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Abstract. In this paper, we assess the capabilities of the Arbitrary Lagrangian–Eulerian (ALE) method imple-
mented in the open-source code TrioCFD to tackle down two fluid–structure interaction problems involv-
ing moving boundaries. To test the code, we first consider the bi-dimensional case of two coaxial cylinders
moving in a viscous fluid. We show that the two fluid forces acting on the cylinders are in phase opposition,
with amplitude and phase that only depend on the Stokes number, the dimensionless separation distance
and the Keulegan–Carpenter number. Throughout a detailed parametric study, we show that the self (resp.
cross) added mass and damping coeYcients decrease (resp. increase) with the Stokes number and the sepa-
ration distance. Our numerical results are in perfect agreement with the theoretical predictions of the litera-
ture, thereby validating the robustness of the ALE method implemented in TrioCFD. Then, we challenge the
code by considering the case of a vibrating cylinder located in the central position of a square tube bundle.
In parallel to the numerical investigations, we also present a new experimental setup for the measurement
of the added coeYcient, using the direct method introduced by Tanaka. The numerical predictions for the
self-added coeYcients are shown to be in very good agreement with a theoretical estimation used as a refer-
ence by engineers. A good agreement with the experimental results is also obtained for moderate and large
Stokes numbers, whereas an important deviation due to parasitic frequencies in the experimental setup ap-
pears for low Stokes number. Still, this study clearly confirms that the ALE method implemented in TrioCFD
is particularly eYcient in solving fluid–structure interaction problems. As an open-source code, and given its
ease of use and its flexibility, we believe that TrioCFD is thus perfectly adapted to engineers who need simple
numerical tools to tackle down complex industrial problems.
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1. Introduction

The accurate estimation of the force acting on a body moving in a viscous �uid is of crucial
importance for engineers, particularly those working in �elds such as turbomachinery [1], heat
exchangers, tube banks [2,3] or energy harvesting of �exible structures [4–7]. When an immersed
body is subjected to a small amplitude of motion, Stokes [8] showed that the �uid force is
the sum of two terms: an added mass term related to the body's acceleration and a damping
term related to the body's velocity. The concept of added mass and damping terms can be
generalized to multiple immersed bodies, introducing some self and cross-added coe Y cients.
In such a case, the self-added coeY cients relate the �uid force on a body to its motion. On their
hand, the cross-added coe Y cients relate the forces on a body to the other bodies' motion. The
determination of the added coe Y cients has been the topic of considerable experimental, [9–14]
and theoretical studies, mostly based on a Helmholtz decomposition associated with a method of
images [15–20] or a conformal transformation [21–28]. These theoretical approaches have shown
their e Y ciency in predicting the added-coe Y cients in some simple con�gurations, but extending
to the industrial context remains delicate. As a consequence, engineers developed fast and robust
numerical approaches, such as the immersed body method [29], the cut-cell method [30] or the
penalization method [27,31–35].

In the present work, we aim to analysis the e Y ciency of the Arbitrary Lagrangian–Eulerian
(ALE) method [36–38] implemented in the open-source code TrioCFD [39, 40], developed by
the CEA for the nuclear industry. TrioCFD is a C ++ object-oriented parallel software designed
for calculations of unsteady laminar or turbulent �uid �ows. The calculations are performed
on structured (parallelepipeds) and non-structured (tetrahedrons) meshes of several millions
of control volumes (hybrid �nite volume element, see [39–41]). The code structure is �exible,
allowing the user to choose the discretization method, the convection and time schemes, as well
as the turbulence model.

This article is organized as follows. Section 2 presents the ALE method and the main equations
solved by TrioCFD. In Section 3, we test the code, considering the vibration of two coaxial
cylinders separated by a �uid layer. The added coe Y cients are extracted from the numerical
predictions of the �uid forces, and the results are compared with those of the literature. In
Section 4, we challenge the code, considering the vibration of a cylindrical tube located in
the central position of a square tube array. Our numerical results for the �uid coe Y cients are
compared with a phenomenological estimation used by engineers of the nuclear industry and
with some experimental measurements that we have performed on a new experimental set-up
built at CEA. Finally, Section 5 summarizes our �ndings.

2. Numerics

The numerical simulations of the Navier–Stokes equations have been conducted on the 1.8.0
version of TrioCFD, a programmable CFD code based on the TRUST platform and a C++ language
architecture, see [39,40]. This open source code allows the user to choose a wide range of options
and parameters, among which the discretization schemes in space and time, the turbulence
models (RANS or LES approaches) or the boundary conditions. Given its �exibility, the code is
widely used in the nuclear industry for massive parallel and high performance calculations.

To determine the �ow of a �uid, it is necessary to describe the kinematics of all its material
particles throughout time. To do so, one can adopt either an Euler description of motion, in which
a �uid particle is identi�ed by its instantaneous position, or a Lagrange description of motion, in
which a �uid particle is identi�ed by its initial position. Both descriptions are totally equivalent,
leading to di Verent forms of the Navier–Stokes equations that can be discretized on a stationary
mesh grid (Euler) or a mesh grid that follows the motion of the �uid particles (Lagrange).
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In both cases, the mesh grids do not account for the motion of the boundaries, which makes
the numerical simulations of the related Navier–Stokes equations delicate.

To overcome this problem, several approaches, such as the immersed boundary methods
[42–44], or the ALE method [36–38] have been developed.

In the ALE approach, a �uid particle is identi�ed by its position relative to a frame moving
with a nonuniform velocity vALE. In this new frame of reference, the Navier–Stokes equations are
expressed as 8

<

:

r¢ v Æ0, (a)
@Jv

@t
ÆJ

µ
º ¢ v ¡ r¢ ((v ¡ vALE) ­ v) ¡

1

½
r p

¶
, (b)

(1)

with J the Jacobian of the transformation between the ALE and the Lagrange descriptions. The
ALE method is actually a hybrid description between the Euler and the Lagrange descriptions,
both of them corresponding to the particular cases vALE Æ0 and vALE Æv, respectively. In the ALE
framework, the choice of vALE is arbitrary as long as the deformation of the mesh grid remains
under control. For moderate deformations, vALE is usually de�ned as the solution of an auxiliary
Laplace problem, see [45].

In case of unstructured meshes (triangles in 2D or tetrahedrons in 3D), TrioCFD uses Finite
Volume-Element (FVE) approach to solving discretized Navier–Stokes equations. These methods
combine the �nite element method with the �nite volume method, gathering the advantages of
each approach for incompressible Navier–Stokes problems [40,41].

Applying the numerical FVE discretization on (1), along with the Forward Euler scheme for the
time discretization, results in the following discrete system:

8
><

>:

[M ]
JnÅ1VnÅ1

h ¡ Jn Vn
h

¢ t
ÆJnÅ1

³
[A]VnÅ1

h ¡ [L(Vn
h )]VnÅ1

h Å [L(Vn )]VnÅ1
h,ALE ¡ [G]PnÅ1

h

´
, (a)

[D ]VnÅ1
h Æ0, (b)

(2)

where Vh and Ph are the unknowns vectors of the discrete �uid �ow velocity vector and pressure,
¢ t is the time step, [ M ] is the mass matrix operator, [ A] is the discrete di Vusion operator, [ L(Vh )]
is the non-linear discrete convection operator, [ G] is the discrete gradient operator, and [ D] is the
discrete divergence operator. The superscripts n and n Å 1 indicate the time step at which the
variable is computed.

In order to solve the velocity–pressure coupling, a multi-step (projection–correction) tech-
nique [46,47] is employed, where an intermediate (predicted) velocity V¤

h is computed:

JnÅ1
µ

1

¢ t
[M ] ¡ [A] Å [L(Vn

h )]
¶
V¤

h Æ
1

¢ t
[M ]Jn Vn

h Å JnÅ1[L(Vn
h )]Vn

h,ALE ¡ JnÅ1[G]Pn
h , (3)

and the mass conservation is then enforced by solving a Poisson equation for pressure:

[D ][M ]¡ 1[G]P0
h Æ

1

¢ t
[D]V¤

h . (4)

Finally, the velocity is updated using the predicted velocity V¤
h and the pressure increment P0

h :

VnÅ1
h ÆV¤

h ¡ ¢ t [M ]¡ 1[G]P0
h , PnÅ1

h ÆPn
h Å P0

h . (5)

In the present work, the linear systems (3) is solved by the iterative solver GMRES from the
PETSc library [48].

3. Study 1. Vibrations of two coaxial cylinders in a viscous �uid

In this section, we test the capabilities of the code TrioCFD along with the ALE approach,
considering the 2D case of two coaxial cylinders vibrating in a viscous �uid. The goal of this
preliminary work is to introduce all the important concepts that will be used in the study of the
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Figure 1. Con�guration with two concentric cylinders. The �uid in the annulus region is
homogeneous with mass density ½and kinematic viscosity º .

vibrations of a tube in a square bundle, considered in Section 4. In what follows, we introduce the
problem, present the numerical setup and �nally discuss our numerical results in comparison
with the theoretical estimations of [49,50].

3.1. Presentation of the problem and governing equations

Let C1 and C2 be two concentric cylinders with diameters D j and boundaries @C j , j Æ{1,2},
see Figure 1. One cylinder, either C1 or C2, oscillates in the ( x, y) plane with a simple harmonic
motion of angular frequency ­ and a displacement amplitude U . The �uid in the annulus region
is Newtonian, homogeneous, with mass density ½ and kinematic viscosity º . The �uid �ow
generated by the oscillation of one cylinder is assumed as incompressible and two-dimensional.

The Navier–Stokes equations and the boundary conditions for the �uid �ow ( v,p) are:
8
>>>><

>>>>:

r¢ v Æ0, (a)
@v

@t
Å (v ¢ r)v Å

1

½
r p ¡ º ¢ v Æ0, (b)

v ¡
dU

dt
Æ0 on @C j , j Æ{1, 2}. (c)

(6)

The (6c) ensures the continuity of velocities at the cylinder boundaries @C j . The �uid force acting
on C j is the sum of a pressure and a viscous term

F j Æ ¡
Z

@C j

pn j dL j Å ½º
Z

@C j

[r v Å (r v)T] ¢n j dL j , (7)

where n j is the outward normal unit vector to @C j , see Figure 1, and dL j is an in�nitesimal line
element of integration.

Picking D1/2 and ­ ¡ 1 as a characteristic length and time, the dimensionless quantities t ¤ , u¤ ,
v¤ , p¤ and f¤

j are de�ned as

t Æ­ ¡ 1t ¤ , U ÆU u¤ , v ÆU ­ v¤ , p Æ½U
D1

2
­ 2p¤ , F j Æ½U

µ
D1

2
­

¶2

f¤
j . (8)
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To reduce the number of parameters of the problem, the following rescaled quantities are also
de�ned

" Æ
D2

D1
, KC Æ

U

D1
, Sk Æ

D2
1(­ /2 � )

º
, (9)

as the dimensionless separation distance, the Keulegan–Carpenter number and the Stokes num-
ber, respectively. Introducing (8) in (6) yields the dimensionless Navier–Stokes equations

8
>>>><

>>>>:

r¢ v¤ Æ0, (a)
@v¤

@t ¤ Å 2KC(v¤ ¢r)v¤ År p¤ ¡
2

� Sk
¢ v¤ Æ0, (b)

v¤ ¡
du¤

dt ¤ Æ0 on @C j , j Æ{1,2}. (c)

(10)

The dimensionless �uid force acting on C j is

f¤
j Æ ¡

Z

@C j

p¤n j dl j Å
2

� Sk

Z

@C j

[r v¤ Å (r v¤ )T] ¢n j dl j , (11)

with d l j Æ2dL j / D1.
For KC ¿ 1, the dimensionless Navier–Stokes equations are linear. It follows that the �uid

forces are linear combinations of the cylinder velocity d u¤ /d t ¤ and acceleration d 2u¤ /d t ¤2

f¤
j Æ ¡ �

µ
[M j ]

d2u¤

dt ¤2 Å [C j ]
du¤

dt ¤

¶
, (12)

with

[M j ] Æ

Ã
m ( j )

self

m ( j )
self

!

and [C j ] Æ

Ã
c( j )

self

c( j )
self

!

if C j is moving, (13a)

[M j ] Æ
µ

mcross

¡ mcross

¶
and [C j ] Æ

µ
ccross

¡ ccross

¶
if C j is stationary. (13b)

The self-added mass and damping coe Y cients m ( j )
self and c( j )

self relate the �uid force on the moving
cylinder to its own motion. The cross-added mass and damping coe Y cients mcross and ccross

relate the �uid force on the stationary cylinder to the motion of the other cylinder. The �uid added
coeY cients are functions of the dimensionless separation distance " and the Stokes number Sk.

For a harmonic displacement u¤ Æsin( t ¤ )ex , the dimensionless �uid forces (12) reduce to

f¤
j Æ�

³
m ( j )

self sin( t ¤ ) ¡ c( j )
self cos(t ¤ )

´
ex , if C j is moving, (14a)

f¤
j Æ� (mcrosssin( t ¤ ) ¡ ccrosscos(t ¤ ))ex , if C j is stationary, (14b)

or similarly f¤
j Æh j sin( t ¤ Å ' j )ex , with

h j Æ�

r ³
m ( j )

self

´2
Å

³
c( j )

self

´2
and ' j Æ ¡ arctan

µ
c( j )

self

m ( j )
self

¶
if C j is moving, (15a)

h j Æ�
q

m 2
cross Å c2

cross and ' j Æ� ¡ arctan
³

ccross
mcross

´
if C j is stationary. (15b)

Yeh et al. [50] derived a few analytical expressions of the �uid added coe Y cients. Introducing <
and = the real and imaginary part operators, these expressions are as follows

m (1)
self Æ <(a11), m (2)

self Æ" 2< (a22), mcross Æ" < (a12), (16a)

c(1)
self Æ =(¡ a11), c(2)

self Æ" 2= (¡ a22), ccross Æ" =(¡ a12), (16b)
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with a11 Æ ¡(1Å 2a), a22 Æ2a/ " , a12 Æ1¡ 2a/ " 2 and

a Æ

¯
¯
¯
¯
¯
¯
¯
¯
¯
¯

1 1 J1(¯ 1) Y1(¯ 1)

0 1 " ¡ 1J1(¯ 2) " ¡ 1Y1(¯ 2)

2 2 ¯ 1J0(¯ 1) ¯ 1Y0(¯ 1)

0 2 ¯ 1J0(¯ 2) ¯ 1Y0(¯ 2)

¯
¯
¯
¯
¯
¯
¯
¯
¯
¯

¯
¯
¯
¯
¯
¯
¯
¯
¯
¯

1 1 J1(¯ 1) Y1(¯ 1)

" ¡ 2 1 " ¡ 1J1(¯ 2) " ¡ 1Y1(¯ 2)

0 2 ¯ 1J0(¯ 1) ¯ 1Y0(¯ 1)

0 2 ¯ 1J0(¯ 2) ¯ 1Y0(¯ 2)

¯
¯
¯
¯
¯
¯
¯
¯
¯
¯

¡ 1

. (17)

In (17), Jn and Yn are the Bessel functions of the �rst and second kind, with arguments ¯ 1 Æ
(1¡ i)

p
� /2

p
Sk or ¯ 2 Æ"¯ 1.

From an asymptotic expansion of these functions as Sk ! 1 , we show that ( m ( j )
self, mcross, c( j )

self,

ccross) are equivalent to ( em ( j )
self, emcross, ec( j )

self, eccross) with

em ( j )
self Æm ( j )pot

self Å
4

p
�

1
p

Sk
, emcross Æm pot

cross ¡
4

p
�

1
p

Sk
, (18a)

ec( j )
self Æ

4
p

�
1

p
Sk

" 4 Å "

(" 2 ¡ 1)2
, eccross Æ ¡

4
p

�
1

p
Sk

" 4 Å "

(" 2 ¡ 1)2
, (18b)

and

m (1)pot
self Æ

" 2 Å 1

" 2 ¡ 1
, m (2)pot

self Æ
" 2(" 2 Å 1)

" 2 ¡ 1
, m pot

cross Æ ¡
2" 2

" 2 ¡ 1
. (19)

The terms m ( j )pot
self and m pot

cross are the inviscid limits of m ( j )
self and mcross as Sk ! 1 . These terms

can also be obtained from a potential theory in which the �uid forces are only due to the pressure
�eld. Note that c( j )pot

self Æcpot
cross Æ0 as there are not damping e Vects in the inviscid framework.

In Section 3.3 the theoretical estimations (16) and (18) are compared with the numerical
predictions performed with TrioCFD. Numerically, the �uid forces acting on @C j are computed
by the sum of the pressure and viscous terms in (7) given by TrioCFD. To extract the added
coeY cients from the numerical simulations of the dimensionless �uid forces, we introduce the
Fourier inner product over �ve periods

hf (t ¤ ), g(t ¤ )i Æ
1

5�

Z 10�

0
f (t ¤ )g(t ¤ )dt ¤ . (20)

From (14), it follows that the added-coe Y cients are

m ( j )
self Æ

hsin( t ¤ ), f¤
j (t ¤ ) ¢ex i

�
and c( j )

self Æ ¡
hcos(t ¤ ), f¤

j (t ¤ ) ¢ex i

�
if C j is moving, (21a)

mcross Æ
hsin( t ¤ ), f¤

j (t ¤ ) ¢ex i

�
and ccross Æ ¡

hcos(t ¤ ), f¤
j (t ¤ ) ¢ex i

�
if C j is stationary. (21b)

3.2. Numerical setup

To discretize the �uid domain, we use an unstructured grid of triangles generated by the Gmsh
platform, see [51]. Due to its adaptive and automatic algorithm, Gmsh makes it possible to choose
between two di Verent local sizes for the 2D mesh: a small local size, lc �ne , for elements close to
the moving cylinder and a large local size, lc , for elements close to the stationary cylinder. In
this way, a re�ned mesh is used in the regions with large gradient �elds whereas a loose mesh
is used in the areas with low gradient �elds. In Appendix B, a mesh sensitivity analysis clearly
shows a convergence of the mass coeY cients as lc and lc �ne are changed. The convergence of
the damping coe Y cients is less obvious, especially for high values of Sk. Physically, this is related
to the thickness of the boundary layer, which tends to zero as Sk increases. It follows that a �ner
mesh is required close to a cylinder boundary to account for the thickness of the boundary layer
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Figure 2. Study 1. Time evolution of the dimensionless �uid forces, for Sk Æ
{101,102,103,104}, " Æ2 and KC Æ10¡ 2. The red and blue solid lines correspond to the
theoretical estimations of [50], see (16). The dashed lines (indistinguishable from the solid
lines for Sk È 102) correspond to the theoretical asymptotic expansion Sk ! 1 , see (18).
The symbols correspond to the numerical predictions.

and obtain an accurate estimation of the damping terms. In this work, a compromise between the
time of calculation and the precision (throughout of this work, we indicate the relative deviations
of our numerical results compared to other theoretical or experimental references) is made to
choose adequate values for lc and lc �ne .

3.3. Results and discussion

The inner cylinder is imposed a sinusoidal displacement in the x-direction for �ve time periods,
i.e. u¤ Æsin( t ¤ )ex with t ¤ 2 {0,10� }. The numerical simulations are performed for " 2 {1.25,1.5,2},
Sk 2 {101,102,103,104} and KC Æ10¡ 2.

The time evolution of the dimensionless �uid forces is represented in Figures 2 and 3. A
perfect agreement is obtained between theoretical estimations and numerical predictions. The
�uid forces are sinusoidal functions in phase opposition. In Figures 4 and 5, we show that the
amplitudes h j (resp. phases ' j ) decrease (resp. increase) with both Sk and " , recovering the
asymptotic limits as Sk ! 1 (inviscid limit) and as " ! 1 (isolated cylinder limit).
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Figure 3. Study 1. Time evolution of the dimensionless �uid forces, for " Æ{1.25,1.5,2},
Sk Æ 104 and KC Æ 10¡ 2. The red and blue solid lines correspond to the theoretical
estimations of [50], see (16). The symbols correspond to the numerical predictions.

The evolution of the added coe Y cients is depicted in Figures 6 and 7. The numerical predic-
tions are in very good agreement with the theoretical estimations, even if a tiny di Verence is ob-
served in the range of low Stokes numbers in which the theoretical estimations reach their limit
of validity. Still, we con�rm that the self (resp. cross) added coe Y cients decrease (resp. increase)
with both Sk and " , recovering the asymptotic limits as Sk ! 1 (inviscid limit) and as " ! 1
(isolated cylinder limit).

We introduce the quantity ¶, de�ned as the relative deviation between the numerical and
the exact theoretical predictions [50] of some quantity Q: ¶Æ jQth ¡ Qnum j/ jQth j. Figure 8 and
Tables A1, A2 in Appendix A show that ¶ is very low for the added mass coe Y cients and it
becomes greater for the added damping coe Y cients as Sk increases but seems to be weakly
in�uenced by " . In fact, for large values of Sk, the damping coe Y cients become very small and
even small di Verences from the theoretical value produce signi�cant deviations. Physically, this
is related to the thickness of the boundary layer, which tends to zero: to reduce ¶for the damping
coeY cients a �ner mesh at the cylinder boundaries would be required. We shall note that the
theoretical approach [49,50] is fully linear since the convective term 2 KC(v¤ ¢r)v¤ of the Navier–
Stokes equation (10b) is neglected. In the numerical simulations, the nonlinear convective term
is retained through a small but nonzero Keulegan–Carpenter number KC Æ10¡ 2. However, this
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Figure 4. Study 1. Evolution of the magnitudes h j and phases ' j with the Stokes number
Sk, for " Æ2 and KC Æ10¡ 2. The red and blue solid lines correspond to the theoretical
estimations of [50], see (16). The dashed lines correspond to the theoretical asymptotic
expansion Sk ! 1 , see (18). The horizontal dashed lines correspond to the theoretical
inviscid limits as Sk ! 1 . The symbols correspond to the numerical predictions.

Figure 5. Study 1. Evolution of the magnitudes h j and phases ' j with the dimensionless
separation distance " , for Sk Æ104 and KC Æ10¡ 2. The red and blue solid lines correspond
to the theoretical estimations of [50], see (16). The dashed lines correspond to the theoreti-
cal asymptotic expansion Sk ! 1 , see (18). The horizontal dashed lines correspond to the
theoretical isolated cylinder limits as " ! 1 . The symbols correspond to the numerical pre-
dictions.

diVerence might slightly a Vect the deviation between the theoretical and numerical results. In
any case, the relative deviation for m (1)

self (resp. mcross) is smaller than ¶· 0.6% (resp.¶· 0.2%) while
the relative deviation for c(1)

self (resp. ccross) is more pronounced, with ¶· 5.5% (resp.¶· 6.7%).
A further analysis is carried out to check the scale invariance of the numerical results obtained

for " Æ2, Sk Æ104 and KC Æ10¡ 2 (see Table A3 in Appendix A). In the numerical simulation, the
dimensional quantities were: D1 Æ1, D2 Æ2, U Æ10¡ 2 unit of length and ­ Æ0.0633 unit of fre-
quency. In this new case study, we set D1 Æ0.0316,D2 Æ0.0632,U Æ0.0316£ 10¡ 2 unit of length
and ­ Æ63.3 unit of frequency, such that they are self similar con�gurations in terms of dimen-
sionless numbers: " Æ2, Sk Æ104 and KC Æ10¡ 2. As expected, the new numerical predictions
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