developed model

has better detection rate and lower value of misclassification errors when linked with few

other features or when matched by itself. Several approaches are feasible to identify the

right subset of features which helps in detecting malware. In this work, four distinct feature

subset selection approaches are considered to calculate the score of feature. Implemented

approaches are depicted below:

4.1 Correlation based feature selection

This approach is based on correlation approach which select a subset of features that are

particularly related to the class (i.e., benign or malware). In this research paper, Pearson’s

correlation (r: Coefficient of correlation) has been used for searching the dependency among

Multimedia Tools and Applications (2021) 80:13271–13323 13291

features. If the value of “r” is higher among the feature sets, it indicates a strong relation

among these features. It further implies that, there is a statistical reason to consider those

classes which are having lower (or highest) feature value with that it have lower (or highest)

ranges of other highly correlated features.

4.2 Rough set analysis (RSA)

This approach is an estimation of conventional set, in terms of a joins of feature sets which

provide the upper and the lower estimation of the original data set [66]. This formal esti-

mation, depicts the upper and lower limits of the original data set. The application of this

approach is in mining the data from imperfect data. This approach is used to select the

reduced set of features from the extracted feature sets. RSA used three distinct notations

such as approximations, reduced attributes and information system. The steps that are pur-

sued to get reduced subset by utilizing RSA are mentioned-below and also demonstrated in

Fig. 5.

i. Approximation: Let A = (C, Z),X ⊆ Z and Y ⊆ C. X− topmost (XY) and X−

lowermost (< uline > X < /uline > Y) approximations of X are utilized to estimate

Y . The topmost limit includes all the objects which maybe the part to the set and the

lowermost approximation includes of all objects which certainly be a part of the set.

The XY and (< uline > X < /uline > Y) are computed by utilizing subsequent

equations:

X̄Y = {yi ∈ U |[yi]Ind(B) ∩ Y
= 0} (5)

XY = {yi ∈ U | [yi]Ind(B)∩Y }, (6)

where |[yi]Ind(C) belongs to the same class of yi in connection Ind(C).

Fig. 5 Rough set theory framework

13292 Multimedia Tools and Applications (2021) 80:13271–13323

ii. Reduced attributes: Correctness evaluation of the group Z (Acc(Z)) in A ⊆ B is

determined as:

µB(A) =
card(BZ)

card(B̄Z)
(7)

The number of features contained in the topmost or uppermost approximation of the

set Z is called the cardinality of the set. Further, all possible feature sets are considered

whose accuracy is equivalent to the accuracy of extracted feature sets.

iii. Information system: It is determined as Z = (C,B), where C is a universe including

non-empty set of confined objects and B is the sets of attributes with a finite number

of elements. For each b ∈ B, there exist a function Fb : C → Vb, where Vb denotes

the value of attribute b. For each A ⊂ B, there exists an equivalence relation known

as B-indiscerbility relation (Ind(Z)). Ind(Z) can be defined as:

INDA(Z) = {(x, y) ∈ C2 |∀a ∈ Z, a(x) = a(y)}. (8)

4.3 Consistency subset evaluation approach

This technique provides the importance of subset of attributes by their level of consistency

appearing in class values, when the training instances are applied on the subset of attributes.

The consistency rate is calculated with the help of inconsistency rate, where two data ele-

ments can be considered as inconsistent if they belong to different class labels (i.e., benign

or malware) but have same feature values. For this work, destination variable i.e., apps hav-

ing two distinct characteristics (i.e., 0 for benign apps and 1 for malware apps). A group of

feature (GF) is having Z amount of sample, there are z amount of instances in a manner that

Z = X1 +X2 + . . .+Xz. Instance Xi seems in entirely A samples from which A0 numbers

of samples are marked by 0 and A1 number of samples are marked by 1, here A = A0 +A1.

If A1 is less than A0, then the difference count for the instance Xi is INC = A − A0. The

inconsistency rate (INCR) of feature set is computed by utilizing succeeding equation:

INCR =

∑z
i=1 INCi

Z
(9)

4.4 Filtered subset evaluation

Filtered subset evaluation is based on the principle to select random subset evaluator from

data set that was gained by applying arbitrary filtering approach [47]. The filtering technique

does not based on any induction algorithm. Filtered subset evaluation technique is scalable

and fast. Figure 6 demonstrates the steps followed to find subset of feature by utilizing filter

method.

5 Machine learning techniques

In the previous studies, number of frameworks were developed by implementing vari-

ous machine learning algorithms like K-nearest Neighbour (KNN), Decision Tree (J48),

Fig. 6 Feature selection by utilizing filter approach

Multimedia Tools and Applications (2021) 80:13271–13323 13293

Naı̈ve Bayes (NB), Multi-Layer Perceptron (MLP) and Random Forest (RF) by [81],

Bayesian classification by [92], Bayes network, Multi-layer perceptron, J48, Random for-

est and K-Nearest neighbours by [63] and Support Vector Machine (SVM), Decision Tree

(J48), Logistic Regression, Random Forest(RF), K-Nearest neighbors, Naı̈ve Bayes(NB),

Adaboost and Deep Learning by [30]. It is seen in the literature, that the performance of

LSSVM [42, 48] in predicting the fault is better when compared to other machine learning

algorithms. So, in this study, we use LSSVM classifier with three distinct kernel functions

i.e., linear, RBF and polynomial which is described below:

5.1 LSSVM classifier

LSSVM being the part of supervised machine learning algorithm, is used in different fields

for example : regression, classification and outliers detection [78]. The fundamental design

of LSSVM machine learning algorithm is based on two-class problems, where data are

divided on the basis of optimum hyperplane determined by support vectors. Boundary value

of the training set is decided by the support vectors among two classes. In this research

paper, LSSVM with distinct kernels being used as classifier for building a model to classify

benign and malware apps. The comprehensive type of LSSVM function is determined as:

z(y) = aT φ(y) + b (10)

here z is the output vector and y is the input vector, φ(y) is a non-linear mapped function

and it is utilized to map the data input with greater size of feature space. a indicate the

adapt weight vector and b represent the scalar threshold value accordingly. The succeeding

equation is improved by the following manner:

Minimize
1

2
wT w + γ

1

2

∑

x=1

IE2
x

subject to y(x) = wT φ(x) + c + Ex, x = 1, 2, 3, . . . , n, (11)

here Ex is the input measure by error sample a and γ be the cost function. By solving this

problem, malware detection values are obtained from the equation given below:

Y ′ =
∑

x=1

I (α − α∗)φ(bi) ∗ φ(b) + c

=
∑

x=1

I (α − α∗) ∗ K(bi, b) + c (12)

here K(bi, b) is the function of kernel, in order to enable the product to be carried out in

high-dimensional feature space by utilizing data space in low-dimension. The considered

kernel functions in the present research paper are stated as follows:

1. Linear function:

K(xi, xj) = xT
i xj (13)

2. Polynomial function:28

K(xi, xj) = (xT
i ∗ xj + C)d (14)

28In our study, we fixed the value of T=3 and d=5 for performing experiment with both of the linear and
polynomial kernel.

13294 Multimedia Tools and Applications (2021) 80:13271–13323

Table 6 Confusion matrix to classify a Android app is benign or malware (.apk)

Benign Malware

Benign Benign-> Benign (TN) Benign-> Malware (FP)

Malware Malware-> Benign (FN) Malware-> Malware (TP)

3. Radial basis function or RBF Kernel:29

K(xi, xj) = eγ ‖xi−xj ‖, γ > 0 (15)

6 Comparison of proposedmodel with different existing techniques

To validate that our proposed framework is able to achieve higher detection rate or not, we

compare the result of our proposed model with three different techniques mentioned below:

a. Comparison of results with previously used classifiers and frameworks:- To val-

idate that our proposed model is feasible to detect malware as equivalent to previous

used classifiers or not, we calculate two performance parameters like Accuracy and F-

measure for new proposed model and existing models. In addition to that, we compare

our developed malware detection model with existing frameworks or approaches.

b. Comparison of results with different Anti-Virus scanners:- To compare the perfor-

mance of our model for malware detection, we chose ten available distinct anti-virus

scanners and compare their detection rate with the detection rate of our proposed

framework.

c. Detection of known and unknown malware families:- Further, to evaluate how much

our proposed framework is reliable to detect known and unknown malware families, we

test known and unknown malware families with our proposed framework and calculate

the accuracy to detect the malware.

7 Evaluation of performance parameters

In this section of the paper, we discuss the fundamental definitions of the performance

parameters utilized by us while evaluating our proposed model for malware detection. Con-

fusion matrix is used to calculate all these parameters. It consists of actual and detected

classification information built by detection models. Table 6 demonstrates the confusion

matrix for malware detection model. In the present work, two performance parameters

namely, F-Measure and Accuracy are utilized for measuring the performance of malware

detection approaches.

– True Positives (TP): A true positive is an outcome where the model correctly predicts

the positive class.

– True Negative (TN) : A true negative is an outcome where the model correctly predicts

the negative class.

29In our study, we fixed the value of γ = 10 for performing experiment with RBF kernel.

Multimedia Tools and Applications (2021) 80:13271–13323 13295

– False Positive (FP): A false positive is an outcome where the model incorrectly predicts

the positive class.

– False Negative (FN): A false negative is an outcome where the model incorrectly

predicts the negative class.

– Precision: Precision quantifies the number of positive class predictions that actually

belong to the positive class.

Precision =
a

a + b
. (16)

– Recall: Recall quantifies the number of positive class predictions made out of all

positive examples in the dataset.

Recall =
a

a + c
, (17)

where a = NMalware→Malware,

b = NBenign→Malware,

c = NMalware→Benign

Accuracy Accuracy is defined as corrected detection of malware-infected apps with total

number of benign and malware-infected apps. For supervised, semi-supervised and hybrid

machine learning techniques it is given by

Accuracy =
a + d

Nclasses

, (18)

where Nclasses = a + b + c + d ,

d = NBenign→Benign

F-measure In this research paper, we develop distinct malware detection models by imple-

menting distinct machine learning algorithms. So it is very difficult to compare two different

models with high recall and low precision or vice versa. Therefore, in this study we used F-

measure to compare two different models. F-measure helps to measure Precision and Recall

at the same time. F-measure uses Harmonic Mean in place of Arithmetic Mean by punishing

the extreme values more and is defined by.

F − measure =
2 ∗ Precision ∗ Recall

P recision + Recall

=
2 ∗ a

2 ∗ a + b + c
(19)

8 Experimental setup

In the present section, we introduce the experimental setup done to find the performance of

our developed malware detection models. LSSVM with three distinct kernel functions (i.e.,

polynomial, RBF and linear) is implemented on thirty different categories of android apps

mentioned in Table 3. All these data sets have varying number of benign or malware apps

which are adequate to perform our analysis. Figure 7 shows the framework of our proposed

model named as FSDroid.

In the very first step, feature ranking and feature subset selection approaches are applied

on the extracted features data set. In the next step, we use the Min-max normalization

13296 Multimedia Tools and Applications (2021) 80:13271–13323

Fig. 7 Framework of FSDroid

approach to normalize the data. This approach is based on the principle of linear transfor-

mation, which bring each data point Dqi
of feature Q to a normalized value Dqi

, that lie in

between 0 − 1. Following equation is considered to find the normalized value of Dqi
:

Normalized(Dqi
) =

Dqi
− min(Q)

max(Q) − min(Q)
,

where min(Q) & max(Q) are the minimum and maximum significance of attribute Q,

respectively. In the third step, we trained significant features by implementing distinct

machine learning techniques. In the next step, we construct a confusion matrix and calculate

the performance parameters i.e., accuracy and F-measure. Next, we compare the perfor-

mance of the developed malware detection model and select the best malware detection

model. At last, we compare the performance of our proposed malware detection model with

existing techniques available in the literature and distinct anti-virus scanners. If the perfor-

mance of our proposed malware detection model is better than existing techniques then it

is useful and in reverse of it if the performance is not enhanced than the proposed malware

model is not useful.

The subsequent measures are pursued at the time of selecting a subset of features to

built the malware detection model that detects either the app is benign or malware. Feature

selection approaches are implemented on 30 different data sets of Android apps. Hence,

a total of 990 ((1 selecting all extracted features + 10 feature selection approaches) * 30

data sets (subsets of different feature sets particular to data sets determined after conducting

feature selection) * 3 detection methods) different detection models have been build in this

work. Below we provide step by step details of our approach:

Multimedia Tools and Applications (2021) 80:13271–13323 13297

1. In the present work, four feature subset selection approaches and six feature ranking

approaches are implemented on 30 different feature sets to select the right set of features

for malware detection.

2. The subsets of features obtained from aforementioned procedure are given as an input

to machine learning classifiers. To compare the developed models, we use 20 fold

cross-validation method. Cross-validation is a statistical learning approach that is uti-

lized to classify and match the models by dividing the data into two different portions

[47]. One portion is utilized to train and the remaining portion of data is utilized to

verify the build model, on the basis of training [47]. The data is initially separated

into K same sized segments. K-1 folds are utilized to train the model and the rest

one fold is utilized for testing intention. K-fold cross-validation is having important

significance in utilizing the data set for the both testing and training. For this study,

20-fold cross-validation is utilized to analyze the models, i.e., data sets are segregated

into 20 portions. The outcomes of all build malware detection models are matched

with each other by employing two distinct performance measure parameters: F-measure

and Accuracy30.

3. FSDroid i.e., proposed model build by utilizing above two steps are validated with the

existing techniques developed in the literature to review whether the build malware

detection model is useful or not.

9 Results of performed experiment

In the current section of the paper, the relationship among different feature sets and malware

detection at the class level is submitted. Set of features are used as an input and present

the ratio of benign and malware apps within an experiment. F-measure and Accuracy are

used as performance assessment parameters to match the performance of malware detection

model build by using LSSVM with distinct kernel functions (i.e., polynomial, RBF and

linear). To depict the experimental results we utilize the abbreviations as given in Table 7

corresponding to their actual names.

9.1 Feature ranking approaches

Six feature ranking approaches: gain-ratio feature evaluation, Chi-squared test, information

gain feature evaluation, logistic regression analysis, information gain, oneR feature eval-

uation and principal component analysis are implemented on a distinct feature sets. Each

approach utilize distinct performance parameters to rank the feature. Moreover, top ⌈log2 a⌉

set of features from “a” number of features being measured to build a model for detecting

malware. For initial four feature ranking approaches (Gain-ratio feature evaluation, Chi-

squared test, OneR feature evaluation and Information gain), top ⌈log2 a⌉ are selected as

subset of features, where a is the number of features in the original data set (for this work

a=20). However, in the case of ULR, those features are selected which posses a positive

value of regression co-efficient, i.e., p-value measure is below 0.05, and in matter of PCA,

only those features are selected which have eigenvalue greater than 1. Considered features

using feature ranking approaches are demonstrated in Fig. 8.

30Performance Parameters are calculated on the basis of training and testing data set.

13298 Multimedia Tools and Applications (2021) 80:13271–13323

Table 7 Used naming convention in this study

Abbreviation Corresponding name

DS Data set

FS1 Correlation best Feature Selection

FS2 Classifier Subset Evaluation

FS3 Filtered Subset Evaluation

FS4 Rough Set Analysis (RSA)

FR1 Chi Squared test

FR2 Gain Ratio Feature Evaluation

FR3 Filtered Subset Evaluation

FR4 Information Gain Feature Evaluation

FR5 Logistic regression analysis

FR6 Principal Component Analysis (PCA)

AF All Extracted features

9.2 Feature subset selection approaches

In the present work, four distinct kinds of feature subset selection approaches are imple-

mented on thirty data sets of Android apps one after another. Feature subset selection

approaches work on the principle of hypothesis which make models with better accu-

racy and make less amount of misclassified errors, while selecting the best features

from available number of features. Later, these isolation subset of features has been

selected as an input for building a model to detect either the app is benign or mal-

ware. Considered set of features after feature subset selection approaches are demonstrates

in Fig. 9.

9.3 Machine learning techniques

Eleven subsets of features (1 considering all set of extracted features + 10 resulting by

implemented feature selection approaches) are used as an input to build a model for mal-

ware detection. Hardware utilized to carry out this study is Core i7 processor having storage

capacity of 1TB hard disk and 16GB RAM. Detection models are build by use the MAT-

LAB environment. The performance of each detection model is measured by using two

performance parameters: F-measure and Accuracy and in addition to this we also measured

the time to build and test the model. Table 8, 9, 10, 11, 12 and 13, presents the performance

values obtained for distinct data sets by utilizing LSSVM with linear, RBF and polynomial

kernel function and time to build and test the models. On the basis of Table 8–13, it may be

concluded that:

– Model developed by considering features selected by feature selection approaches as an

input is able to detect malware more effectively rather than model developed by using

all extracted feature sets.

– Model constructed by considering LSSVM with polynomial, RBF and linear kernel by

selecting FS4 as an input achieved higher detection rate when compared to other models

developed by using different feature selection approaches.

Multimedia Tools and Applications (2021) 80:13271–13323 13299

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Feature ranking methods

– Model build by considering LSSVM with RBF kernel by selecting FS4 as an input

achieved higher detection rate when compared to other models developed by using

polynomial and linear kernel.

In this research paper, LSSVM with three kernel functions and ten distinct feature selec-

tion approaches are considered to select features which helps to detect Android malware

more effectively. To find out which developed model is more capable to detect malware, we

construct box-plot diagrams of the individual model. Box-plot diagrams helps to identify

which model is best suitable for malware detection on the basis of few number of outliers

and better value of median. Figure 10a–f demonstrate the box-plot diagrams for F-measure

and Accuracy for every developed model. The x-axis of the diagrams presents the feature

13300 Multimedia Tools and Applications (2021) 80:13271–13323

(a) (b)

(c) (d)

Fig. 9 Feature subset selection methods

selection techniques. Figures include eleven box-plot diagram: one box-plot diagram con-

sists of all extracted feature sets, four box-plot consist of feature subset selection approaches

and six box-plot consist of feature ranking approaches. On the basis of the box-plot diagram,

we find following observations:

– Model constructed by considering LSSVM with polynomial and linear kernel and FS4

achieved higher median value in addition to few outliers. On the basis of box-plot

diagrams demonstrated in Fig. 10a–f, model developed by considering FS4 as fea-

ture selection approach gives better detection rate when compared to other developed

approaches.

– From box-plot diagrams, we observed that model build by considering LSSVM with

RBF kernel and FS4, is having few outliers and higher median value. It means that the

model developed by using FS4 for detecting malware and benign apps achieved better

results when compare to other developed models in this study.

– In this study, we implement six distinct feature ranking approaches, to detect mal-

ware from Android apps. Among implemented feature ranking approaches, on the basis

of box-plot diagrams we can conclude that, model developed by using FR6 achieved

higher median value in addition with fewer outliers.

– On the basis of box-plot diagrams, among all implemented feature subset selection

approaches, model developed by using FS4 give best results when compared to other

approaches.

Multimedia Tools and Applications (2021) 80:13271–13323 13301

Ta
b
le
8

A
cc

u
ra

cy
an

d
F

-m
ea

su
re

m
ea

su
re

d
b
y

co
n
si

d
er

in
g

L
in

ea
r

k
er

n
el

A
cc

u
ra

cy
F

-M
ea

su
re

ID
A

F
F

R
1

F
R

2
F

R
3

F
R

4
F

R
5

F
R

6
F

S
1

F
S

2
F

S
3

F
S

4
A

F
F

R
1

F
R

2
F

R
3

F
R

4
F

R
5

F
R

6
F

S
1

F
S

2
F

S
3

F
S

4

D
1

7
2
.3

3
8
3
.3

3
8
5
.0

8
7
.6

7
8
7
.6

6
8
8

8
7

8
8

8
6
.6

8
7
.6

8
8

0
.8

8
0
.9

0
.8

9
0
.8

9
0
.9

0
.8

5
0
.8

8
0
.9

0
.9

0
.9

0
.9

D
2

7
8
.8

8
0

8
2
.0

8
8
6
.2

7
8
2
.6

6
8
8

8
6

8
3

8
6
.6

8
7
.6

9
3

0
.8

0
0
.8

8
0
.8

2
0
.8

4
0
.8

3
0
.8

2
0
.8

6
0
.8

7
0
.8

6
0
.8

6
0
.9

2

D
3

7
6
.8

8
2

8
4
.8

8
4
.6

7
8
1
.0

6
8
3

8
5

8
2

8
1
.6

8
5
.6

9
4
.7

0
.8

2
0
.8

1
0
.8

0
0
.8

1
0
.8

0
0
.8

1
0
.8

2
0
.8

1
0
.8

5
0
.8

6
0
.9

0

D
4

7
2
.8

8
2

8
1
.0

8
8
2
.2

7
8
1
.6

0
8
6

8
5

8
2

8
5
.6

8
9
.6

9
2

0
.7

8
0
.8

3
0
.8

0
0
.8

2
0
.8

1
0
.8

0
0
.8

2
0
.8

9
0
.8

8
0
.8

7
0
.8

9

D
5

7
0

7
6

8
1

8
2

8
6

8
2

9
3

8
1

8
6

8
7

9
0

0
.7

0
0
.8

1
0
.8

8
0
.8

9
0
.8

6
0
.8

7
0
.9

1
0
.8

6
0
.8

5
0
.8

2
0
.8

8

D
6

7
8
.8

8
0

8
2
.0

8
8
6
.2

7
8
2
.6

6
8
8

8
6

8
3

8
6
.6

8
7
.6

9
3

0
.8

0
0
.8

8
0
.8

2
0
.8

4
0
.8

3
0
.8

2
0
.8

6
0
.8

7
0
.8

6
0
.8

6
0
.9

2

D
7

6
7
.8

7
2
.8

8
2

8
5

8
7

8
8

8
8

8
1

8
0

8
7

9
6

0
.7

8
0
.8

1
0
.8

0
0
.8

2
0
.8

1
0
.8

0
0
.8

2
0
.8

3
0
.8

8
0
.8

9
0
.9

1

D
8

6
7

7
9

7
2

7
8

8
1

8
0

9
2

8
2

8
3

8
6

9
0

0
.7

1
0
.8

1
0
.8

0
0
.8

2
0
.8

0
0
.8

0
0
.8

9
0
.8

3
0
.8

3
0
.8

4
0
.8

5

D
9

8
0

8
6

8
8

9
3

8
6

9
5

9
7

9
7

9
2

9
2

9
5

0
.8

8
0
.8

9
0
.9

2
0
.9

4
0
.9

3
0
.9

2
0
.9

7
0
.9

9
0
.9

1
0
.9

2
0
.9

1

D
1
0

6
6
.8

7
8

8
1

8
7

8
6

8
2

8
1

8
8

8
9

8
9

9
1

0
.7

8
0
.8

2
0
.8

1
0
.8

8
0
.8

6
0
.8

7
0
.8

5
0
.8

8
0
.8

2
0
.8

8
0
.9

6

D
1
1

7
9

8
8

8
8

8
6

8
6

8
9

8
9

8
3

8
6

8
9

9
2

0
.7

8
0
.8

7
0
.8

6
0
.8

6
0
.8

5
0
.8

7
0
.8

5
0
.8

4
0
.8

2
0
.8

5
0
.9

6

D
1
2

7
7
.8

8
2

8
8

8
2

8
6

8
1

8
3

8
6

8
6

8
6

9
0

0
.8

1
0
.8

2
0
.8

0
0
.8

2
0
.8

1
0
.8

1
0
.8

2
0
.8

6
0
.8

6
0
.8

4
0
.9

1

D
1
3

6
9
.8

7
8

8
1

8
1

8
2

8
2

8
1

8
2

8
6

8
6

8
9

0
.6

1
0
.7

8
0
.8

0
0
.8

1
0
.8

0
0
.7

9
0
.8

1
0
.8

2
0
.8

0
0
.8

1
0
.8

8

D
1
4

7
7

8
1

8
0

8
6

8
2

8
5

8
2

8
1

8
6

8
6

9
0

0
.7

7
0
.8

2
0
.8

6
0
.8

1
0
.8

0
0
.8

8
0
.8

3
0
.8

5
0
.8

1
0
.8

2
0
.8

9

D
1
5

7
2

8
8

8
8

8
6

8
6

8
8

9
3

8
9

9
1

9
0

9
2

0
.7

8
0
.8

6
0
.8

8
0
.8

3
0
.8

6
0
.8

5
0
.9

0
0
.8

4
0
.8

6
0
.8

6
0
.8

9

D
1
6

6
7

7
1

8
0

8
7

8
6

8
2

8
3

8
1

8
6

8
7

8
8

0
.7

2
0
.8

2
0
.8

1
0
.8

0
0
.8

0
0
.8

1
0
.8

3
0
.8

0
0
.8

0
0
.8

1
0
.8

3

D
1
7

8
0

8
6

8
8

8
6

8
9

9
0

9
2

9
3

9
6

9
1

9
8

0
.8

1
0
.8

8
0
.8

1
0
.8

6
0
.8

8
0
.8

8
0
.8

9
0
.8

9
0
.8

9
0
.8

8
1

D
1
8

8
2

8
9

8
9

9
1

9
0

9
1
.8

9
2

9
2
.9

9
5

9
6

9
9

0
.8

0
0
.8

9
0
.8

5
0
.8

5
0
.8

7
0
.8

4
0
.8

5
0
.8

6
0
.8

8
0
.8

7
0
.9

3

D
1
9

8
1

8
6

8
7

8
9

9
1

9
2

9
8

9
4

9
5

9
6

9
6

0
.8

2
0
.8

9
0
.8

6
0
.8

7
0
.8

8
0
.8

9
0
.9

6
0
.9

2
0
.9

0
0
.8

8
0
.9

7

D
2
0

7
8

8
2

8
6

8
6

8
9

9
0

9
1

9
3

9
6

9
1

9
0

0
.7

8
0
.8

2
0
.8

6
0
.8

3
0
.8

2
0
.8

5
0
.8

7
0
.8

8
0
.8

9
0
.8

6
0
.8

7

D
2
1

6
7

7
9

7
8

8
0

8
2

8
7

8
6
.7

8
9

9
0

8
9

9
1
.7

0
.7

1
0
.8

2
0
.8

5
0
.8

4
0
.8

5
0
.8

7
0
.8

8
0
.8

3
8

0
.8

7
0
.8

9
0
.9

3

D
2
2

7
8

8
8

8
6

8
7

8
9
.7

8
9
.3

9
8

9
2

9
4

9
5

9
5

0
.7

7
0
.8

2
0
.8

8
0
.8

7
0
.8

5
0
.8

2
0
.9

5
0
.8

5
0
.8

4
0
.8

6
0
.9

0

D
2
3

6
8
.9

8
0

8
1

8
0
.8

8
8
3
.7

6
8
8
.7

8
8
9
.7

1
8
9
.9

9
2

9
0

9
0
.1

0
.6

8
8

0
.7

2
0
.8

0
9

0
.8

4
6

0
.8

0
0
.8

2
0

0
.8

5
0
.8

4
0
.8

2
0
.8

0
0
.8

1

D
2
4

6
5

8
1

8
0

8
0
.8

8
2

8
9

9
2
.2

9
1
.3

9
0

8
9
.7

9
2

0
.7

0
0
.8

0
0
.8

1
0
.8

2
0
.8

6
0
.8

5
0
.8

9
0
.8

2
0
.8

2
0
.8

5
0
.8

5

D
2
5

8
0

8
6

8
8

8
6

8
9

9
0

9
2

9
3

9
6

9
1

9
8

0
.8

1
0
.8

8
0
.8

1
0
.8

6
0
.8

8
0
.8

8
0
.8

9
0
.8

9
0
.8

9
0
.8

8
1

D
2
6

7
6

8
4

8
8
.7

8
6
.9

8
9
.6

9
0
.8

9
2
.1

9
4

9
7

9
5

9
8

0
.7

8
0
.8

2
0
.8

3
0
.8

4
0
.8

5
0
.8

6
0
.8

6
0
.8

5
0
.8

8
0
.8

8
0
.9

2

D
2
7

6
7

8
2

8
5

8
6

8
1

9
0
.1

9
1
.9

9
3
.6

9
7

9
6
.9

9
7
.9

0
.7

1
0
.8

2
0
.8

6
0
.8

8
0
.8

9
0
.8

9
0
.8

7
0
.8

5
0
.8

6
0
.8

7
0
.9

1

D
2
8

6
7

8
6

8
8

8
6

8
9

9
0

9
5

9
3

8
6

8
1

8
9

0
.7

1
0
.8

0
0
.8

2
0
.8

5
0
.8

2
0
.8

5
0
.8

9
0
.8

2
0
.8

8
0
.8

5
0
.8

8

D
2
9

6
7

7
8

8
2

8
5

8
6

8
9

9
1

9
0

8
5

8
4

8
9

0
.7

1
0
.8

0
0
.8

1
0
.8

4
0
.8

6
0
.8

8
0
.8

9
0
.8

6
0
.8

7
0
.8

5
0
.8

8

D
3
0

6
0

7
6

8
2

8
4

8
7

8
9

9
1

9
2

9
5

9
1

9
8

0
.6

7
1

0
.7

2
0
.8

1
0
.8

2
0
.8

5
0
.8

6
0
.8

7
0
.8

5
0
.8

7
0
.8

7
1

13302 Multimedia Tools and Applications (2021) 80:13271–13323

Ta
b
le
9

A
cc

u
ra

cy
an

d
F

-m
ea

su
re

m
ea

su
re

d
b
y

co
n
si

d
er

in
g

P
o
ly

n
o
m

ia
l

k
er

n
el

ID
A

F
F

R
1

F
R

2
F

R
3

F
R

4
F

R
5

F
R

6
F

S
1

F
S

2
F

S
3

F
S

4
A

F
F

R
1

F
R

2
F

R
3

F
R

4
F

R
5

F
R

6
F

S
1

F
S

2
F

S
3

F
S

4

D
1

6
2
.3

3
8
0
.3

3
8
1
.0

8
0
.6

7
8
0

8
0
.9

8
2
.6

6
8
0
.8

8
0
.6

8
0
.9

6
8
2

0
.7

8
0
.8

0
0
.8

9
0
.8

9
0
.8

5
0
.8

8
0
.9

0
.8

9
0
.8

7
0
.8

6
0
.8

5

D
2

6
4
.3

3
8
2
.3

3
8
4
.0

8
2
.6

7
8
2

8
2
.9

8
4
.6

8
2
.8

8
1
.6

8
2
.9

6
8
3

0
.7

2
0
.8

0
0
.8

1
0
.8

6
0
.8

8
0
.8

1
0
.8

2
0
.8

4
0
.8

2
0
.8

1
0
.8

5

D
3

6
2
.3

3
7
0
.8

3
7
1
.0

7
9
.6

7
8

7
6
.9

7
2
.0

8
7
0
.5

6
7
0
.6

7
8
.2

8
9
.0

6
0
.6

8
0
.7

8
0
.7

9
0
.7

9
0
.7

9
0
.7

8
0
.7

2
0
.7

7
0
.7

6
0
.7

5
0
.8

0

D
4

7
3
.3

3
7
8
.3

3
8
0
.9

8
0
.9

7
8
2

8
3
.9

8
1
.8

8
2
.6

8
6
.6

8
5

9
1
.0

1
0
.6

8
0
.7

8
0
.7

9
0
.8

3
0
.8

4
0
.8

7
0
.8

2
0
.8

7
0
.8

6
0
.8

5
0
.8

9

D
5

7
1
.0

3
7
9
.3

3
8
1
.0

8
2
.6

7
8
2

8
2
.9

9
2
.0

8
1
.8

8
0
.5

6
8
1
.9

6
8
0

0
.6

8
0
.7

8
0
.8

5
0
.8

3
0
.8

2
0
.8

5
0
.8

9
0
.8

0
0
.8

2
0
.8

3
0
.8

0

D
6

7
2
.3

3
7
8
.3

3
7
9

8
0
.7

8
1

7
2
.9

7
8

8
6
.8

8
5
.9

6
8
5

9
3

0
.6

8
0
.7

8
0
.8

1
0
.8

2
0
.8

2
0
.8

6
0
.8

9
0
.8

1
0
.8

2
0
.7

9
0
.9

0

D
7

7
1

8
3

8
2

8
2

8
4

8
5

9
3

8
2

8
4

8
6

8
1

0
.7

0
0
.8

2
0
.8

3
0
.8

0
0
.8

2
0
.8

6
0
.8

8
0
.8

3
0
.8

2
0
.8

4
0
.8

1

D
8

7
5
.0

3
7
8

8
2

8
7

8
8

8
9

8
8

8
6

8
6

8
8

9
2

0
.7

8
0
.8

2
0
.8

9
0
.8

8
0
.8

2
0
.8

6
0
.8

9
0
.8

2
0
.8

6
0
.8

9
0
.9

D
9

7
3
.8

8
3

8
6

8
7

8
8
.7

7
8
6
.7

9
9
8

8
5
.8

0
8
4
.5

8
2
.6

8
8
.8

1
0
.6

8
0
.7

8
0
.8

5
0
.8

6
0
.8

8
0
.8

7
0
.9

2
0
.8

2
0
.8

5
0
.8

2
0
.8

7

D
1
0

7
5

8
7

8
8

8
6

9
0

9
1
.9

9
0
.8

9
0
.6

9
0
.6

9
2

9
8

0
.7

8
0
.8

2
0
.8

9
0
.8

9
0
.8

7
0
.8

6
0
.8

9
0
.8

6
0
.8

6
0
.8

2
0
.9

D
1
1

6
8
.0

3
7
8
.3

3
8
6
.0

8
7

9
1

8
9

9
8
.9

8
8

8
8

8
9

9
2

0
.7

9
0
.8

2
0
.8

7
0
.8

8
0
.9

0
0
.8

8
0
.9

5
0
.8

2
0
.8

6
0
.8

3
0
.8

5

D
1
2

6
2
.3

3
7
8
.8

1
8
0
.8

8
7

8
2

8
3

8
6

8
5

8
3

8
7

9
2

0
.7

8
0
.8

2
0
.8

7
0
.8

8
0
.8

2
0
.8

6
0
.8

0
0
.8

3
0
.8

5
0
.8

3
0
.8

9

D
1
3

7
2
.3

8
6
.3

1
8
6
.8

8
8
.7

8
9

8
9

8
7

8
3

8
6

9
2

9
8
.7

0
.6

9
0
.8

2
0
.8

6
0
.8

7
0
.8

1
0
.8

2
0
.8

1
0
.8

2
0
.8

5
0
.8

1
0
.8

9

D
1
4

7
2
.1

8
3
.8

3
8
5
.9

0
9
1
.0

5
8
9

8
8

9
7
.7

8
6

8
5

8
6

8
8

0
.7

8
0
.8

0
0
.8

6
0
.8

2
0
.8

2
0
.8

3
0
.8

8
0
.8

1
0
.8

5
0
.8

4
0
.8

3

D
1
5

7
2
.8

8
8
6
.9

3
8
8
.9

0
8
9
.0

7
8
8

8
9

9
8
.8

9
8
8

8
6

8
6

8
9

0
.7

8
0
.8

2
0
.8

7
0
.8

7
0
.8

2
0
.8

5
0
.8

9
0
.8

2
0
.8

5
0
.8

3
0
.8

2

D
1
6

6
7
.8

8
1
.3

3
8
5
.0

8
6
.7

8
8

9
0
.9

9
1
.8

9
2
.6

9
3
.6

9
2

9
9
.6

0
.6

8
0
.8

1
0
.8

3
0
.8

8
0
.8

2
0
.8

6
0
.8

1
0
.8

5
0
.8

4
0
.8

5
0
.9

4

D
1
7

7
8
.2

3
8
7
.3

3
8
5
.0

8
8
.7

1
8
9

9
2

9
9
.2

9
3

9
4

9
5

9
2

0
.7

8
0
.8

2
0
.8

8
0
.8

1
0
.8

8
0
.8

9
1

0
.9

0
.8

2
0
.8

5
0
.8

9

D
1
8

7
2

8
3

8
0

8
1

8
2

8
3

8
5

8
4

8
6

8
3

9
2

0
.6

8
0
.8

1
0
.8

2
0
.8

3
0
.8

1
0
.8

3
0
.8

2
0
.8

4
0
.8

2
0
.8

1
0
.8

9

D
1
9

6
2
.3

7
8
.3

8
1
.0

7
8
3
.6

7
8
8

8
7
.9

9
7
.0

6
8
6
.8

8
6
.6

8
5
.6

8
9
.8

0
.6

8
0
.8

2
0
.8

3
0
.8

8
0
.8

2
0
.8

3
0
.8

9
0
.8

1
0
.8

3
0
.8

5
0
.8

2

D
2
0

6
8
.3

8
2
.3

3
8
5
.8

8
6
.7

8
2

8
3
.7

8
8
.8

8
9
.2

8
8
.6

7
8
7
.7

9
8
.8

6
0
.6

7
0
.8

1
0
.8

5
0
.8

2
0
.8

3
0
.8

3
0
.8

1
0
.8

3
0
.8

3
0
.8

5
0
.8

7

D
2
1

7
2
.3

3
8
7

8
8

8
9

8
9

8
0
.7

9
8

8
8

8
6

8
6

8
8

0
.7

9
0
.8

2
0
.8

6
0
.8

3
0
.8

2
0
.8

1
0
.8

9
0
.8

0
0
.8

3
0
.8

5
0
.8

3

D
2
2

6
2

7
8
.8

3
8
1
.0

8
5

8
8

8
9

8
5

8
6

9
2

9
0

9
8

0
.6

6
0
.8

6
0
.8

0
0
.8

2
0
.8

1
0
.8

2
0
.8

1
0
.8

3
0
.8

3
0
.8

0
0
.8

8

D
2
3

7
1

7
8
.1

8
2

8
7

8
2

8
1

9
2

8
1

8
6

8
6

8
3

0
.6

8
0
.7

8
0
.8

2
0
.8

3
0
.8

1
0
.8

2
0
.8

9
0
.8

1
0
.8

2
0
.8

3
0
.8

5

D
2
4

6
1

8
2

8
7

8
5

8
6

8
3

8
3

8
5

8
4

8
1

9
8
.9

1
0
.6

2
0
.8

0
0
.8

2
0
.8

3
0
.8

2
0
.8

0
0
.8

5
0
.8

5
0
.8

3
0
.8

4
0
.8

9

D
2
5

7
0

8
8
.1

8
8

8
9

9
2

9
1

9
9

8
7

8
7

8
8

8
5

0
.6

9
0
.7

2
0
.8

1
0
.8

4
0
.8

2
0
.8

3
0
.8

8
0
.8

0
0
.8

3
0
.8

4
0
.8

1

D
2
6

7
0

8
2
.1

8
4
.7

7
8
5
.0

8
8

8
7

9
7

8
5

8
2

8
5

8
8

0
.6

2
0
.8

1
0
.8

0
0
.8

4
0
.8

2
0
.8

5
0
.8

7
0
.8

6
0
.8

6
0
.8

7
0
.8

6

D
2
7

6
9

8
7
.9

8
6

8
7
.3

8
6

8
8

8
7

8
6
.9

8
6
.2

8
3
.8

9
7

0
.6

8
0
.8

1
0
.8

6
0
.8

7
0
.8

3
0
.8

6
0
.8

7
0
.8

8
0
.8

6
0
.8

7
1

D
2
8

6
9

7
2
.9

7
8

8
0

8
1

8
3

8
3

8
5

8
4
.9

8
3
.8

9
5

0
.6

2
0
.7

8
0
.8

1
0
.8

2
0
.8

2
0
.8

1
0
.8

0
0
.8

1
0
.8

2
0
.8

3
0
.8

4

D
2
9

6
7

8
7
.9

8
8
.7

8
9
.8

8
7

8
8

9
1

9
6

9
2

9
5

9
8

0
.6

2
0
.8

1
0
.8

6
0
.8

5
0
.8

5
0
.8

7
0
.8

8
0
.8

9
0
.8

7
0
.8

6
0
.9

5

D
3
0

6
9

8
1

8
2
.8

8
9
.7

8
1

8
0

8
2

8
9

8
8

8
7

9
0

0
.7

8
0
.8

1
0
.8

5
0
.8

7
0
.8

2
0
.8

3
0
.8

5
0
.8

6
0
.8

6
0
.8

7
0
.9

0

Multimedia Tools and Applications (2021) 80:13271–13323 13303

Ta
b
le
1
0

A
cc

u
ra

cy
an

d
F

-m
ea

su
re

m
ea

su
re

d
b
y

co
n
si

d
er

in
g

R
B

F
k
er

n
el

A
cc

u
ra

cy
F

-M
ea

su
re

ID
A

F
F

R
1

F
R

2
F

R
3

F
R

4
F

R
5

F
R

6
F

S
1

F
S

2
F

S
3

F
S

4
A

F
F

R
1

F
R

2
F

R
3

F
R

4
F

R
5

F
R

6
F

S
1

F
S

2
F

S
3

F
S

4

D
1

7
8
.3

3
8
2

8
4

8
6

8
6

8
2

8
3

8
5

8
6

8
3

8
9

0
.7

9
0
.8

1
0
.8

5
0
.8

3
0
.8

1
0
.8

3
0
.8

5
0
.8

2
0
.8

9
0
.8

1
0
.9

1

D
2

7
2

8
0
.8

8
8
4

8
7

8
6

8
5

8
2

8
5

8
6

8
8

9
1

0
.7

5
0
.8

2
0
.8

6
0
.8

5
0
.8

4
0
.8

1
0
.8

5
0
.8

3
0
.8

5
0
.8

1
0
.8

7

D
3

6
7

8
1

8
4

8
7

8
2

8
5

8
2

8
1

8
4

8
9

9
0

0
.7

8
0
.8

7
0
.8

6
0
.8

5
0
.8

3
0
.8

5
0
.8

6
0
.8

5
0
.8

4
0
.8

7
0
.8

9

D
4

7
2
.8

8
8

8
6

8
9

8
6

8
3

8
9

8
5

8
7

8
9

9
0

0
.7

2
0
.8

0
0
.8

8
0
.8

4
0
.8

7
0
.8

6
0
.8

6
0
.8

7
0
.8

1
0
.8

6
0
.8

8

D
5

7
3

8
1

8
3

8
0

8
1

8
8

8
8

8
2

8
3

8
4

8
9

0
.6

7
0
.8

0
0
.8

1
0
.8

2
0
.8

3
0
.8

3
0
.8

4
0
.8

5
0
.8

6
0
.8

7
0
.9

3

D
6

6
7

8
5

8
7

8
6

8
5

8
4

8
8

8
9

9
1

9
3

9
6

0
.6

9
0
.8

8
0
.8

5
0
.8

6
0
.8

7
0
.8

7
0
.8

5
0
.8

8
0
.8

9
0
.8

9
0
.9

6

D
7

7
2

8
1

8
5

8
8

8
9

8
9
.6

8
8
.7

8
6
.8

8
9
.7

9
1

9
5

0
.7

0
0
.8

6
0
.8

5
0
.8

4
0
.8

7
0
.8

9
0
.8

6
0
.8

7
0
.8

9
0
.8

1
0
.9

0

D
8

6
5

7
8

7
5

7
8

8
2

8
4

8
5

8
6

8
7

8
8

9
1

0
.6

7
0
.8

1
0
.8

1
0
.8

8
0
.8

5
0
.8

4
0
.8

3
0
.8

4
0
.8

4
0
.8

8
0
.8

9

D
9

6
8

8
4

8
7

9
2

9
1

8
3

9
7

8
4

9
5

9
3

8
6

0
.7

8
0
.8

9
0
.9

2
0
.9

4
0
.9

3
0
.9

2
0
.9

9
0
.9

6
0
.9

1
0
.9

2
0
.9

1

D
1
0

6
6
.8

7
8

8
6

8
8

8
9

8
2

8
9

8
9

8
9
.8

8
9
.7

9
7

0
.7

0
0
.8

2
0
.8

1
0
.8

8
0
.8

6
0
.8

7
0
.8

5
0
.8

8
0
.8

2
0
.8

8
0
.9

6

D
1
1

7
9

8
8

8
8

8
6

8
6

8
9

9
8

8
9

8
0

8
6

8
8

0
.7

2
0
.8

7
0
.8

6
0
.8

6
0
.8

5
0
.8

7
0
.9

3
0
.8

5
0
.8

4
0
.8

2
0
.8

5

D
1
2

6
6
.8

8
2

8
8

8
2

8
6

8
1

8
3

8
8

8
7

8
9

9
0

0
.7

5
0
.8

0
0
.8

1
0
.8

2
0
.8

1
0
.8

1
0
.8

2
0
.8

6
0
.8

6
0
.8

4
0
.8

9

D
1
3

6
9
.1

7
8

8
1

8
1

8
2

8
2

8
7

8
2

8
6

8
8

8
9

0
.6

0
0
.7

8
0
.8

0
0
.8

1
0
.8

0
0
.7

9
0
.8

1
0
.8

2
0
.8

0
0
.8

1
0
.8

8

D
1
4

6
7

8
1

8
0

8
6

8
2

8
5

9
0
.9

8
2

8
1

8
6

8
6

0
.6

7
0
.8

2
0
.8

6
0
.8

1
0
.8

0
0
.8

8
0
.8

9
0
.8

3
0
.8

5
0
.8

1
0
.8

2

D
1
5

6
9
.7

8
8

8
8

8
6

8
6

8
8

9
6

8
8

8
9
.8

9
1

9
2

0
.6

9
0
.8

6
0
.8

8
0
.8

3
0
.8

6
0
.8

5
0
.9

4
0
.8

3
0
.8

4
0
.8

6
0
.8

6

D
1
6

6
7

7
1

8
0

8
7

8
6

8
2

8
3

8
1

8
6

8
7

8
8

0
.7

2
0
.8

2
0
.8

1
0
.8

0
0
.8

0
0
.8

1
0
.8

3
0
.8

0
0
.8

0
0
.8

1
0
.8

3

D
1
7

8
0

8
6

8
8

8
6

8
9

9
0

9
2

9
3

9
6

9
1

9
8

0
.6

7
0
.8

6
0
.8

2
0
.8

5
0
.8

7
0
.8

8
0
.8

2
0
.8

5
0
.8

8
0
.9

8
1

D
1
8

7
2

8
7

8
9

9
1

9
0

9
2
.8

9
1

9
2
.9

9
5

9
6

9
9

0
.7

0
0
.8

9
0
.8

5
0
.8

5
0
.8

7
0
.8

4
0
.8

5
0
.8

6
0
.8

8
0
.9

0
0
.9

3

D
1
9

7
7

8
6

8
7

8
9

9
1

9
2

9
3

9
2

9
5

9
6

9
8

0
.7

2
0
.8

9
0
.8

6
0
.8

7
0
.8

8
0
.9

2
0
.9

1
0
.9

2
0
.9

0
0
.8

8
0
.9

5

D
2
0

6
8

8
8

8
6

8
6

8
9

9
0

9
5

9
2

9
3

9
1

9
2

0
.7

8
0
.8

2
0
.8

6
0
.8

3
0
.8

2
0
.8

5
0
.8

9
0
.8

7
0
.8

8
0
.8

4
0
.8

5

D
2
1

6
2

7
8

7
8

8
0

8
1

8
0

8
5
.7

8
0
.7

8
2

8
3

8
4

0
.6

7
0
.8

2
0
.8

5
0
.8

4
0
.8

5
0
.8

7
0
.9

0
.8

8
0
.8

8
0
.8

7
0
.8

9

D
2
2

6
9
.8

8
3

8
5

8
7

8
8

8
8

9
0

9
2

9
6

9
5

9
8

0
.6

8
0
.8

2
0
.8

8
0
.8

7
0
.8

5
0
.8

2
0
.8

5
0
.8

5
0
.8

8
0
.8

9
0
.9

1

D
2
3

6
8
.9

8
0

8
1

8
0
.8

8
8
3
.7

6
8
7
.7

8
8
7
.7

1
8
7
.9

9
1

9
0

9
0

0
.6

8
0
.7

2
0
.8

0
9

0
.8

4
6

0
.8

0
0
.8

2
0
.8

5
0
.8

3
0
.8

2
0
.8

0
0
.8

2

D
2
4

6
5

8
1

8
0

8
2

8
3

8
9

9
0
.3

8
9
.2

9
0

8
9
.7

8
8

0
.6

7
0
.8

0
0
.8

1
0
.8

2
0
.8

6
0
.8

5
0
.8

9
0
.8

2
0
.8

2
0
.8

5
0
.8

5

D
2
5

6
9
.9

8
6

8
8

8
6

8
9

9
7

9
2

9
3

9
6

9
7

9
8

0
.7

7
0
.8

8
0
.8

1
0
.8

6
0
.8

8
0
.8

8
0
.8

9
0
.8

9
0
.8

9
0
.8

8
1

D
2
6

6
9
.9

8
4

8
8
.7

8
6
.9

8
9
.6

9
4
.8

9
6
.1

9
4

9
7

9
5

9
7

0
.7

3
0
.8

2
0
.8

3
0
.8

4
0
.8

5
0
.8

6
0
.8

6
0
.8

5
0
.8

8
0
.8

6
0
.9

2

D
2
7

6
7

8
2

8
5

8
6

8
1

9
0
.1

9
1
.9

9
3
.6

9
7

9
5
.8

9
7
.9

0
.7

1
0
.8

2
0
.8

6
0
.8

8
0
.8

9
0
.8

9
0
.8

7
0
.8

5
0
.8

6
0
.8

7
0
.9

1

D
2
8

6
3

8
2

8
6

8
9

8
6

9
2

9
6

9
1

8
6

8
1

9
1

0
.7

8
0
.7

8
0
.8

2
0
.8

5
0
.8

2
0
.8

5
0
.8

9
0
.8

6
0
.8

8
0
.8

5
0
.8

8

D
2
9

6
7

7
8

8
2

8
5

8
6

8
2

9
2

8
7

8
5

8
4

8
9

0
.7

7
0
.8

0
0
.8

1
0
.8

4
0
.8

6
0
.8

8
0
.8

7
0
.8

7
0
.8

6
0
.8

5
0
.8

8

D
3
0

6
0

7
6

8
2

8
4

8
7

8
9

9
1

9
2

9
5

9
1

9
7

0
.6

7
0
.7

2
0
.7

1
0
.8

2
0
.8

5
0
.8

6
0
.8

7
0
.8

5
0
.8

7
0
.8

7
1

13304 Multimedia Tools and Applications (2021) 80:13271–13323

Table 11 Time to develop and test the malware detection models using Linear Kernel (in seconds)

Measured time

ID AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

D1 720 480 360 360 360 300 280 320 300 295 250

D2 900 580 460 460 460 400 380 420 400 395 350

D3 600 480 360 360 360 300 280 220 200 295 200

D4 900 580 460 460 460 400 380 420 400 395 350

D5 800 480 420 430 410 405 280 320 300 395 350

D6 600 380 360 360 360 300 300 320 300 295 250

D7 650 350 320 320 320 280 280 220 290 295 200

D8 600 380 360 360 360 300 200 320 300 295 250

D9 600 380 360 360 360 300 200 320 300 295 250

D10 650 380 360 360 360 300 300 320 300 295 210

D11 700 380 360 360 360 300 300 320 300 295 200

D12 710 380 360 360 360 300 300 320 300 295 200

D13 710 380 360 360 360 300 300 320 300 295 210

D14 730 480 460 460 360 300 300 320 320 295 210

D15 750 420 410 410 360 300 200 220 220 205 205

D16 750 420 410 410 360 300 205 220 220 205 200

D17 650 320 310 310 330 300 200 210 210 200 180

D18 630 320 310 310 330 300 202 210 210 202 160

D19 620 320 310 310 330 300 180 210 210 200 190

D20 620 320 330 310 310 300 190 210 170 200 180

D21 660 310 320 320 330 300 200 210 210 200 170

D22 610 320 310 310 330 300 200 210 210 200 210

D23 650 310 320 320 330 300 200 210 190 200 210

D24 650 320 310 310 330 300 190 210 210 200 200

D25 600 310 300 300 310 300 200 210 210 200 160

D26 610 300 310 320 330 300 200 210 210 200 170

D27 650 320 310 310 330 300 200 210 210 200 180

D28 550 320 310 310 330 300 180 210 210 200 190

D29 580 320 310 310 330 300 180 220 200 210 190

D30 530 320 300 300 330 300 180 210 210 200 160

9.4 Comparison of results

To identify that out of implemented feature selection approaches and machine learning

algorithms which technique work well or all of the techniques perform equally well, we

employed pair-wise t-test in our study.

1. Feature Selection Approaches: In this study, for each of the feature selection approaches

two sets are formed, each of feature selection approach have 90 distinct data points

(3 machine learning techniques * 30 data set). t-test are performed on distinct feature

selection approaches and the respective p-value to measure its statistical significance is

compared. The outcome of t-test study is demonstrated in Fig. 11a. In the figure, we

Multimedia Tools and Applications (2021) 80:13271–13323 13305

Table 12 Time to develop and test the malware detection models using Polynomial Kernel (in seconds)

Measured Time

ID AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

D1 720 480 360 360 360 300 290 320 300 295 295

D2 900 580 460 460 460 400 380 420 400 395 398

D3 600 480 360 360 360 300 280 220 200 295 190

D4 920 580 460 460 460 400 380 420 400 395 320

D5 780 480 420 430 410 405 290 320 300 395 300

D6 650 380 360 360 360 300 300 320 300 295 250

D7 680 350 320 320 320 280 210 220 290 295 260

D8 600 380 360 360 360 300 280 320 300 295 240

D9 600 380 360 360 360 300 200 320 300 295 250

D10 650 380 360 360 360 300 300 320 300 295 230

D11 720 380 360 360 360 300 280 320 300 295 298

D12 710 380 360 360 360 300 300 320 300 295 290

D13 730 380 360 360 360 300 300 320 300 295 280

D14 730 480 460 460 360 300 294 320 320 295 297

D15 750 420 410 410 360 300 198 220 220 205 205

D16 750 420 410 410 360 300 205 220 220 205 200

D17 650 320 310 310 330 300 200 210 210 200 280

D18 630 320 310 310 330 300 202 210 210 202 200

D19 620 320 310 310 330 300 190 210 210 200 190

D20 620 320 330 310 310 300 190 210 270 200 180

D21 660 310 320 320 330 300 190 210 210 200 200

D22 610 320 310 310 330 300 200 210 210 200 205

D23 650 310 320 320 330 300 200 210 195 200 210

D24 650 320 310 310 330 300 200 210 210 208 209

D25 600 310 300 300 310 300 200 210 210 200 190

D26 610 300 310 320 330 300 200 210 210 200 230

D27 650 320 310 310 330 300 200 210 210 200 180

D28 550 320 310 310 330 300 200 210 210 200 198

D29 580 320 310 310 330 300 200 220 200 210 190

D30 530 320 300 300 330 300 180 210 210 200 160

used two different symbols to represent the p-value i.e., circle filled with green color

have p-value > 0.05 (having no relevance difference) and circle filled with red color

have p-value ≤ 0.05 (relevance difference). After observing the Fig. 11a, it is clear

that, majority of the cells are filled with green color circle. This means that there is

no relevance difference among the employed feature selection approaches. Further, by

determining the measure of mean difference, given in Table 14, we have observed that

feature sets obtained by considering FS4 give best outcomes when examined with other

implemented feature selection approaches.

13306 Multimedia Tools and Applications (2021) 80:13271–13323

Table 13 Time to develop and test the malware detection models using RBF Kernel (in seconds)

Measured Time

ID AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

D1 720 480 360 360 360 300 280 320 300 295 230

D2 900 580 460 460 460 400 380 420 400 395 320

D3 600 480 360 360 360 300 280 220 200 295 190

D4 920 580 460 460 460 400 380 420 400 395 330

D5 780 480 420 430 410 405 280 320 300 395 230

D6 650 380 360 360 360 300 300 320 300 295 250

D7 680 350 320 320 320 280 280 220 290 295 200

D8 600 380 360 360 360 300 280 320 300 295 240

D9 600 380 360 360 360 300 190 320 300 295 250

D10 650 380 360 360 360 300 300 320 300 295 210

D11 720 380 360 360 360 300 280 320 300 295 298

D12 710 380 360 360 360 300 300 320 300 295 210

D13 730 380 360 360 360 300 300 320 300 295 220

D14 730 480 460 460 360 300 290 320 320 295 297

D15 750 420 410 410 360 300 190 220 220 205 205

D16 750 420 410 410 360 300 205 220 220 205 200

D17 650 320 310 310 330 300 200 210 210 200 180

D18 630 320 310 310 330 300 202 210 210 202 160

D19 620 320 310 310 330 300 180 210 210 200 170

D20 620 320 330 310 310 300 190 210 270 200 180

D21 660 310 320 320 330 300 190 210 210 200 200

D22 610 320 310 310 330 300 200 210 210 200 190

D23 650 310 320 320 330 300 200 210 195 200 210

D24 650 320 310 310 330 300 190 210 210 200 200

D25 600 310 300 300 310 300 200 210 210 200 160

D26 610 300 310 320 330 300 200 210 210 200 170

D27 650 320 310 310 330 300 200 210 210 200 180

D28 550 320 310 310 330 300 180 210 210 200 190

D29 580 320 310 310 330 300 170 220 200 210 190

D30 530 320 300 300 330 300 180 210 210 200 160

In the present work, we also compare the developed model on the basis of cost-

benefit analysis. For every feature selection approach, cost-benefit analysis is computed

by employing following equation:

Cost − Benef it = (Basedcost + Benef itcost)/2. (20)

Here, Basedcost is dependent on the correlation among the selected features set and

error in the class. Basedcost can be calculated from the following equation :

Basedcost = Accuracy (SM) ∗ ρSM .f ault . (21)

Here, Accuracy (SM) is the classification accuracy to build a malware detection model

by utilizing selected features set, ρSM .f ault is a multiple correlation coefficient among

Multimedia Tools and Applications (2021) 80:13271–13323 13307

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Box-plot diagram of F-measure and Accuracy

selected features set and error. The proposed model produces higher accuracy and as it

have higher multiple correlation coefficient so it will achieve a high Basedcost . NAM

is considered as feature sets and NSM is considered as the number of selected features

after implementing features selection approaches. Basedcost can be calculated from the

following equation:

Basedcost = NAM − NSM/NAM (22)

The feature selection approach which achieve higher value of cost-benefit is an

foremost feature selection approach as proposed in [16]. Figure 12a-b demonstrates

cost-benefit of distinct feature selection approaches. On the basis of Fig. 12a-b we

observed that FS4 achieved higher median Cost-benefit measure when matched with

other approaches.

2. Machine Learning Techniques: In our study, we implemented eleven different features

subsets (i.e., 1 considering all features + 10 feature selection approaches) on thirty dif-

ferent Android app data set by examining two performance parameters i.e., F-measure

13308 Multimedia Tools and Applications (2021) 80:13271–13323

Fig. 11 a Feature selection techniques. b Classification methods

and Accuracy, all with 330 data points ((1 considering all set of features + 10 feature

selection method) * 30 data sets)). Figure 11b demonstrates the outcomes of t-test anal-

ysis. On the basis of Fig. 11b, it is noticeable that, there is a relevance difference among

these techniques because p-value is smaller than 0.05. On the other hand, by determin-

ing the difference in their mean value as given in Table 15, LSSVM with RBF kernel

gives best outcome when compared to other machine learning techniques.

Table 14 Performance of distinct feature selection approaches after calculate its mean difference

Accuracy

AF FR1 FR2 FR3 FR4 FR5 FR6 FS1 FS2 FS3 FS4

AF 0 −1.9 −0.96 −0.78 −1.91 −1.90 −4.89 −1.77 −1.80 −0.87 −5.8

FR1 1.8 0 0.77 0.87 −0.78 −0.80 −3.8 0.07 0.32 0.80 −3.89

FR2 0.87 −0.78 0 0.5 −2.0 −2.0 −3.89 −0.9 −0.32 0.20 −4.54

FR3 0.67 −0.68 −0.2 0 −1.32 −1.32 −4.08 −0.8 −0.45 0.07 −4.88

FR4 1.88 0.77 1.22 1.36 0 0 −2.99 0.77 0.8 1.7 −3.66

FR5 1.88 0.77 1.22 1.36 0 0 −2.99 0.75 0.8 1.7 −3.66

FR6 4.5 3.88 3.22 4.09 2.88 2.88 0 3.55 3.67 4.19 −0.50

FS1 1.65 −0.09 0.61 0.77 −0.80 −0.81 −3.88 0 0.21 0.80 −3.98

FS2 1.09 −0.29 0.39 0.51 −0.9 −0.9 −3.81 −0.22 0 0.8 −4.21

FS3 0.87 −0.88 −0.21 −0.09 −1.8 −1.8 −3.8 −0.08 −0.7 0 −4.89

FS4 6.0 3.9 4.89 4.88 3.88 3.88 0.48 3.88 4.16 4.77 0

Multimedia Tools and Applications (2021) 80:13271–13323 13309

Table 15 Performance of different supervised methods after calculate its mean difference

Accuracy

Linear Polynomial RBF

Linear 0 −3.2 −5.98

Polynomial 2.86 0 −3.81

RBF 5.96 3.87 0

3. Feature subset selection and feature ranking approaches: For this study, pair-wise t-test

is used to identify which feature selection approach work better. For both of the imple-

mented approaches (i.e., feature subset selection and feature ranking) sample pairs of

performance evaluation are studied. The performance of averaged feature subset selec-

tion and feature ranking techniques outcomes of t-test analysis are briefed in Table 16.

In this research paper, three distinct kinds of machine learning algorithms are applied

on thirty different Android categories by selecting Accuracy and F-measure as perfor-

mance parameters, in accordance with each feature selection approaches an aggregate

number of two sets are utilized, feature subset selection with 360 distinct points (which

means 4 feature subset selection approaches * 3 machine learning techniques * 30

data sets) and feature ranking with 540 distinct data points (3 machine learning tech-

niques * 6 feature ranking approaches * 30 data sets). On the basis of Table 16, it is

seen that, there isn’t a relevant variation among two implemented approaches, because

p-value come out to be greater than 0.05. By comparing the value of the mean dif-

ference, feature subset selection approaches give best results as compared to feature

ranking approaches. On the basis of Cost-Benefit analysis as demonstrated in Fig. 12,

we can say that both feature subset selection and feature ranking have nearly similar

Cost-Benefit value. It proves that the averaged cost and benefit of model build by con-

sidering selected set of features with feature subset selection approaches and feature

ranking having nearly same value.

9.5 Evaluation of FSDroid

9.5.1 Comparison of results with previously used classifiers and frameworks

In addition to the study done in finding the best approach to build a malware detection model

accurately, this study also makes the comparison with different most often used supervised

machine learning approaches present in literature such as SVM with three distinct kernels

i.e., linear, polynomial and RBF, Decision tree analysis, Logistic regression, Neural network

and Naı̈ve Bayes classifier. Figure 13 demonstrates the box-plot diagrams for F-measure and

Table 16 t-test analysis among feature subset selection approaches and feature ranking approaches

Accuracy

Mean(FR-FS) p-value t-value

−0.1908 0.899 −0.3211

F-Measure

−0.0078 0.599 −0.5251

13310 Multimedia Tools and Applications (2021) 80:13271–13323

Fig. 12 Cost-benefit value

Accuracy of commonly utilized classifiers and LSSVM using linear, RBF and polynomial

kernel. On the basis of Fig. 13, we observed that LSSVM using three distinct kernels have

higher median value along with some number of outliers.

Pair-wise t-test is also implemented to decide which machine learning approach yield

best performance. The outcomes of t-test study for distinct machine learning approaches

are demonstrated in Fig. 14. On the basis of Fig. 14, it is seen that in number of the cases

there is a relevance difference among these machine learning techniques because p-value is

smaller than 0.05. On the other hand by noticing the mean difference value in Table 17 it

can be seen that LSSVM with RBF kernel achieved better results when compared to other

supervised machine learning techniques.

In addition to that, in our study we compare our proposed malware detection model (i.e.,

FSDroid) with existing frameworks or approaches that were developed in the literature.

Table 18 shows the name, goal, methodology, deployment, data set and detection rate of

suggested approaches or frameworks. Experiment was performed with our collected data set

and empirical result reveals that our proposed framework has achieved 3% higher detection

rate when compared to distinct framework available in the literature.

9.5.2 Comparison of results with different Anti-Virus scanners

Although our proposed framework LSSVM with RBF kernel i.e., FSDroid gives a bet-

ter detection rate when compared to the machine learning technique used in the literature,

Fig. 13 Diagram of box-plot showing performance of different classifiers

Multimedia Tools and Applications (2021) 80:13271–13323 13311

Fig. 14 t-test analysis (p-value)

in the end it must be comparable with the common anti-virus products available in prac-

tice for Android malware detection. For this experiment, we select 10 different anti-viruses

which are available in the market and applied them on our collected data set.31 The per-

formance of our proposed framework is comparatively better when compared to different

anti-viruses available in the market. Table 19 shows the results of the experiment with

anti-virus scanners. The detection rate of the anti-viruses scanners varies considerably.

Also the best anti-virus scanners detected 97.1% of the Android malwares and certain

scanners identified only 82% of the malicious samples, likely do not being specialized

in detecting Android malware. Our proposed framework i.e., FSdroid gives the detection

rate of 98.8% and outperforms 1 out of 10 anti-virus scanners. From this, we can say

that our proposed framework is more efficient in detecting malware rather than the man-

ually created signatures of many anti-virus scanners. In addition to that, we also compare

the complexity analysis of our proposed framework i.e., FSDroid with distinct anti-virus

scanners and experiment were performed on 1000 distinct Android apps that were col-

lected from real-world and empirical result reveals that our proposed framework is able

to detect malware-infected apps in less time period when compared to distinct anti-virus

scanners.

9.5.3 Detection of known and unknownmalware families

Detection of knownmalware families In this section, we check that our proposed frame-

work is capable to detect malware of known family or not. For this experiment, we select

20 sample of each families (in our study, we consider sample of 81 different families shown

in Table 20.) and train it with our selected model. LSSVM with RBF kernel is capable to

detect an average of 98.7% malware apps. The name of families and the samples used for

31To perform experiment we collect 1000 distinct Android apps from real-world

13312 Multimedia Tools and Applications (2021) 80:13271–13323

Ta
b
le
1
7

M
ea

n
d
if

fe
re

n
ce

b
et

w
ee

n
p
er

fo
rm

an
ce

o
f

d
if

fe
re

n
t

su
p
er

v
is

ed
m

ac
h
in

e
le

ar
n
in

g
te

ch
n
iq

u
e

A
cc

u
ra

cy

D
ec

is
io

n
L

o
g
is

ti
c

S
V

M
w

it
h

S
V

M
w

it
h

S
V

M
w

it
h

N
eu

ra
l

N
aı̈

v
e

B
ay

es
L

S
S

V
M

L
S

S
V

M
L

S
S

V
M

tr
ee

re
g
re

ss
io

n
li

n
ea

r
p
o
ly

n
o
m

ia
l

R
B

F
n
et

w
o
rk

cl
as

si
fi

er
w

it
h

w
it

h
w

it
h

an
al

y
si

s
k
er

n
el

k
er

n
el

k
er

n
el

li
n
ea

r
p
o
ly

n
o
m

ia
l

R
B

F

k
er

n
el

k
er

n
el

k
er

n
el

D
ec

is
io

n
tr

ee
an

al
y
si

s
0

6
.7

7
6
.4

1
9
.8

1
5
.8

7
5
.9

9
1
0
.2

1
2
.1

0
−

1
.1

1
−

2
.8

8

L
o
g
is

ti
c

re
g
re

ss
io

n
−

6
.8

8
0

−
0
.8

8
−

4
.8

8
2
.8

8
−

1
.8

9
3
.8

8
−

4
.9

9
−

8
.1

1
−

9
.8

8

S
V

M
w

it
h

li
n
ea

r
k
er

n
el

−
6
.5

5
0
.7

7
0

−
4
.8

1
3
.8

7
−

0
.8

9
3
.2

1
−

4
.1

0
−

7
.8

−
9
.4

1

S
V

M
w

it
h

p
o
ly

n
o
m

ia
l

−
2
.8

8
4
.7

1
4
.4

1
0

7
.2

7
3
.2

9
8
.0

1
−

0
.1

9
−

3
.4

1
−

5
.2

8

k
er

n
el

S
V

M
w

it
h

R
B

F
k
er

n
el

−
9
.8

−
2
.7

7
−

3
.4

1
−

7
.8

1
0

−
4
.8

9
0
.2

9
−

7
.1

0
−

1
1
.0

1
−

1
2
.7

8

N
eu

ra
l

n
et

w
o
rk

−
5
.8

8
1
.7

7
0
.4

1
−

4
.8

1
4
.1

7
0

4
.2

1
−

3
.1

0
−

7
.1

1
−

8
.8

8

N
ai

v
e

B
ay

es
cl

as
si

fi
er

−
1
0
.7

8
−

3
.7

7
−

3
.4

1
−

8
.1

0
−

0
.8

7
−

4
.9

9
0

−
8
.1

0
−

1
1
.1

−
1
2
.8

0

L
S

S
V

M
w

it
h

li
n
ea

r
k
er

n
el

−
2
.1

0
4
.9

7
4
.1

0
0
.8

1
7
.8

7
3
.9

9
8
.2

1
0

−
3
.9

1
−

5
.0

2

L
S

S
V

M
w

it
h

p
o
ly

n
o
m

ia
l

1
.9

9
8
.1

7
7
.1

7
3
.8

1
1
1
.7

1
7
.0

9
1
2
.1

3
.0

3
0

−
1
.8

8

k
er

n
el

L
S

S
V

M
w

it
h

R
B

F
k
er

n
el

2
.8

8
9
.7

7
9
.4

1
5
.8

1
1
2
.8

7
8
.9

9
1
3
.2

1
4
.9

0
1
.9

9
0

Multimedia Tools and Applications (2021) 80:13271–13323 13313

Ta
b
le
1
8

C
o
m

p
ar

is
o
n

w
it

h
p
re

v
io

u
sl

y
d
ev

el
o
p
ed

fr
am

ew
o
rk

s/
ap

p
ro

ac
h
es

F
ra

m
ew

o
rk

/
A

p
p
ro

ac
h

G
o
al

M
et

h
o
d
o
lo

g
y

D
ep

lo
y
m

en
t

D
at

a
S

et
D

et
ec

ti
o
n

ra
te

A
v
ai

la
b
il

it
y

A
n
d
ro

m
al

y
[7

6
]

(2
0
1
2
)

D
et

ec
ti

o
n

D
y
n
am

ic
an

d
P

ro
fi

le
-b

as
ed

D
is

tr
ib

u
te

d
V

er
y
-L

im
it

ed
H

ig
h

F
re

e

A
n
d
ro

S
im

il
ar

[2
7
](

2
0
1
3
)

D
et

ec
ti

o
n

S
ta

ti
c

O
ff

-d
ev

ic
e

L
im

it
ed

M
o
d
er

at
e

—

A
n
d
ru

b
is

[5
1
]

(2
0
1
4
)

A
n
al

y
si

s
an

d
D

et
ec

ti
o
n

S
ta

ti
c,

D
y
n
am

ic
,

O
ff

-d
ev

ic
e

H
ig

h
er

M
o
d
er

at
e

F
re

e

P
ro

fi
le

-b
as

ed
an

d
B

eh
av

io
u
ra

l

A
u
ra

si
u
m

[8
9
](

2
0
1
2
)

D
et

ec
ti

o
n

D
y
n
am

ic
an

d
B

eh
av

io
u
ra

l
O

ff
-d

ev
ic

e
L

im
it

ed
H

ig
h

F
re

e

C
o
p
p
er

D
ro

id
[7

9
](

2
0
1
5
)

A
n
al

y
si

s
an

d
D

et
ec

ti
o
n

D
y
n
am

ic
,
S

y
st

em
/A

P
I

O
ff

-D
ev

ic
e

L
im

it
ed

M
o
d
er

at
e

F
re

e

an
d

V
M

I

C
ro

w
d
ro

id
[1

4
]

(2
0
1
1
)

D
et

ec
ti

o
n

D
y
n
am

ic
,

D
is

tr
ib

u
te

d
V

er
y
-L

im
it

ed
H

ig
h

—

S
y
st

em
ca

ll
/A

P
I

an
d

B
eh

av
io

u
ra

l

P
ar

an
o
id

A
n
d
ro

id
[7

0
]

(2
0
1
0
)

D
et

ec
ti

o
n

D
y
n
am

ic
an

d
B

eh
av

io
u
ra

l
O

ff
-d

ev
ic

e
L

im
it

ed
—

—

T
ai

n
tD

ro
id

[2
6
]

(2
0
1
4
)

D
et

ec
ti

o
n

D
y
n
am

ic
O

ff
-D

ev
ic

e
V

er
y
-L

im
it

ed
M

o
d
er

at
e

F
re

e

S
y
st

em
ca

ll
/A

P
I

an
d

B
eh

av
io

u
ra

l

H
in

D
ro

id
[3

9
](

2
0
1
7
)

D
et

ec
ti

o
n

D
y
n
am

ic
an

d
A

P
I

O
ff

-d
ev

ic
e

L
im

it
ed

M
o
d
er

at
e

—

M
al

D
o

ze
r

[4
4
](

2
0
1
8
)

D
et

ec
ti

o
n

D
y
n
am

ic
O

ff
-D

ev
ic

e
L

im
it

ed
M

o
d
er

at
e

—

H
E

M
D

[9
9
](

2
0
1
8
)

D
et

ec
ti

o
n

D
y
n
am

ic
an

d
P

er
m

is
si

o
n
s

O
ff

-d
ev

ic
e

L
im

it
ed

M
o
d
er

at
e

—

D
ro

id
D

et
[1

0
0
](

2
0
1
8
)

D
et

ec
ti

o
n

S
ta

ti
c

O
ff

-d
ev

ic
e

L
im

it
ed

M
o
d
er

at
e

—

W
ei

W
an

g
[8

6
](

2
0
1
9
)

D
et

ec
ti

o
n

D
y
n
am

ic
O

ff
-d

ev
ic

e
L

im
it

ed
M

o
d
er

at
e

—

M
al

In
si

g
h
t[

3
7
](

2
0
1
9
)

D
et

ec
ti

o
n

D
y
n
am

ic
O

ff
-d

ev
ic

e
L

im
it

ed
H

ig
h

—

F
S

D
ro

id
(o

u
r

p
ro

p
o
se

d
fr

am
ew

o
rk

)
D

et
ec

ti
o
n

D
y
n
am

ic
,P

er
m

is
si

o
n
s,

O
ff

-d
ev

ic
e

U
n
li

m
it

ed
H

ig
h
er

F
re

e

A
P

I
ca

ll
s,

u
se

r-
ra

ti
n

g

an
d

N
u
m

b
er

o
f

u
se

r
d
o
w

n
lo

ad
ap

p

D
et

ec
ti

o
n

ra
te

o
f

o
u
r

p
ro

p
o
se

d
m

al
w

ar
e

d
et

ec
ti

o
n

m
o
d
el

(i
.e

.,
F

S
d
ro

id
)

is
h
ig

h
er

w
h
en

co
m

p
ar

ed
to

d
is

ti
n
ct

fr
am

ew
o
rk

s/
ap

p
ro

ac
h
es

av
ai

la
b
le

in
th

e
li

te
ra

tu
re

.
F

ra
m

e-
w

o
rk

s/
ap

p
ro

ac
h
es

p
ro

p
o
se

d
in

th
e

li
te

ra
tu

re
d
ev

el
o
p
ed

an
d

te
st

ed
w

it
h

li
m

it
ed

d
at

a
se

t.
E

x
p
er

im
en

t
w

as
p
er

fo
rm

ed
w

it
h

o
u
r

co
ll

ec
te

d
d
at

a
se

t
an

d
em

p
ir

ic
al

re
su

lt
re

v
ea

ls
th

at
o
u
r

p
ro

p
o
se

d
fr

am
ew

o
rk

h
as

ac
h
ie

v
ed

3
%

h
ig

h
er

d
et

ec
ti

o
n

ra
te

w
h
en

co
m

p
ar

ed
to

d
is

ti
n
ct

fr
am

ew
o
rk

av
ai

la
b
le

in
th

e
li

te
ra

tu
re

.

13314 Multimedia Tools and Applications (2021) 80:13271–13323

Table 19 Detection rate of FSDroid with different anti-virus scanners

Name of the Anti-virus Detection rate (in %) Speed to detect malware in sec

Cyren 82 60

Ikarus 82.68 62

VIPRE 89 40

McAfee 89 30

AVG 90 32

AVware 92.8 30

ESET NOD32 92.9 20

CAT QuickHeal 96.9 32

AegisLab 97.1 30

NANO Antivirus 96.2 20

FSDroid (our proposed framework) 98.8 12

Detection speed calculated on Android apps whose size is less or equivalent to 50MB. For this experiment, to
compare the performance of FSDroid we consider freely available anti-virus in the market. Speed is measured
for a particular Android app taken from real-world. Testing was performed with 1000 distinct Android apps
collected from promised repositories

Table 20 Top malware families used in our data set

ID Family # of samples ID Family # of samples ID Family # of samples

A1 Airpush 500 A2 AndroRAT 140 A3 Andup 300

A4 Aples 120 A5 BankBot 100 A6 Bankun 133

A7 Boqx 130 A8 Boxer 122 A9 Cova 100

A10 Dowgin 100 A11 DroidKungFu 100 A12 Erop 120

A13 FakeAngry 110 A14 FakeAV 120 A15 FakeDoc 120

A16 FakeInst 110 A17 FakePlayer 120 A18 FakeTimer 120

A19 FakeUpdates 120 A20 Finspy 1110 A21 Fjcon 1230

A22 Fobus 1020 A23 Fusob 1810 A24 GingerMaster 1920

A25 GoldDream 200 A26 Gorpo 120 A27 Gumen 200

A28 Jisut 620 A29 Kemoge 720 A30 Koler 200

A31 Ksapp 290 A32 Kuguo 100 A33 Kyview 500

A34 Leech 30 A35 Lnk 100 A36 Lotoor 20

A37 Mecor 29 A38 Minimob 33 A39 Mmarketpay 200

A40 MobileTX 50 A41 Mseg 23 A42 Mtk 20

A43 Nandrobox 10 A44 Obad 100 A45 Opfake 120

A46 Penetho 120 A47 Ramnit 120 A48 Roop 120

A49 RuMMS 100 A50 SimpleLocker 110 A51 SlemBunk 120

A52 SmsKey 120 A53 SMsZombie 110 A54 Spambot 115

A55 SpyBubble 120 A56 Stealer 300 A57 Steek 230

A58 Svpeng 20 A59 Tesbo 21 A60 Triada 200

A61 Univert 210 A62 UpdtKiller 100 A63 Utchi 300

A64 Vidro 92 A65 VikingHorde 230 A66 Vmvol 533

A67 Winge 190 A68 Youmi 689 A69 Zitmo 230

A70 Ztorg 1000 A71 Imlog 50 A72 SMSreg 50

A73 Gappusin 50 A74 Adrd 50 A75 Geinimi 100

A76 Kmin 157 A77 Plankton 125 A78 GingerMaster 100

A79 Iconosys 100 A80 SendPay 18 A81 GoldDream 200

Multimedia Tools and Applications (2021) 80:13271–13323 13315

Fig. 15 Detection rate of proposed framework LSSVM with RBF kernel (i.e., FSDroid)

each family can be found in Table 20 and the detection rate of our proposed framework for

each family is illustrated in Figs. 15a and b.

Detection of unknownmalware families To check whether the LSSVM with RBF kernel

is capable to detect unknown malware families or not, we trained, our proposed framework

with the random selection of 10 different families obtained by principle of counting and test

is applied on the rest of the remaining 71 families present in the data set. Table 21 shows the

result of LSSVM with RBF kernel when we train with 10 selected families. From Table 21,

we can say that if we train LSSVM with RBF kernel function and having few number of

known families samples which are necessary to generalize the behavior of most malware

families it gives better detection rate.

Table 21 Detection of FSDroid to detect Unknown malware families

Combination of Android malware Detection rate

families to trained the model when trained

LSSVM with RBF kernel

{A1,A2,A3,A4,A5,A6,A7,A8,A9,A10} 66%

{A1,A3,A4,A5,A6,A7,A8,A8,A10,A11} 70%

: :

: :

{A2,A3,A4,A5,A6,A7,A8,A9,A10,A11} 59%

: :

: :

: :

: :

: :

{A7,A13,A42,A55,A67,A37,A68,A79,A22,A51} 98.4%

: :

: :

: :

: :

: :

13316 Multimedia Tools and Applications (2021) 80:13271–13323

In summary, our proposed framework is capable to detect Android malware more

effectively when compared with several anti-virus scanners which regularly update their

signature definition. In addition, our proposed framework is capable to identify Android

malware more efficiently whenever we trained with limited number of malware families.

9.5.4 Experimental findings

The comprehensive conclusion of our experimental work is presented in this section. The

empirical study was conducted for thirty different categories of Android apps by considering

LSSVM with three distinct kinds of kernel functions i.e., linear, RBF and polynomial. On

the basis of the experimental results, this research paper is able to answer the questions

mentioned in Section 2.

RQ1: In this paper, we applied three distinct machine learning algorithms to build a model

to detect whether the app is benign or malware. On the basis of Tables 8-13, it

can be implicit that model build by employing LSSVM with RBF kernel by using

selected set of features obtained as a result of FS4 as an input gives better outcome

when compared to others.

RQ2: To respond the RQ2, Fig. 15 and Tables 18 and 19 were analyzed. Here, it is found

that the model build by utilizing LSSVM with RBF kernel is capable to detect

malware from real-world apps.

RQ3: In the present paper, four distinct kind of feature subset selection approaches and six

distinct kind of feature ranking approaches are used to identify the smaller subset

of features. By utilizing these approaches, we considered best possible subsets of

the features which helps to build a model to identify that either the app is benign or

malware. On the basis of the Tables 8-13, in number of cases there occurs a reduced

subset of features which are best for building a detection model when compared to

all the extracted features.

RQ4: In the present paper, six distinct variants of feature ranking approaches are used

to discover the reduced subset of features. On the basis of t-test study, it is seen

that feature selection by implementing PCA i.e., FR6 approach gives the better

outcomes when matched to others approaches.

RQ5: For this paper, four distinct kind of feature subset selection approaches are used to

find the reduced subset of features. On the basis of t-test study, it is seen that feature

selection by utilizing FS4 gives the outcomes which are persuasively better when

compared to other approaches.

RQ7: For this work, pair-wise t-test being utilized to identify whether feature subset selec-

tion approaches perform better than feature ranking approaches or both of them

carried out equally well. On the basis of t-test outcomes it is seen that, there is a

relevance difference among feature subset selection and feature ranking approach.

Moreover, the value of mean difference shows that feature ranking gives better

results than the feature subset selection approaches.

RQ7: On the basis of Section 9, we can observe that the performance of the feature selec-

tion approaches vary by using the distinct machine learning techniques. Further,

it also observed that selection of machine learning algorithm to build a malware

detection model which detect either the app is malware or not is based on the feature

selection approaches.

Multimedia Tools and Applications (2021) 80:13271–13323 13317

10 Threat to validity

In this section, threats to validity which are experienced at the time of performing the

experiment are presented. Below we discuss them:

i. Construct validity : In this work, presented models for malware detection only detect

either an app is benign or malware, but does not state that how many number of possible

permissions and API calls are required to detect malware.

ii. External Validity: Cyber-criminals develops malware on daily basis to misuse the user

information. In this work, we considered 81 different malware families to train the

model and our proposed model is capable to detect malware from known and unknown

families. Further, research can be extended to train model with more malware families

and which is capable to detect more malware apps from real-world.

iii. Internal Validity : The third threat lies in the consistency of the data used in this study.

We collected data from different promised repositories mentioned in Section 2.3. Any

error in the information not mentioned in the sources were not considered in this work.

Also we can not claim that the data considered for experiment is 100% accurate, we

believed that it has been collected consistently.

11 Conclusion

This work emphasizes on designing a malware detection framework by using selected set

of features which help us to identify that an Android app belong to malware class or

benign class. The execution process was performed by taking assistance of thirty different

categories of Android apps.

Our submissions after performing the experiment are following:

– Empirical results indicate that, it is feasible to determine a small subset of features. The

malware detection model build by considering this determined set of features is able to

detect malware and benign apps with inferior value of misclassified errors and better

accuracy.

– On the basis of experimental finding, we observed that after considering feature selec-

tion approaches it helps to reduced the feature sets. The result of models build by using

feature selection approaches perform better when compared to all extracted feature sets.

– The AA, BU, LS, PE, RA, TO set of features were found to be relevance detectors for

malware detection by utilizing feature selection approaches.

– On the basis of t-test study, it is seen that there has been no relevant difference among

implemented feature selection approaches. Moreover, the models build by utilizing

distinct machine learning techniques are relevantly distinct.

– On the basis of mean difference, it is seen that model build by considering selected set

of features as an input gives better detection rate when compared to model build by

considering all set of extracted features. Moreover, the model build by utilizing LSSVM

with RBF kernel gives better outcomes when compared to other techniques.

– On the basis of Cost-benefit analysis, we implicit that the selected features by utilizing

FS4, achieved high median Cost-Benefit value when compared to other approaches.

– The results of malware detection model, is influenced by the feature selection

approaches.

13318 Multimedia Tools and Applications (2021) 80:13271–13323

– On the basis of proposed detection framework, it is seen that model build by utilizing

LSSVM with RBF kernel is capable to detect 98.75% unknown malware from real-

world apps.

– Proposed framework is able to detect 98.8% malware-infected Android apps when com-

pared to commercial anti-virus softwares and in addition to that it also achieved 3%

higher detection rate when compared to different frameworks or approaches proposed

in the literature.

In this work, proposed models for malware detection only detect that either an app

is malware or benign. Further, work can be extended to develop a model for malware

detection which predict whether a particular feature is capable to detect malware or

not. Moreover, this study can be replicated over other Android apps repository which

utilized soft computing models to attain better detection rate for malware.

References

1. Aafer Y, Du W, Yin H (2013) Droidapiminer: Mining api-level features for robust malware detection
in android. In: International conference on security and privacy in communication systems, Springer,
pp 86–103

2. Allix K, Bissyandé TF, Jérome Q, Klein J, Traon YL et al (2016) Empirical assessment of machine
learning-based malware detectors for android. Empir Softw Eng 21(1):183–211

3. Arora A, Peddoju SK, Conti M (2019) Permpair: Android malware detection using permission pairs.
IEEE Trans Inform Forensics Secur 15:1968–1982

4. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K, Siemens C (2014) Drebin: Effective and
explainable detection of android malware in your pocket. In: Ndss, vol 14, pp 23–26

5. Aubery-Derrick S (2011) Detection of smart phone malware. Unpublished PhD Thesis Electronic and
Information Technology University Berlin, pp 1–211

6. Azmoodeh A, Dehghantanha A, Choo KKR (2018) Robust malware detection for internet of (battle-
field) things devices using deep eigenspace learning. IEEE Trans Sustain Comput 4(1):88–95

7. Backes M, Gerling S, Hammer C, Maffei M, von Styp-Rekowsky P (2013) Appguard–enforcing
user requirements on android apps. In: International conference on TOOLS and Algorithms for the
construction and analysis of systems. Springer, pp 543–548

8. Barrera D, Kayacik HG, Oorschot PCV, Somayaji A (2010) A methodology for empirical analysis
of permission-based security models and its application to android. In: Proceedings of the 17th ACM
conference on Computer and communications security, pp 73–84

9. Bhandari S, Gupta R, Laxmi V, Gaur MS, Zemmari A, Anikeev M (2015) Draco: Droid analyst combo
an android malware analysis framework. In: Proceedings of the 8th international conference on security
of information and networks, pp 283–289

10. Bhattacharya A, Goswami RT (2018) A hybrid community based rough set feature selection technique
in android malware detection, Springer

11. Birendra C (2016) Android permission model. arXiv:160704256
12. Bläsing T, Batyuk L, Schmidt AD, Camtepe SA, Albayrak S (2010) An android application sand-

box system for suspicious software detection. In: 2010 5th International conference on malicious and
unwanted software, IEEE, pp 55–62

13. Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi AR, Shastry B (2012) Towards taming privilege-
escalation attacks on android. In: NDSS, vol 17, p 19

14. Burguera I, Zurutuza U, Nadjm-Tehrani S (2011) Crowdroid: behavior-based malware detection system
for android. In: Proceedings of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices, pp 15–26

15. Cai H, Meng N, Ryder B, Yao D (2018) Droidcat: Effective android malware detection and categoriza-
tion via app-level profiling. IEEE Trans Inf Forensics Secur 14(6):1455–1470

16. Chaikla N, Qi Y (1999) Genetic algorithms in feature selection. In: IEEE SMC’99 conference proceed-
ings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 99CH37028),
IEEE, vol 5, pp 538–540

Multimedia Tools and Applications (2021) 80:13271–13323 13319

http://arxiv.org/abs/160704256

17. Chakradeo S, Reaves B, Traynor P, Enck W (2013) Mast: Triage for market-scale mobile malware
analysis. In: Proceedings of the sixth ACM conference on Security and privacy in wireless and mobile
networks, pp 13–24

18. Chen KZ, Johnson NM, D’Silva V, Dai S, MacNamara K, Magrino TR, Wu EX, Rinard M, Song DX
(2013) Contextual policy enforcement in android applications with permission event graphs. In: NDSS,
p 234

19. Chen S, Xue M, Fan L, Hao S, Xu L, Zhu H, Li B (2018) Automated poisoning attacks and defenses in
malware detection systems:, An adversarial machine learning approach. Comput Secur 73:326–344

20. Chen Y, Xiong J, Xu W, Zuo J (2019) A novel online incremental and decremental learning algorithm
based on variable support vector machine. Clust Comput 22(3):7435–7445

21. Cruz AEC, Ochimizu K (2009) Towards logistic regression models for predicting fault-prone code
across software projects. In: 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, IEEE, pp 460–463

22. Desnos A et al (2013) Androguard-reverse engineering, malware and goodware analysis of android
applications. URL code google com/p/androguard 153

23. DeviPriya K, Lingamgunta S (2020) Multi factor two-way hash-based authentication in cloud comput-
ing. Int J Cloud Appl Comput (IJCAC) 10(2):56–76

24. Dini G, Martinelli F, Saracino A, Sgandurra D (2012) Madam: a multi-level anomaly detector for
android malware. In: International conference on mathematical methods, models, and architectures for
computer network security. Springer, pp 240–253

25. Enck W, Ongtang M, McDaniel P (2009) On lightweight mobile phone application certification. In:
Proceedings of the 16th ACM conference on Computer and communications security, pp 235–245

26. Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN (2014)
Taintdroid: an information-flow tracking system for realtime privacy monitoring on smartphones. ACM
Trans Comput Syst (TOCS) 32(2):1–29

27. Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A (2013) Androsimilar: robust statistical feature
signature for android malware detection. In: Proceedings of the 6th International conference on security
of information and networks, pp 152–159

28. Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M (2014) Android security:
a survey of issues, malware penetration, and defenses. IEEE Commun Surv Tutor 17(2):998–1022

29. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D (2012) Android permissions: User attention,
comprehension, and behavior. In: Proceedings of the eighth symposium on usable privacy and security,
pp 1–14

30. Fereidooni H, Conti M, Yao D, Sperduti A (2016) Anastasia: Android malware detection using static
analysis of applications. In: 2016 8th IFIP international conference on new technologies, mobility and
security (NTMS). IEEE, pp 1–5

31. Fuchs AP, Chaudhuri A, Foster JS (2009) Scandroid: Automated security certification of android
applications. Manuscript, Univ of Maryland, http://wwwcsumdedu/avik/projects/scandroidascaa 2(3)

32. Gadekallu TR, Rajput DS, Reddy MPK, Lakshmanna K, Bhattacharya S, Singh S, Jolfaei A, Alazab M
(2020) A novel pca–whale optimization-based deep neural network model for classification of tomato
plant diseases using gpu. J. Real-Time Image Proc., 1–14

33. Gao K, Khoshgoftaar TM, Napolitano A (2009) Exploring software quality classification with a
wrapper-based feature ranking technique. In: 2009 21st IEEE international conference on tools with
artificial intelligence, IEEE, pp 67–74

34. Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012a) Riskranker: scalable and accurate zero-day
android malware detection. In: Proceedings of the 10th international conference on Mobile systems,
applications, and services, pp 281–294

35. Grace MC, Zhou Y, Wang Z, Jiang X (2012b) Systematic detection of capability leaks in stock android
smartphones. In: NDSS, vol 14, p 19

36. Gupta BB, Perez GM, Agrawal DP, Gupta D (2020) Handbook of computer networks and cyber
security. Springer, Berlin

37. Han W, Xue J, Wang Y, Liu Z, Kong Z (2019) Malinsight: A systematic profiling based malware
detection framework. J Netw Comput Appl 125:236–250

38. He S, Li Z, Tang Y, Liao Z, Li F, Lim SJ (2020) Parameters compressing in deep learning. Comput
Mater Contin 62(1):321–336

39. Hou S, Ye Y, Song Y, Abdulhayoglu M (2017) Hindroid: An intelligent android malware detection
system based on structured heterogeneous information network. In: Proceedings of the 23rd ACM
SIGKDD International conference on knowledge discovery and data mining, pp 1507–1515

13320 Multimedia Tools and Applications (2021) 80:13271–13323

http://www cs umd edu/avik/projects/scandroidascaa

40. Jeon J, Micinski KK, Vaughan JA, Fogel A, Reddy N, Foster JS, Millstein T (2012) Dr. android and mr.
hide: fine-grained permissions in android applications. In: Proceedings of the second ACM workshop
on Security and privacy in smartphones and mobile devices, pp 3–14

41. Jerlin MA, Marimuthu K (2018) A new malware detection system using machine learning techniques
for api call sequences. Journal of Applied Security Research 13(1):45–62

42. Jiang S, Chen W, Li Z, Yu H (2019) Short-term demand prediction method for online car-hailing
services based on a least squares support vector machine. IEEE Access 7:11882–11891

43. Kadir AFA, Stakhanova N, Ghorbani AA (2015) Android botnets: What urls are telling us. In:
International conference on network and system security, Springer, pp 78–91

44. Karbab EB, Debbabi M, Derhab A, Mouheb D (2018) Maldozer: Automatic framework for android
malware detection using deep learning. Digit Investig 24:S48–S59

45. Khare N, Devan P, Chowdhary CL, Bhattacharya S, Singh G, Singh S, Yoon B (2020) Smo-dnn:
Spider monkey optimization and deep neural network hybrid classifier model for intrusion detection.
Electronics 9(4):692

46. Kirubavathi G, Anitha R (2018) Structural analysis and detection of android botnets using machine
learning techniques. Int J Inf Secur 17(2):153–167

47. Kohavi R, John GH et al (1997) Wrappers for feature subset selection. Artificial intelligence 97(1-
2):273–324

48. Kumar L, Sripada SK, Sureka A, Rath SK (2018) Effective fault prediction model developed using
least square support vector machine (lssvm). J Syst Softw 137:686–712

49. Letteri I, Penna GD, Gasperis GD (2019) Security in the internet of things: botnet detection in software-
defined networks by deep learning techniques. Int J High Perform Comput Netw 15(3-4):170–182

50. Li L, Bissyandé TF, Papadakis M, Rasthofer S, Bartel A, Octeau D, Klein J, Traon L (2017) Static
analysis of android apps: A systematic literature review. Inf Softw Technol 88:67–95

51. Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, Veen VVD, Platzer C (2014)
Andrubis–1,000,000 apps later: A view on current android malware behaviors. In: 2014 third
international workshop on building analysis datasets and gathering experience returns for security
(BADGERS). IEEE, pp 3–17

52. Loorak MH, Fong PW, Carpendale S (2014) Papilio: Visualizing android application permissions. In:
Computer graphics forum, Wiley Online Library, vol 33, pp 391–400

53. Ma Z, Ge H, Liu Y, Zhao M, Ma J (2019) A combination method for android malware detection based
on control flow graphs and machine learning algorithms. IEEE Access 7:21235–21245

54. Mahindru A, Sangal A (2019) Deepdroid: Feature selection approach to detect android malware using
deep learning, IEEE

55. Mahindru A, Sangal A (2020a) Dldroid: Feature selection based malware detection framework for
android apps developed during covid-19. Int J Emerg Technol

56. Mahindru A, Sangal A (2020b) Feature-based semi-supervised learning to detect malware from
android. In: Automated software engineering: a deep learning-based approach, Springer, pp 93–118

57. Mahindru A, Sangal A (2020c) Gadroid: A framework for malware detection from android by using
genetic algorithm as feature selection approach. Int J Adv Sci Technol 29(5):5532–5543

58. Mahindru A, Sangal A (2020d) Parudroid: Validation of android malware detection dataset. J
Cybersecur Inform Manag 3(2):42–52

59. Mahindru A, Sangal A (2020e) Perbdroid: Effective malware detection model developed using
machine learning classification techniques. In: A journey towards bio-inspired techniques in software
engineering, Springer, pp 103–139

60. Mahindru A, Singh P (2017) Dynamic permissions based android malware detection using machine
learning techniques. In: Proceedings of the 10th innovations in software engineering conference,
pp 202–210

61. Matsudo T, Kodama E, Wang J, Takata T (2012) A proposal of security advisory system at the time of
the installation of applications on android os. In: 2012 15th International conference on network-based
information systems, IEEE, pp 261–267

62. Narayanan A, Chandramohan M, Chen L, Liu Y (2018) A multi-view context-aware approach to
android malware detection and malicious code localization. Empir Softw Eng 23(3):1222–1274

63. Narudin FA, Feizollah A, Anuar NB, Gani A (2016) Evaluation of machine learning classifiers for
mobile malware detection. Soft Comput 20(1):343–357

64. Novakovic J (2010) The impact of feature selection on the accuracy of naı̈ve bayes classifier. In: 18th
Telecommunications forum TELFOR, vol 2, pp 1113–1116

65. Ongtang M, McLaughlin S, Enck W, McDaniel P (2012) Semantically rich application-centric security
in android. Secur Commun Netw 5(6):658–673

66. Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

Multimedia Tools and Applications (2021) 80:13271–13323 13321

67. Peiravian N, Zhu X (2013) Machine learning for android malware detection using permission and api
calls. In: 2013 IEEE 25th international conference on tools with artificial intelligence. IEEE, pp 300–
305

68. Petsas T, Voyatzis G, Athanasopoulos E, Polychronakis M, Ioannidis S (2014) Rage against the virtual
machine: hindering dynamic analysis of android malware. In: Proceedings of the seventh european
workshop on system security, pp 1–6

69. Plackett RL (1983) Karl pearson and the chi-squared test. In: International statistical review/Revue
Internationale de Statistique, pp 59–72

70. Portokalidis G, Homburg P, Anagnostakis K, Bos H (2010) Paranoid android: versatile protection for
smartphones. In: Proceedings of the 26th annual computer security applications conference, pp 347–
356

71. Rastogi V, Chen Y, Enck W (2013) Appsplayground: automatic security analysis of smartphone appli-
cations. In: Proceedings of the third ACM conference on Data and application security and privacy,
pp 209–220

72. Razak MFA, Anuar NB, Othman F, Firdaus A, Afifi F, Salleh R (2018) Bio-inspired for features
optimization and malware detection. Arab J Sci Eng 43(12):6963–6979

73. Rosen S, Qian Z, Mao ZM (2013) Appprofiler: a flexible method of exposing privacy-related behav-
ior in android applications to end users. In: Proceedings of the third ACM conference on Data and
application security and privacy, pp 221–232

74. Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Bringas PG, Álvarez G (2013) Puma: Permission
usage to detect malware in android. In: International joint conference CISIS’12-ICEUTE 12-SOCO 12,
Special Sessions, Springer, pp 289–298

75. Saracino A, Sgandurra D, Dini G, Martinelli F (2016) Madam: Effective and efficient behavior-based
android malware detection and prevention. IEEE Trans Dependable Secure Comput 15(1):83–97

76. Shabtai A, Kanonov U, Elovici Y, Glezer C, Weiss Y (2012) “andromaly”: a behavioral malware
detection framework for android devices, vol 38, pp 161–190

77. Shahzad F, Akbar M, Khan S, Farooq M (2013) Tstructdroid: Realtime malware detection using
in-execution dynamic analysis of kernel process control blocks on android. National University of
Computer & Emerging Sciences, Islamabad, Pakistan, Tech Rep

78. Suykens JA, Brabanter JD, Lukas L, Vandewalle J (2002) Weighted least squares support vector
machines: robustness and sparse approximation. Neurocomputing 48(1-4):85–105

79. Tam K, Khan SJ, Fattori A, Cavallaro L (2015) Copperdroid: Automatic reconstruction of android
malware behaviors. In: Ndss

80. Tan Y, Xue Y, Liang C, Zheng J, Zhang Q, Zheng J, Li Y (2018) A root privilege management scheme
with revocable authorization for android devices. J Netw Comput Appl 107:69–82

81. Mas’ud MZ, Sahib S, Abdollah MF, Selamat SR, Yusof R (2014) Analysis of features selection and
machine learning classifier in android malware detection, IEEE

82. Wang C, Xu Q, Lin X, Liu S (2019a) Research on data mining of permissions mode for android malware
detection. Clust Comput 22(6):13337–13350

83. Wang D, Romagnoli J (2005) Robust multi-scale principal components analysis with applications to
process monitoring. J Process Control 15(8):869–882

84. Wang W, Wang X, Feng D, Liu J, Han Z, Zhang X (2014) Exploring permission-induced risk in android
applications for malicious application detection. IEEE Trans Inf Forensics Secur 9(11):1869–1882

85. Wang W, Li Y, Wang X, Liu J, Zhang X (2018) Detecting android malicious apps and categorizing
benign apps with ensemble of classifiers. Future Gener Comput Syst 78:987–994

86. Wang W, Zhao M, Wang J (2019b) Effective android malware detection with a hybrid model based on
deep autoencoder and convolutional neural network. J Ambient Intell Humaniz Comput 10(8):3035–
3043

87. Wu DJ, Mao CH, Wei TE, Lee HM, Wu KP (2012) Droidmat: Android malware detection through
manifest and api calls tracing. In: 2012 Seventh Asia joint conference on information security, IEEE,
pp 62–69

88. Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK (2019) Android malware detection based on system
call sequences and lstm. Multimed Tools Appl 78(4):3979–3999

89. Xu R, Saı̈di H, Anderson R (2012) Aurasium: Practical policy enforcement for android applications. In:
Presented as part of the 21st {USENIX} security symposium ({USENIX} security, vol 12, pp 539–552

90. Yamaguchi S, Gupta B (2020) Malware threat in internet of things and its mitigation analysis. In:
Security, privacy, and forensics issues in big data. IGI Global, pp 363–379

91. Yan LK, Yin H (2012) Droidscope: Seamlessly reconstructing the {OS} and dalvik semantic views for
dynamic android malware analysis. In: Presented as part of the 21st {USENIX} security symposium
({USENIX} security, vol 12, pp 56–584

13322 Multimedia Tools and Applications (2021) 80:13271–13323

92. Yerima SY, Sezer S, McWilliams G, Muttik I (2013) A new android malware detection approach using
bayesian classification, IEEE, AINA

93. Yerima SY, Sezer S, McWilliams G (2014) Analysis of bayesian classification-based approaches for
android malware detection. IET Inf Secur 8(1):25–36

94. Zhang LB, Peng F, Qin L, Long M (2018) Face spoofing detection based on color texture markov
feature and support vector machine recursive feature elimination. J Vis Commun Image Represent
51:56–69

95. Zheng C, Zhu S, Dai S, Gu G, Gong X, Han X, Zou W (2012) Smartdroid: an automatic system
for revealing ui-based trigger conditions in android applications. In: Proceedings of the second ACM
workshop on Security and privacy in smartphones and mobile devices, pp 93–104

96. Zhou S, Tan B (2020) Electrocardiogram soft computing using hybrid deep learning cnn-elm. Appl
Soft Comput 86:105778

97. Zhou W, Zhou Y, Jiang X, Ning P (2012) Detecting repackaged smartphone applications in third-party
android marketplaces. In: Proceedings of the second ACM conference on data and application security
and privacy, pp 317–326

98. Zhou Y, Jiang X (2012) Dissecting android malware: Characterization and evolution. In: 2012 IEEE
symposium on security and privacy, IEEE, pp 95–109

99. Zhu HJ, Jiang TH, Ma B, You ZH, Shi WL, Cheng L (2018a) Hemd: a highly efficient random forest-
based malware detection framework for android. Neural Comput and Applic 30(11):3353–3361

100. Zhu HJ, You ZH, Zhu ZX, Shi WL, Chen X, Cheng L (2018b) Droiddet: effective and robust detection
of android malware using static analysis along with rotation forest model. Neurocomputing 272:638–
646

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Multimedia Tools and Applications (2021) 80:13271–13323 13323

	FSDroid...
	Abstract
	Introduction
	Related work and overview of proposed framework
	Related work
	Analysis of Android apps
	Android Malware detection

	Gaps and overview of our proposed framework
	Gaps present in the previous frameworks/approaches
	Description of the collected Android apps
	Formulation of data set
	Formulation of feature sets
	Capability of features
	Feature selection approaches
	Research questions

	Feature ranking approaches
	Gain-ratio feature selection
	Chi-Squared test
	Information-gain feature selection
	OneR feature selection
	Principal Component Analysis (PCA)
	Logistic regression analysis

	Feature subset selection approaches
	Correlation based feature selection
	Rough set analysis (RSA)
	Consistency subset evaluation approach
	Filtered subset evaluation

	Machine learning techniques
	LSSVM classifier

	Comparison of proposed model with different existing techniques
	Evaluation of performance parameters
	Accuracy
	F-measure

	Experimental setup
	Results of performed experiment
	Feature ranking approaches
	Feature subset selection approaches
	Machine learning techniques
	Comparison of results
	Evaluation of FSDroid
	Comparison of results with previously used classifiers and frameworks
	Comparison of results with different Anti-Virus scanners
	Detection of known and unknown malware families
	Detection of known malware families
	Detection of unknown malware families

	Experimental findings

	Threat to validity
	Conclusion
	References

