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1. Introduction

Reduced Ordered Binary Decision Diagrams (ROBDDs
or simply BDDs) are a data structure used to efficiently
represent and manipulate logic functions. They were in-
troduced by Bryant (1986). Since then, they have played
a major role in many areas of computer aided design, in-
cluding logic synthesis, simulation, and formal verifica-
tion.

The size of a BDD representing a logic function de-
pends on the ordering of its variables. For some func-
tions, BDD sizes are linear in the number of variables
for one ordering while being exponential for another
(Bryant, 1992). Many heuristics have been proposed to
find good orderings, e.g., the sifting dynamic reordering
algorithm (Rudell, 1993). An exact reordering based on
lower bounds was proposed in (Drechsler et al., 2000).
An output-efficient algorithm was proposed to realize a
reordering transformation (Bern et al., 1996). Other tech-
niques to reduce the BDD size include linear transforma-
tions for the variables of the represented function (Gunther

‡ This research was supported in part by UC Micro 532419.

and Drechsler, 1998) and a combination of linear transfor-
mations with sifting (Meinel et al., 2000).

BDDs can also be used to represent characteristic
functions of transition relations of finite state machines
(FSMs). In this case, the size of BDDs depends not only
on variable ordering, but also on state encoding. Meinel
and Theobald (1999; 1996b) studied the effect of state en-
coding on autonomous counters. They analyzed three dif-
ferent encodings: the standard minimum-length encoding,
which gives a lower bound of 5n − 3 internal nodes for
an n-bit autonomous counter, the Gray encoding, which
gives a lower bound of 10n − 11 internal nodes, and a
worst-case encoding, which gives an exponential number
of nodes in n.

The problem of reducing the BDD size of an FSM
representation by state encoding is motivated by applica-
tions in logic synthesis and verification. As regards the
synthesis, BDDs can be used as a starting point for logic
optimization. An example is their use in timed Shannon
circuits (Lavagno et al., 1995), where the circuits derived
are reported to be competitive in the area and often sig-
nificantly better in power. BDDs permit to combine logic
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synthesis and technology mapping for multiplexor-based
circuits (Gunther and Drechsler, 2000), which can be re-
alized efficiently with Pass Transistor Logic (PTL) (Buch
et al., 1997), realizing also a tighter integration between
the logical and physical representations, and so a better
layout (Macchiarulo et al., 2001). Moreover, it is easy
to generate fully testable circuits starting from functions
described by BDDs (Drechsler et al., 2004). Therefore,
one would like to derive the smallest BDD with the hope
that it leads to a smaller circuit derived from it. Regard-
ing verification, re-encoding has been applied success-
fully to ease the comparison of “similar” sequential cir-
cuits (Cabodi, 1995).

In this paper, we look into the problem of finding
an optimum state encoding which minimizes the BDD
that represents a finite state machine. We call this prob-
lem the BDD encoding problem. To the best of our
knowledge, this problem has never been addressed be-
fore. The work that is related to this paper is from
Meinel and Theobald. In the effort to find a good re-
encoding of the state variables to reduce the number of
BDD nodes, Meinel and Theobald proposed in (Meinel
and Theobald, 1996a) a dynamic re-encoding algorithm
based on XOR-transformations. Although a little slower
than the sifting algorithm, their technique was able to re-
duce the number of nodes in BDDs even in cases when the
sifting algorithm could not.

1.1. An Example of Good Encoding. To motivate
the effectiveness of encoding, we consider the functions
(nodes) f and g shown in Fig. 1. They map {0, 1, . . . , 7}
to {0, 1, . . . , 8}, and can be regarded as next state func-
tions where the present state variable is v and the next
state values are the range. If we encode v as e1(0) =

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1 3 0 2 0 6 4 5 1 5 8 2 7 4 6 3

gf

v v

Fig. 1. Multi-valued functions f and g.

010, e1(1) = 100 e1(2) = 011, e1(3) = 001, e1(4) =
000, e1(5) = 110, e1(6) = 111, e1(7) = 101, with the
ordering b2, b1, b0 we get the BDD (i.e., part of a BDD)
shown in Figure 2 with 14 nodes. No reordering will re-
duce the number of BDD nodes for this encoding.

But if we encode v as e2(0) = 010, e2(1) = 100,
e2(2) = 001, e2(3) = 011, e2(4) = 000, e2(5) = 111,
e2(6) = 101, e2(7) = 110, the BDD that we get has 10
nodes. Figure 3 shows the binary decision trees represent-
ing f and g using this encoding. The BDD is shown in

Fig. 4. From this example, we see that state encodings af-
fect the (size of the) BDD size representing the transition
relation of an FSM.
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Fig. 2. BDD for f and g using the encoding e1.
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Fig. 3. Binary decision tree for f and g using the encoding e2.
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Fig. 4. BDD for f and g using the encoding e2.

In this paper, we present an exact algorithm to solve
the BDD input encoding problem. In Section 2 we give
the definitions of FSMs and their BDD representation. We
present our exact algorithm of the BDD input encoding
problem in Section 3. The experimental results are shown
in Section 4. We conclude in Section 5. For clarity pur-
poses, all proofs and algorithms are included in the Ap-
pendix.

A restricted version of this material was presented at
GLS98 (Gosti et al., 1998).

2. Definitions and Terminology

We review briefly finite state machines and BDDs. We
also describe an outline of the simulated annealing algo-
rithm.
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2.1. FSMs and Their BDD Representations.

Definition 1. A finite state machine (FSM) is a quintuple
(Q, I, O, δ, λ) where Q is a finite set of states, I is a finite
set of input values, O is a finite set of output values, δ is
the next state function defined as δ : I ×Q �→ Q, and λ is
the output function defined as λ : I × Q �→ O.

An FSM is said to be incompletely specified (IS-
FSM) if for some input value and present state combina-
tion (i, p), the next state or the output is not specified; oth-
erwise, it is said to be completely specified (CSFSM). For
an ISFSM, if the next state of (i, p) is not specified, then
any state can become the next state. If the output of (i, p)
is not specified, then any output can become the output. In
the sequel, we will deal only with CSFSMs. ISFSMs will
be converted to CSFSMs by selecting a next state and/or
an output value for an unspecified (i, p). We assume that
the inputs and outputs are given in binary forms, and the
state variables are given in symbolic forms, i.e., multi-
valued.

The next state and output functions of an FSM can
be simultaneously represented by a characteristic function
T : I × Q × Q × O �→ B, where each combination of an
input value and a present state is related to a combination
of a next state and an output value.

Assume that we have an encoding of the
states that uses s bits. Let ps−1, ps−2, . . . , p0 and
ns−1, ns−2, . . . , n0 be the present and next state binary
variables. Then for the next state ni, there is a next state
function ni = δi(ps−1, ps−2, . . . , p0). Next state and
output functions can be represented using BDDs. We
call this representation the functional representation. We
can also represent an FSM using BDDs by representing
its characteristic function T . We call it the relational
representation.

3. Exact Algorithm

In this work, we present an exact algorithm for a restricted
version of the encoding problem, namely, the BDD input
encoding problem. We do not address the BDD output
encoding problem where an FSM is represented in a func-
tional representation and the state variable, and hence the
next state function, ought to be encoded. In the section,
we state a formal definition of the input encoding problem
and provide an exact algorithm to solve it.

3.1. BDD Input Encoding Problem. We define the
BDD input encoding problem as follows:

Input:

1. A set of symbolic values, D = {0, 1, 2, . . . , |D| −
1}, where |D| = 2s, for some s ∈ N ; a symbolic
variable, v, taking values in D.

2. A set of symbolic values, R = {0, 1, 2, . . . , |R|−1}.

3. A set of functions, F = {f0, f1, f2, . . . , f|F |−1},
where fi : D �→ R.

4. A set of s binary variables represented as B =
{bs−1, bs−2, . . . , b0}.

Output:
The bijection e : D �→ Bs such that the size of the
BDD representing e(F ) is minimum, where e(F ) =
{e(f0), e(f1), . . . , e(f|F |−1)}, and e(fi) : Bs �→ R. We
call e an encoding of v and of F interchangeably. We call
eopt an encoding e that minimizes the size of the BDDs
of e(F ), i.e., ∀e|eopt(F )| ≤ |e(F )|, where |e(F )| is the
number of nodes of the multi-rooted BDD representing
e(F ).

In other words, the problem is about finding an en-
coding of a multi-valued variable v such that the multi-
rooted multi-terminal BDD representing a set of multi-
valued functions of v has a minimum number of nodes.
Diagrammatically, a multi-valued function f of v is repre-
sented as a single level multi-way tree. The root is labeled
with v. A mapping f(d) = r is represented by an edge
labeled with d going from the root to a leaf node labeled
with r. We call this diagram a Single Level Multi Valued
Tree (SLMVT). For clarity purposes, the leaf nodes are re-
placed by their labels in all figures. Examples of SLMVTs
are the functions f and g shown in Fig. 1.

With this formulation, we model the process of en-
coding the present state variables of a completely spec-
ified finite state machine (CSFSM) when the character-
istic function of the CSFSM is represented by a BDD.
We assume that the state variables are not interleaved in
the variable ordering. In this respect, fi(di) = ri repre-
sents the state transition from the present state di to the
next state ri under a proper input combination that causes
this transition. Essentially, we cut across the BDDs repre-
senting the characteristic functions of CSFSMs and only
look at the present state variables. Therefore, although
encoded BDDs are actually multi-terminal BDDs (MTB-
DDs), we still refer to them as BDDs. It is worth mention-
ing here that our formulation can also be applied to other
BDD encoding problems, like MDD encoding and BDD
re-encoding.

We assume that BDDs are represented by their true
edges. We do not model yet the complemented edges.

3.2. Characterization of BDD Node Reductions. We
first outline our strategy to find an optimum encoding. As-
sume that we have binary decision trees representing an
instance of the BDD input encoding problem. The BDD
representing this instance of the problem is obtained by
applying the two BDD reduction rules, i.e.,

Rule 1: eliminating nodes with the same then and else
children, and

Rule 2: eliminating duplicate isomorphic subgraphs.
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We would like to characterize the conditions in the
original problem in which these rules can be applied. To
apply these reduction rules, there must exist some isomor-
phic subgraphs. This means that there is a set of values in
R where each value is incident to more than one edge in
the SLMVT representing F . So, from F , D, and R, we
can group those edges into sets. Each group represents a
possible reduction. However, there are many isomorphic
subgraphs, and applying a reduction to one of them may
interfere with applying a reduction to another. We there-
fore find the sets whose reductions do not interfere with
each other and yield the largest possible total reduction.
Once these are found, we encode each set in such a way
that it occupies a subtree in the BDD representing e(F ).

With this characterization, we explain why encoding
e2 is better than encoding e1 for the example in Fig. 1.

1. f(2) = f(4) = 0. One node is reduced when 2 is
encoded as 001 and 4 as 000.

2. f(0) = g(0) = 1 and f(3) = g(3) = 2. Encoding
0 as 010 and 3 as 011 allows to share one node be-
tween f and g, i.e., the subtree identified by the cube
01-.

3. f(1) = g(7) = 3 and f(6) = g(5) = 4. Encoding
1 as 100, 6 as 101, 7 as 110, and 5 as 111 permits
to share one node between f and g, i.e., the subtree
of encoded f identified by 10- or the subtree of en-
coded g identified by 11-.

4. f(7) = g(1) = 5 and f(5) = g(6) = 6. Using
the same encoding as in 3 permits to share one node
between f and g, i.e., the subtree of encoded f iden-
tified by 11- or the subtree of encoded g identified
by 10-.

Equivalently, encoding e2 allows us to apply two BDD re-
duction rules, namely, eliminating a node with the same
children and eliminating isomorphic subgraphs; while en-
coding e1 does not.

3.2.1. Sibling and Isomorphic Sets. The objective of
this section is to identify all cases where Rule 1 and Rule 2
can be applied. For that purpose, we define two sets, the
sibling set and the isomorphic set. Intuitively, we are try-
ing to capture in the sibling sets the conditions in which
Rule 1 can be applied, and in the isomorphic sets the con-
ditions in which Rule 2 can be applied. Informally, each
element of a sibling set S is a pair (l0, l1) where l0 and
l1 are ordered sets of symbolic values that can be encoded
so that they share an isomorphic subgraph and the isomor-
phic subgraph is both the then child and the else child of
a node (i.e., the only child). An isomorphic set I is a col-
lection of ordered sets l of symbolic values that can be
encoded so that all ordered sets share an isomorphic sub-
graph.

As examples, consider the four SLMVTs shown in
Fig. 5. There are 8 edges in each of the four cases shown.
All edges not shown are assumed to point to values other
than 0 and 1. The variables needed to encode these cases
are b2, b1, and b0 in that order. The binary decision trees
representing an optimum solution for each case are shown
in Fig. 6. The corresponding BDDs are shown in Fig. 7.
We show for these examples and for these optimum en-
codings the relation of isomorphic subgraphs versus sib-
ling and isomorphic sets.
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Fig. 5. Examples of sibling and isomorphic sets.
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Fig. 6. Binary decision trees for an optimum encoding.
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Fig. 7. BDDs for an optimum encoding.

Case (a): Since f(0) = f(1), there is an encoding (e.g.,
e(0) = 000, e(1) = 001) such that in the encoded BDD
there is a node (i.e., n2) whose edges point to the same
node (and so they can be reduced). This fact is cap-
tured by S0 = {(0f), (1f )}. For S1, the technique is
similar and proceeds by replacing “f(0) = f(1)” with
“f(2) = f(3)”.
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Since f(0) = f(2) and f(1) = f(3), there is an
encoding (e.g., e(0) = 000, e(1) = 001, e(2) = 010,
e(3) = 011) such that in the encoded BDD there are
nodes (i.e., n2 and n3) with isomorphic subgraphs (and
so can be reduced). This fact is captured by I0 =
{(0f , 1f ), (2f , 3f)}.

Since f(0) = f(2) and f(1) = f(3), there is an
encoding (e.g., e(0) = 000, e(1) = 001, e(2) = 010,
e(3) = 011) such that in the encoded BDD there are
nodes (i.e., n2 and n3) with isomorphic subgraphs (and
so they can be reduced) and a node (i.e., n1) whose
edges point to the same node. This fact is captured by
S2 = {(0f , 1f), (2f , 3f )}. We would like to point out
that although this constraint provides also the information
of the previous constraint, it is used differently. I0 is de-
fined to capture Rule 2 and S2 is defined to capture Rule
1. Both are needed to calculate correctly the number of
nodes that can be later reduced by an encoding.

Case (b): Since f(0) = f(1), there is an encoding (e.g.,
e(0) = 000, e(1) = 001) such that in the encoded
BDD there is a node (i.e., n2) whose edges point to the
same node (and so can be reduced). This fact is cap-
tured by S0 = {(0f ), (1f )}. For S1, the technique is
similar and proceeds by replacing “f(0) = f(1)” with
“f(2) = f(3)”.

Since f(0) = f(1) and f(2) = f(3), there is an
encoding (e.g., e(0) = 000, e(1) = 010, e(2) = 001,
e(3) = 011) such that in the encoded BDD there are nodes
(i.e., n2 and n3 of Fig. 8) with isomorphic subgraphs (and
so they can be reduced). This fact is captured by I0 =
{(0f , 2f ), (1f , 3f)}.
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Fig. 8. Alternative optimum encoding for Case (b).

Since f(0) = f(1) and f(2) = f(3), there is an
encoding (e.g., e(0) = 000, e(1) = 010, e(2) = 001,
e(3) = 011) such that in the encoded BDD there are nodes
(i.e., n2 and n3 of Fig. 8) with isomorphic subgraphs (and
so they can be reduced) and a node (i.e., n1 of Fig. 8)
whose edges point to the same node. This fact is captured
by S2 = {(0f , 2f), (1f , 3f )}.

For this case, the encoding induced by S0 and S1

cannot satisfy the encoding induced by I0 and S2, and
vice versa. This leads to our notion of compatibility pre-
sented below. An encoding that satisfies S0 and S1 is
e(0) = 000, e(1) = 001, e(2) = 010, e(3) = 011,
and the BDD is shown in Fig. 7. An encoding that satis-
fies I0 and S2 is e(0) = 000, e(1) = 010, e(2) = 001,
e(3) = 011, and the BDD is shown in Fig. 8.

Case (c): Since f(0) = g(0) and f(1) = g(1), there is
an encoding (e.g., e(0) = 000, e(1) = 001) such that in
the encoded BDD there are nodes (i.e., m2 and n2) with
isomorphic subgraphs (and so they can be reduced). This
fact is captured by I0 = {(0f , 1f), (0g, 1g)}.

Case (d): Since f(0) = g(2) and f(1) = g(3), there
is an encoding (e.g., e(0) = 000, e(1) = 001, e(2) =
010, e(3) = 011) such that in the encoded BDD there
are nodes (i.e., m2 and n2) with isomorphic subgraphs
(and so can be reduced). This fact is captured by I0 =
{(0f , 1f ), (2g, 3g)}.

For each case above, there are other sibling and iso-
morphic sets. Later we will show how to construct a com-
plete collection of all sibling and isomorphic sets.

Formally, sibling and isomorphic sets are defined as
follows.

Definition 2. A labeled symbol df has a symbol d ∈ D
and a label f ∈ F . It is the d-edge of the SLMVT rep-
resenting f . The following notation is defined for df :
sym(df ) = d, fn(df ) = f , and val(df ) = f(d).

Definition 3. A symbolic list l is an ordered set (or list) of
labeled symbols with no duplicate and all labeled sym-
bols have the same function. The k-th element of l is
denoted by lk. The set of all symbols of l is Sym(l) =
{sym(lk) | 0 ≤ k ≤ |l| − 1}. The function of l is Fn(l) =
fn(l0).

Definition 4. An isomorphic set I is a set of at least two
symbolic lists. The j-th element of I is denoted by lj . I
satisfies the following three conditions:

1. The sizes of all symbolic lists of I are the same and
they are a power of two, i.e., ∃a ∈ N ∀l ∈ I (|l| =
2a).

2. The k-th elements of all symbolic lists of I have the
same value, i.e., ∃rk ∈ R ∀l ∈ I (val(lk) = rk) ,
0 ≤ k ≤ |l| − 1.

3. For any two lists l′, l′′ ∈ I , either for every index k
the symbols of the k-th elements of l′ and l′′ are the
same or the symbol of no element of l′ is the same as
the symbol of an element of l′′, i.e., ∀l′ ∈ I ∀l′′ ∈
I ((∀k sym(l′k) = sym(l′′k)) ∨ (∀i ∀j sym(l′i) 	=
sym(l′′j ))) , 0 ≤ i, j, k ≤ |l′| − 1.
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Definition 5. A sibling set S is an isomorphic set with
2 symbolic lists, l0 and l1, which satisfies the following
conditions:

1. The symbol of no element of l0 is the same as the
symbol of an element of l1, i.e., ∀i ∀j (sym(l0i ) 	=
sym(l1j )), 0 ≤ i, j ≤ |l0| − 1.

2. The functions of l0 and l1 are the same, i.e., Fn(l0) =
Fn(l1).

We will see that for every sibling set there is an equiv-
alent isomorphic set. For an instance of the BDD input
encoding problem, the set of all sibling sets is denoted as
S, and the set of all isomorphic sets is denoted as I.

In the following discussion, the term tree is used to
denote the encoded binary tree representing a function.

Definition 6. Given an encoding e and a set of symbols
D′ ⊆ D, the tree spanned by the codes of the symbols in
D′ is the tree T whose root is the least common ancestor
of the terminal nodes of the codes of the symbols in D′.
Furthermore, every leaf of T is the code of a symbol in
D′. We say also that D′ spans T (denoted by TD′).

For example, given the problem in Fig. 1 and the en-
coding e2 as in p. 114, the codes for the symbols 0 and 3
span the tree rooted at the parent of the leaves 1 and 2 in
Fig. 4.

Proposition 1. Given a sibling set S = {l0, l1}, there
is an encoding e such that the codes of the symbols in
l0 ∪ l1 span exactly a tree whose root has a left subtree
spanned exactly by the symbols in l0 and a right subtree
spanned exactly by the symbols in l1, and both subtrees
are isomorphic.

Proposition 2. Given an isomorphic set I = {li}, 0 ≤
i ≤ |I| − 1, there is an encoding e such that ∀li ∈ I , the
symbols in li span exactly a subtree Tli and all Tlis are
isomorphic.

To illustrate these propositions, we look back to the
example in Fig. 1. The S and I of this example are

1. S0 =
{
(2f ), (4f )

}
.

2. I0 =
{
(0f , 3f), (0g, 3g)

}
, I1 =

{
(3f , 0f), (3g, 0g)

}
.

3. I2 =
{
(1f , 6f), (7g, 5g)

}
, I3 =

{
(6f , 1f), (5g, 7g)

}
.

4. I4 =
{
(7f , 5f), (1g, 6g)

}
, I5 =

{
(5f , 7f ), (6g, 1g)

}
.

For now, we focus only on S0, I0, I2, and I4. Each Si or Ii

justifies why the encoding e2 is better than the encoding e1

in this example. In other words, S0, I0, I2, and I4 contain
requirements to find an optimum encoding. Following the
above propositions, S0 states that 2 and 4 should be en-
coded such that they differ only in b0 to span a subtree

and save a node. I0 states that 0 and 3 should be encoded
such that they differ only in b0 for symbols in I0 to span
a subtree and share a node. I2 states not only that 1 and
6 should be encoded such that they differ only in b0, and
similarly for 7 and 5, but also that the value of b0 of 1
should be the same as the value of b0 of 7 and the value of
b0 of 6 should be the same as the value of b0 of 5 for sym-
bols in I2 to span isomorphic subtrees and share a node.
I4 essentially states the same requirements as I2. All of
these requirements are satisfied by the encoding e2, but
not by e1.

3.2.2. Finding S and I. Given an instance of the BDD
input encoding problem, we propose an algorithm that
finds the sets S and I. The idea is to find all symbolic lists
that are mapped to the same values. We first find a table
of symbolic lists corresponding to single values, e.g., for
the SLMVT of Fig. 1, the algorithm finds the following:
f(2) = f(4) = 0, f(0) = g(0) = 1, etc.

Values Symbolic lists

0 {2f}, {4f}, {2f , 4f}
1 {0f}, {0g}
2 {3f}, {3g}
...

...

From this table, we generate larger symbolic lists by
combining rows of this table in all possible ways to gen-
erate new rows. In these new rows, symbolic lists are gen-
erated only if they satisfy Definition 3. For example, from
the above table, we get the following:

Values Symbolic lists

0, 1 {0f , 2f}, {0f , 4f}, {0f , 2f , 4f}
0, 2 {2f , 3f}, {3f , 4f}, {2f , 3f , 4f}

...
...

0, 1, 2 {0f , 2f , 3f}, {0f , 3f , 4f}, {0f , 2f , 3f , 4f}
...

...

Then, for each row of the table, we check all possible
combinations of the symbolic lists and generate sibling
and isomorphic sets according to Definitions 4 and 5.

Because the elements of symbolic lists are ordered,
the last step of the algorithm is to permute all the sibling
and isomorphic sets generated so far to generate the com-
plete set of all sibling and isomorphic sets. We call this
step the permutation step.

Having computed S and I, we can state the follow-
ing result:

Theorem 1. Using only S and I, an optimum encoding
eopt can be obtained.
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Theorem 1 says that S and I contain all the infor-
mation that is needed to find an optimum encoding. The
question now is to find a subset of S and I that corre-
sponds to an optimum encoding. This constitutes the sub-
ject of the next section.

3.3. Finding an Optimal Encoding. From now on,
the number of nodes that can be reduced is with respect
to the complete binary trees that represent the encoded F .
Unless otherwise specified, a set means either a sibling set
or an isomorphic set.

3.3.1. Compatibility of Sibling and Isomorphic Sets.
Sibling sets and isomorphic sets specify that if their sym-
bols are encoded to satisfy the reductions implied, then
Rule 1 and Rule 2 can be applied to merge isomorphic
subgraphs and reduce nodes. Hence, they implicitly spec-
ify the number of nodes that can be reduced, which we
refer to as gains.

Definition 7. The gain of a sibling set S, denoted as
gain(S), is equal to 1. The gain of an isomorphic set I ,
denoted as gain(I), is equal to (|I|−1)×(|l0|−1), where
l0 ∈ I .

S and I contain the information for all possible re-
ductions. However, not all sets may be selected together.
For example, the sibling set S = {(1f), (2f )} and the iso-
morphic set I = {(2f , 3f), (2g, 3g)} of Fig. 9 cannot be
selected together because S says that the symbols 1 and 2
should span exactly a subtree while I says that the sym-
bols 2 and 3 should span exactly a subtree. Hence, an
encoding can only benefit from either S or I . We there-
fore need to identify which sets may be selected together
and which may not. For that purpose we define the notion
of compatibility.

v

0 1 2 3

0 1 21

f g

v

0 1 2 3

213 4

Fig. 9. Example of incompatible sets.

Definition 8. A collection of sets S and I are compatible
if there is an encoding e such that all reductions implied by
the sets S ∈ S and I ∈ I can be applied to the complete
binary decision tree yielded by e.

Since both sibling and isomorphic sets are built out
of symbolic lists, it is natural to define the compatibility
of symbolic lists.

Definition 9. The symbolic lists l′ and l′′ are compatible,
which is denoted by l′ ∼ l′′, if at least one of the following
conditions is true:

1. Sym(l′) ∩ Sym(l′′) = ∅, i.e., the set of symbols of l′

does not intersect the set of symbols of l′′.

2. ∃a ∈ N ∀k sym(l′k) = sym(l′′a|l′|+k), 0 ≤ k ≤
|l′| − 1, |l′′| ≥ (a + 1) × |l′|, i.e., the symbols of
l′ match exactly the symbols of l′′ in the same order
starting at the position a × |l′|.

3. ∃a ∈ N ∀k sym(l′′k ) = sym(l′a|l′′|+k), 0 ≤ k ≤
|l′′| − 1, |l′| ≥ (a + 1) × |l′′|, i.e., the symbols of
l′′ match exactly the symbols of l′ in the same order
starting at the position a × |l′′|.

Definition 9 says that two lists are compatible if their
symbols do not intersect or the symbols of one list are a
subset of the symbols of the other starting at a power-of-2
position.

Theorem 2. If l′ and l′′ are compatible, then there exists
an encoding e such that the symbols of l′ span exactly a
subtree and so do the symbols of l′′, and both subtrees are
isomorphic.

Definition 9 defines pair-wise compatibility between
symbolic lists, and the next theorem states how the com-
patibility among a set of symbolic lists is related to the
pair-wise compatibility.

Theorem 3. If the elements of a set L of symbolic lists are
pair-wise compatible, then there exists an encoding e such
that the symbols of every symbolic list in L span exactly a
subtree.

Let the symbolic list created by concatenating l0 and
l1 of a sibling set S be called the sibling list of S, denoted
by lS. Then the following are corollaries of Theorem 3:

Corollary 1. The sibling sets S′ and S′′ are compatible if
lS

′
is compatible with lS

′′
.

Corollary 2. A sibling set S and an isomorphic set I are
compatible if lS is compatible with every list of I .

Corollary 3. The isomorphic sets I ′ and I ′′ are com-
patible if every list l′ ∈ I ′ is compatible with every list
l′′ ∈ I ′′.

These theorems and corollaries give us an algorithm
to find compatible sets among a collection of sets S and
I. A set of compatible sets is called a compatible.

3.3.2. Encoding Sibling and Isomorphic Sets. We
begin this section by stating the following corollary, which
follows immediately from the theorems and corollaries in
the previous section:

Corollary 4. Given a compatible C, there exists an en-
coding e such that the reductions implied by all its ele-
ments can be applied.
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Definition 10. Let X ′ be either a sibling or an isomorphic
set and X ′′ another sibling or isomorphic set. Then X ′ is
contained in X ′′ if ∀l′ ∈ X ′ ∃l′′ ∈ X ′′ (l′ ⊂ l′′) and
X ′ is completely contained in X ′′ if ∃l′′ ∈ X ′′ ∀l′ ∈
X ′ (l′ ⊂ l′′) .

For example, the set I0={(0f , 1f), (0g, 1g)}
is contained, but not completely contained
in I1={(0f , 1f , 2f , 3f), (0g, 1g, 2g, 3g)}, while
S0={(0f), (1f )} is completely contained in I1. This
definition is used for gain calculation and encoding of
a compatible. The motivation behind this definition is
that the reduction implied by I0 is covered by I1, but the
reduction implied by S0 is not. The gain of a compatible
that contains only S0, I0, and I1 is equal to the sum of the
gains of S0 and I1 only.

The algorithm to compute the codes given a compat-
ible can be found in (Gosti et al., 1997). The idea is that
starting with a binary tree, we assign codes to the symbols
of symbolic lists by a non-increasing length of the sym-
bolic lists. The symbols of a symbolic list are assigned to
occupy the largest subtree of codes still available.

3.3.3. Gain of a Compatible. Using the encoding al-
gorithm outlined above, an encoding that permits the re-
ductions implied by all sibling and isomorphic sets of a
compatible C can be found. We denote the encoding
found using the above algorithm by ealg(C). Since there
may exist many compatibles for an instance of the BDD
input encoding problem, we would like to find a compat-
ible implying the largest reduction. Hence, we need to
calculate the number of nodes that are reduced by a com-
patible. We call this quantity the gain of a compatible.

Definition 11. The gain of a compatible C is equal to the
difference in the number of nodes of the binary decision
trees representing F and the number of nodes of the BDDs
representing F encoded by ealg(C).

With this definition, the following theorem can be
stated:

Theorem 4. A compatible of maximum gain yields an op-
timal encoding.

The task is then to find a compatible with the largest
gain. Unlike in the example in Fig. 1, where the gain of the
compatible formed by S0, I0, I2, and I4 is simply the sum
of the individual gains of its elements, the gain of an arbi-
trary compatible is more complicated to calculate without
actually building the BDDs. If we apply a reduction rule
induced by a set, then this reduction causes a merging of
two isomorphic subgraphs. For these two subgraphs, there
may exist two identical reductions within them. The gain
of these two reductions should only be counted once. An
example of this kind is shown in Fig. 10. The following

sibling and isomorphic sets form a compatible:

S0 =
{
(0f ), (1f )

}
,

S1 =
{
(0g), (1g)

}
,

I0 =
{
(0f , 1f ), (0g, 1g)

}
,

I1 =
{
(2f , 3f ), (2g, 3g)

}
,

I2 =
{
(0f , 1f , 2f , 3f ), (0g, 1g, 2g, 3g)

}
.
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Fig. 10. Gain calculation example.

The gain of this compatible is not the sum of the
gains of its elements because the reductions implied by I0

and I1 and one of the reductions implied by S0 and S1 are
subsumed by the reduction implied by I2. Then the gain of
this compatible is equal to gain(I2)+gain(S0)=3+1=4.

The basic idea is to find sets with the largest lists, cal-
culate their gains, remove all gains of lists that are counted
more than once and remove all sets that are subsumed by
other sets. The complete algorithm can be found in (Gosti
et al., 1997).
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Theorem 5. Given a compatible C, Gain(C) computes
the gain of C.

3.4. Maximal Compatibles. Having found all sibling
and isomorphic sets, the next task is to find a maximum
gain compatible. As it was shown in the previous section,
the gain of a compatible is not proportional to the size of
the compatible. In other words, the gain of a compatible
may be smaller than the gain of another compatible which
contains fewer sets. Luckily, we do not have to enumer-
ate all compatibles to find a maximum gain compatible. A
maximal compatible, i.e., a compatible where no set can
be added while still maintaining compatibility always has
a larger or equal gain as any proper subset of the compat-
ible. This means that we only need to find all maximal
compatibles. A maximum gain compatible is a maximal
compatible that has the largest gain among all maximal
compatibles.

3.4.1. 2-CNF SAT Formulation. We find all maximal
compatibles by first building a compatibility graph. In the
following definition, X denotes either a sibling set or an
isomorphic set.

Definition 12. A compatibility graph G = (V, E) is a
labeled undirected graph defined on an instance P of the
BDD input encoding problem. There is a vertex x for each
set X of P . No other vertices exist. There is an edge
e = (x1, x2), if and only if X1 and X2 are compatible.

As a consequence of this definition, a compatible of
P is a clique in G.

As it has been mentioned above, we need to enu-
merate all maximal compatibles of P and calculate their
gains. Enumerating all maximal compatibles corresponds
to finding all maximal cliques of G. The technique we
use to find all maximal cliques in G is consists in formu-
lating the problem as a 2-CNF SAT formula φ and then
finding satisfactory truth assignments of φ. The formula
φ is created as follows: for each unconnected pair of ver-
tices, x1 and x2, we create a clause (x1∨x2). A satisfying
truth assignment to φ is a set of vertices that do not form
a clique. Hence a cube of φ is also a set of vertices that do
not form a clique. It follows that a prime implicant of φ
contains the minimum number of vertices that do not form
a clique. Then the set of vertices that are missing from a
prime implicant corresponds to a maximal clique.

In summary, our procedure to find all maximal
cliques of G is as follows:

• Formulate the problem into a 2-CNF formula φ.

• Pass φ to a program (which we call a CNF expander)
that takes a unate 2-CNF formula and outputs the list
of all its prime implicants. We refer the readers to
(Brayton et al., 1984) for further reading about unate
functions.

• For each prime implicant, the variables that do not
appear in it form a maximal clique.

For example, consider the graph G1 in Fig. 11. The
2-CNF formula φ1 is

φ1 = (a ∨ d)(a ∨ e)(b ∨ c)(c ∨ e),

a b

c d

e

G1

Fig. 11. Example of the maximal clique problem.

where each clause corresponds to a pair of unconnected
vertices. The prime implicants of φ1 are ac, abe, bde, and
cde. The maximal cliques of G1 are bde (corresponding to
ac), cd (corresponding to abe), ac (corresponding to bde),
and ab (corresponding to cde).

3.4.2. CNF Expander. The CNF expander used here
is the one described in (Villa et al., 1997), Sec. 6.5,
originally proposed in (Saldanha et al., 1994). We ex-
plain briefly here how the algorithm works and report its
pseudo-code in Appendix B.3.

The algorithm first simplifies clauses with a common
literal, say a, into a single clause with two terms, a and the
concatenation of other literals in the original clauses. Af-
ter all such clauses have been processed, the reduced for-
mula is expanded by multiplying out two clauses at a time.
After each multiplication, a single cube containment op-
eration is performed to eliminate non-prime cubes1. After
all multiplications are done, the result is a list of all prime
implicants of the formula. The following example shows
how the algorithm expands the formula of Fig. 11:

φ1 = (a ∨ d)(a ∨ e)(b ∨ c)(c ∨ e),

φ1 = (a ∨ de)(c ∨ be),

φ1 = ac ∨ abe ∨ bde ∨ cde.

Although this algorithm is linear in the number of
prime implicants, the number of clauses that need to be
created for a graph with n vertices is proportional to n2.
If n is large and the graph is sparse, this number can be
very big. We can reduce the amount of memory that the
algorithm needs by partitioning the graph into multiple
subgraphs. The idea is to invoke the CNF expander k
times. A subgraph of size ni is passed to the i-th invo-
cation, where each ni is much smaller than n if the graph
is sparse. Then the sum of the squares of all these nis will
be much smaller than n2.

1 The effect of single cube containment is to remove any cube con-
tained by another cube of the set (Brayton et al., 1984).
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Given a graph G, the CNF expander enhanced by
partitioning is as follows:

1. Initialize the set of all candidate prime implicants P
to be an empty set. A candidate prime implicant is an
implicant that is either a prime implicant or is cov-
ered by a prime implicant of G.

2. Choose a subgraph Gi of G which consists of a
smallest degree vertex v and all vertices that are con-
nected to v. By Gi, we essentially look for maximal
cliques in G that contain v. Each prime implicant of
Gi corresponds to a clique of G.

3. Call the CNF expander with Gi as the input.

4. Perform the logical AND operation of every prime
implicant of Gi with the complements of the vertices
of the original graph G that are not in Gi, and include
them in P. This step is to map the Boolean space of
Gi into that of the original problem. The mapped
terms are the candidate prime implicants. The map-
ping means that a prime implicant of Gi is a clique
in G which does not contain nodes not in Gi.

5. Remove v and all edges that are incident at v from
G.

6. If there is more than one vertex left, go to Step 2.

7. Perform a single cube containment operation on P.

8. Return P.

It is easy to see that P contains all the prime implicants of
G at the end of the algorithm.

We illustrate this algorithm on the graph G1 in
Fig. 11. We refer to the subgraphs in Fig. 12 as we illus-
trate this example. By choosing a as the smallest degree
vertex, the first subgraph we pass to the CNF expander is
G11, which consists of a, b and c. The prime implicants of
G11 are b and c. The candidate prime implicants are bde
and cde. We then remove the vertex a and all its edges
from G1. The smallest degree vertex of the new G1 is
c. Since a has been removed, the only neighbor of c is
d. Then the next subgraph G12 consists of only c and d.
Since G12 is a complete graph, the only prime implicant
of G12 is 1. The only candidate prime implicant of G12

is therefore abe. The only subgraph left after removing c
and its edge is G13. Since G13 is also a complete graph,
the only prime implicant is also 1 and the candidate prime
implicant is ac. Altogether, the set of all candidate prime

b

d

e

c d

a

c

b

G G G11 12 13

Fig. 12. Example of the partitioned graph
for the maximal clique problem.

implicants is {bde, cde, abe, ac}, which is also the set of
prime implicants of G1.

As a comparison, the CNF expander without parti-
tioning invokes the CNF expander only once, but with four
clauses for G1, whereas the CNF expander with partition-
ing invokes the CNF expander three times, but with a total
of one clause. Also, an approximation algorithm, which is
simply the exact algorithm without the permutation step,
took 165 seconds and 350 seconds of CPU time to find
the optimum solutions for the circuits ellen and shiftreg4,
respectively, using the CNF expander with partitioning.
Without partitioning, the executions were timed out after
some hours of elapsed time.

4. Experimental Results

The experiments were performed on DEC AlphaServer
8400 5/300 with 2Gb of memory on circuits shown in
Table 1.

Table 1. Completely specified FSMs.

Name Number of functions Domain size

dk15x 7 4

dk17x 4 8

ellen 2 16

ellen.min 2 8

fsync 5 4

mc 6 4

ofsync 5 4

shiftreg4 2 16

shiftreg3 2 8

tav 1 4

The test cases are taken from the MCNC collection
(Lisanke, 1989). Column 2 of this table lists the number
of distinct state transitions regardless of the primary input
combinations. Note that shiftreg3 is a 3-bit shift register
and shiftreg4 is a 4-bit shift register. Column 3 lists the
size of the domain or |D|.

Beside the exact algorithm, an experiment with an
approximation algorithm, which is the exact algorithm
without the permutation step, was also done. For compar-
ison purposes, the results of the exact algorithm, the ap-
proximation algorithm, and the simulated annealing runs
from (Gosti et al., 1997) are shown in Table 2. CPU times
are also included in this table. Circuits whose executions
were timed out after one hour of CPU time are not listed.

We are aware that these experiments do not witness
for the practicality of the exact method; however, they
provide exact results for small examples, and may serve
to certify the quality of heuristics. We refer to the report
(Gosti et al., 1997) for an extensive set of experiments
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Table 2. BDD size for completely specified FSMs for simulated annealing and the exact algorithm.
(The exact algorithm was run with no permutations for ellen and shiftreg4).

Number of BDD nodes CPU time

Exact Exact Exact Exact
Name SA w/ w/o SA w/ w/o

permute permute SA permute permute

dk15x 19 19 19 11.54 0.18 0.15

dk17x 41 41 41 19.67 19.10 4.40

ellen 49 spaceout 46 15.52 spaceout 165.49

ellen.min 21 21 21 4.48 5.13 0.08

fsync 24 24 24 13.12 0.02 0.01

mc 20 20 20 2.70 0.24 0.10

ofsync 24 24 24 13.12 0.02 0.01

shiftreg4 47 spaceout 45 12.57 spaceout 350.15

shiftreg 21 21 21 3.44 4.99 0.07

tav 9 9 9 76.35 0.00 0.00

performed with simulated annealing using both relational
and functional representations of finite state machines.

A brief discussion is in order on the restriction that
the number of states be a power of two. It was adopted
in the theoretical frame as a convenient hypothesis in the
build-up of the theory. The question is how we can deal
with it in practice since most FSMs do not necessarily
comply with it.

The solution is to introduce enough redundant states
(i.e., states equivalent to existing states) so that the FSM
has a number of states that is a power of two. There is a
lot of freedom on what states to duplicate, and to be rigor-
ous one could define the optimization problem about what
states to duplicate with the objective of an optimal BDD
encoding. To dispel the objection that this might seem
artificial, let us point out that in general FSM encoding
(say for two-level or multi-level optimal representations)
it is an open problem to find the state transition graph rep-
resentation leading to the best state-encoded logic repre-
sentation. This was already noticed in the classical paper
by Hartmanis and Stearns (1962), where they showed by
a counter-example that a state-minimized FSM is not al-
ways the best starting point to achieve minimum encoded
logic. So there is no reason to assume that the given CF-
SMs are or must be state-minimized, and we can make
them redundant when needed to satisfy our power-of-two
restriction. The optimal way to introduce redundancies
in order to minimize the final number of BDD nodes is,
of course, a more complex optimization problem, but the
same is true of any formulation of ‘exact’ state encoding
for any cost function, if one introduces into the formula-
tion also finding the state transition graph that maps to the
best encoded logic. There have been sporadic but incon-
clusive attempts to solve it for two-level and multi-level

logic implementations; see (Lee and Perkowski, 1984) for
concurrent state minimization and state assignment of fi-
nite state machines. An in-depth discussion of these gen-
eral formulations can be found in (Villa et al., 1997),
Sec. 8.3.1, under the title ‘Symbolic Don’t Cares and Be-
yond’, with references to relevant literature. So by propos-
ing to add heuristically some redundant states to a CSFSM
to make it a power-of-two, we are not in a position too
different from the traditional case where we encode a CS-
FSM without knowing what state transition graph (maybe
with redundancies) would be the best starting point, and
therefore we start arbitrarily, say, with the state-minimized
one. A recent work (Yuan, 2005) proposes ‘FSM re-
engineering’ as a technique to re-construct an FSM that is
functionally equivalent to a given one to enable optimiza-
tion tools to find better solutions to synthesis problems,
and applies it to state encoding for low power.

In summary, the issue of our restriction is a special
case of the more general problem: Given an FSM and a
cost function, find an equivalent state transition graph and
an encoding of its states in order to minimize the cost of
the encoded logic.

5. Conclusions

We have presented an exact solution to the BDD input
encoding problem. Our exact algorithm characterizes the
two BDD reduction rules as combinatorial sets and finds
encodable compatible sets with a maximum gain to pro-
duce the optimum encoding. We are aware that the exact
algorithm is not practical for realistic problems. We pre-
sented it for two reasons:

1. as the first characterization of the exact solutions of
the problem;
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2. as a measure of the quality of a heuristic in the cases
where we can compute the exact solutions.

We presented the results of a simple heuristic where
no permutation was done when generating all sibling and
isomorphic sets. This simple heuristic is, however, not
practical enough, either. Future work on this topic in-
cludes practical heuristics based on the characterization
that we provided through the exact algorithm, e.g., prun-
ing smaller sibling and isomorphic sets at each step of
their generation.
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Appendix

A. Proofs

A.1. Proof of Theorem 1. Let T be the forest of bi-
nary decision trees representing eopt(F ). To get from T
the BDD representing eopt(F ), the BDD reduction rules,
Rule 1 and Rule 2, are applied. It suffices to prove that any
reduction can be found by using only S and I. We divide
the proof into two parts, according to whether Rule 1 or
Rule 2 is applied:

1. Applying Rule 1: Consider the part of T in Fig. 13.

i
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0 1

T T
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k k
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t t
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v k
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x
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Fig. 13. Binary tree for Case 1 of the proof of Theorem 1.

Let xi be a node with the label bi. Assume that we
can apply Rule 1 at xi, then then(xi) is isomorphic
with else(xi). Let an arbitrary path from a function
f in eopt(F ) to xi be pi. Also, let tk be the path from
then(xi)/else(xi) to leaf vk, 0 ≤ k ≤ m − 1, where
m is the number of leaves in the subtree rooted at
then(xi)/else(xi). Define the symbolic lists

Mi = (d0, d1, . . . , dm−1),

where sym(dk) = e−1
opt(pibitk), fn(dk) = f ,

val (dk) = vk, and

M ′
i = (d′0, d

′
1, . . . , d

′
m−1),

where sym(d′k) = e−1
opt(pibitk), fn(d′k) = f ,

val(d′k) = vk.
Then we have
(a) |Mi| and |M ′

i | are equal and are powers of two,

(b) For any tk, f(pibitk) = f(pibitk) = vk.

S = {Mi, M
′
i} is a sibling set because:

• Property (a) is exactly Condition 1 of Defini-
tion 4.

• Property (b) satisfies Condition 2 of Defini-
tion 4 because all k-th elements of |Mi| and
|M ′

i | have the same value.

• Property (b) satisfies Condition 3 of Defini-
tion 4 and Condition 1 of Definition 5 because
all elements of |Mi| and |M ′

i | are different.
• By definition, both |Mi| and |M ′

i | contain sym-
bols from the same function; therefore, Condi-
tion 2 of Definition 5 is satisfied.

We will show later that an encoding that takes ad-
vantage of the reduction implied by S can be found.

2. Applying Rule 2: Consider the part of T in Fig. 14.
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Fig. 14. Binary tree for Case 2 of the proof of Theorem 1.

Let xi and xj be two nodes in T with the label bi.
Without loss of generality, assume that we can ap-
ply Rule 2 at then(xi) and then(xj), then then(xi)
is isomorphic with then(xj) in the BDD represent-
ing eopt(F ). Let pi and pj be two arbitrary paths
in T from the function fi to xi and the function fj

to xj , respectively. Also, let tk be the path from
then(xi)/then(xj) to leaf vk, 0 ≤ k ≤ m− 1, where
m is the number of leaves in the subtree rooted at
then(xi)/then(xj). Define the symbolic lists

Mi = (d0, d1, . . . , dm−1),

where sym(dk) = e−1
opt(pibitk), fn(dk) = fi,

val(dk) = vk, and

Mj = (d′0, d
′
1, . . . , d

′
m−1),

where sym(d′k) = e−1
opt(pjbitk), fn(d′k) = fj ,

val(d′k) = vk.

Then, we have the following:

(a) |Mi| and |Mj| are equal and are powers of two,

(b) For any tk, fi(pibitk) = fj(pjbitk) = vk.

I = {Mi, Mj} is an isomorphic set because:

• Property (a) is exactly Condition 1 of Defini-
tion 4.
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• Property (b) satisfies Condition 2 of Defini-
tion 4 because all k-th elements of |Mi| and
|M ′

i | have the same value.
• If pi = pj , then all k-th symbols of Mi and

Sym(Mj) are the same, and if pi 	= pj , then no
element of Sym(Mi) is the same as any element
of Sym(Mj), and this satisfies Condition 3 of
Definition 4.

We will show later that an encoding that takes ad-
vantage of the reduction implied by I can be found.
If there are more than two nodes where we can ap-
ply Rule 2, the set I would simply contain more ele-
ments.

Note that Cases 1 and 2 are sufficient for this proof. All
other reductions are just a combination of Cases 1 and 2.
For example, consider Fig. 15. By case 2, there is an
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Fig. 15. Binary tree for the combination of
Cases 1 and 2 of the proof of Theorem 1.

I = {l0, l1, . . . , l|Qi|−1, l|Qi|}, where each list lr,
r = 0, 1,. . . ,|Qi| − 1,|Qi| contains the symbols
encoded by the minterms of paths passing through
then(xr) and ending respectively in the leaves of subtrees
T0, T1, . . . , T|Qi|−1, T|Qi| = Tj . By Case 1, there exists
S for each node in the subtree Qi, where Qi is the subtree
rooted at then(xi) and all leaves have labels bj .

A.2. Proof of Theorem 2. Note that l′ ∼ l′′ implies
one of the following:

1. Every symbol of l′ is different from any symbol of
l′′. In this case, there certainly exists an encoding
such that the theorem is true.

2. The symbols of l′ match exactly the symbols of l′′

starting at a position a × |l′| in the same order and
|l′′| ≥ (a + 1) × |l′|. In this case, we encode the
symbols of l′ and l′′ such that the symbols of l′′ span
a tree and the symbols of l′ span a subtree of the tree
formed by the codes of the symbols of l′′.

3. This case is the dual of Case 2.

A.3. Proof of Theorem 3. Since two symbolic lists
are compatible if and only if their symbols do not overlap
or the symbols of one are a sublist of those of the other
starting at a power-of-2 position, there is a notion of max-
imality in L. Sorting L in non-increasing order and ap-
plying the encoding procedure in the proof of Theorem 2
produces the results satisfying the claim of this theorem.

A.4. Proof of Theorem 4. Suppose that the theorem is
not true. Then either of the following must be true:

1. There exists a better encoding, but no compatible
captures it. A better encoding in this case means that
more reductions than those implied by any compati-
ble can be applied. But by Theorem 1, we know that
every reduction is modeled by either a sibling or an
isomorphic set and, by definition of compatibility,
reductions implied by two incompatible sets cannot
be applied together. Hence, all optimal encodings
must be yielded by compatibles.

2. There exists another compatible with a lower gain
that yields BDDs with fewer number of nodes. This
is not possible because, by Definition 11, compati-
bles with larger gains yield smaller BDDs.

A.5. Proof of Theorem 5. This is an inductive proof.
At the step i we have a set Ci ∈ C of the sibling
sets Si and the isomorphic sets Ii. Si and Ii are sets
that are contained completely in Si−1,Si−2, . . . ,S0 and
Ii−1, Ii−2, . . . , I0 and not contained in any other sets in
C. At the step i, we compute the total gain gi of Ci (i.e.,
Si,Si−1, . . . ,S0 and Ii, Ii−1, . . . , I0). Let Ji be the set
of isomorphic sets of Ii that do not have any symbolic lists
that are subsets of any symbolic lists of any isomorphic
sets of Ii. Let J ′

i be the set difference of Ii and Ji, with
the symbolic lists of isomorphic sets that are subsets of
those of isomorphic sets in Ji removed. To illustrate what
Ji and J ′

i represent, we look at the binary decision trees
for the functions f0, f1, and f2 in Fig. 16. In this figure, T3
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Fig. 16. Example for proving Theorem 5.
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and T4 are isomorphic and T0, T1, and T2 are isomorphic.
Let T ′

i denote the symbolic list corresponding to the sym-
bols whose codes are represented by the subtree Ti. Using
the algorithm for finding all sibling and isomorphic sets
as described in Section 3.2.2, we generate the isomorphic
sets I0 = {T ′

3, T
′
4} and I1 = {T ′

0, T
′
1, T

′
2} among other

sets. For this example, Ji will contain I0 = {T ′
3, T

′
4} and

J ′
i will contain I ′1 = {T ′

2}. When we apply the BDD
reduction rules to this example, the isomorphic subgraphs
associated with each isomorphic set in J ′

i will be removed
by Rule 2. Hence, if li is the i-th symbolic list of an
I ∈ J ′

i , its gain needs to be updated to |I| × (|l0| − 1).

Case i = 0. g0 is simply equal to the total gain of S0,J0,
and J ′

0, which is what Gain(C) computes if we do not al-
low its recursion.

Case i = k. Assume that Gain(C) computes gk if we al-
low the recursion k times.

Case i = k + 1. Since the gain gk implies the merging of
isomorphic subgraphs into one subgraph at the recursion
k, the additional gain going from the step k to the step
k + 1 is the reduction applied to any single isomorphic
subgraph. It suffices to consider only the first symbolic list
of every isomorphic set in Jk. The reason is that the iso-
morphic subgraphs corresponding to the isomorphic sets
of J ′

k form a subgraph.

B. Algorithms

B.1. Algorithm to Encode a Compatible.

Algorithm 1 (Encoding a Compatible)

encode(C, D)
Input: A compatible C, a set of symbols D.
Output: Codes for D stored in a 2-dimensional array code.
Comment: reverseBit() takes an integer argument and

reverses all its bits.
ci,j denotes the j-th element of the i-th list of c.
order is the array of ordered codes, e.g. 0000,
1000, 0100, 1100, 0010, 1010, . . .
This array recursively partitions all the codes
into two equal partitions and orders them in
non-increasing size.

/* Initialize codes */
for d = 0 to |D| − 1 do

for i = 0 to s − 1 do
code[d][i] = ’-’

/* Initialize orders */
for i = 0 to |D| − 1 do

order[i] = reverseBit(i)

/* Get top level sets and sort them
in non-increasing cube size */
Top = {c | c ∈ C and no d ∈ C contains c}

for each c ∈ Top do
if c is a sibling set

cubeSize(c) = 2 × |l0| of c
else

cubeSize(c) = |l0| of c
Tsorted = sort T in non-increasing cubeSize

/* Encode sorted top level sets */
for each c ∈ Tsorted do

if (c is a sibling set and code[c0,0][0] = ’-’) then
while (code[order[j]][0] = ‘-’) do

j = j + 1
for i = 0 to |c0| − 1 do

code[sym(c0, i)] = order[j] + i
for i = 0 to |c1| − 1 do

code[sym(c1, i)] = order[j] + |c0| + i
else

for i = 0 to |c| − 1 do
if (code[ci,0][0] = ’-’) then

while (code[order[j]][0] = ’-’) do
j = j + 1

for k = 0 to |ci| − 1 do
code[sym(ci,k)] = order[j] + k

/* Encode remaining codes */
for d = 0 to |D| − 1 do

if code[d] = ’-’ then
while (code[order[j]][0] = ’-’) do

j = j + 1
code[d] = order[j]

return code

B.2. Gain Calculation Algorithm.

Algorithm 2 (Gain Calculation)

Gain(C)
Input: A compatible C
Output: The gain of C

if C = ∅ then
return 0

end if

gain = 0

/* Get top level sets */
Top = {c | c ∈ C and no d ∈ C contains c}
I = {I | I ∈ Top and I is an isomorphic set}

/* J contains isomorphic sets whose
symbolic lists are not subsets of any
symbolic list of any other isomorphic
sets. J ′ contains isomorphic sets
whose symbolic lists are subsets
of some symbolic lists of some other
isomorphic sets. Symbolic lists that
are subsets of other symbolic lists
are removed from J ′

*/
J = ∅
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J ′ = ∅
for each I ∈ I do

found = FALSE
for each Iaux ∈ I do

I ′ = I
if ∃l ∈ I, laux ∈ Iaux Sym(l) ⊂ Sym(laux ) then

I ′ = I ′\{l}
found = TRUE

if found = TRUE then
J ′ = J ′ ∪ {I ′}

else
J = J ∪ {I}

/* Add gains contributed by S */
S = {S | S ∈ Top and S is a sibling set}
for each S ∈ S do

gain = gain + gain(S)
end for

/* Add gains contributed by J ′
*/

for each I ∈ J ′ do
gain = gain + gain(I)

end for

/* Recursively add gains contributed
by J */
for each I ∈ J do

Cs = {c | c ∈ C,∀l ∈ c Sym(l) ⊂ Sym(l0),
l0 is the 0-th list of I}

gain = gain + Gain(Is)
end for
return gain

B.3. CNF Expander.

Algorithm 3 (Convert 2-CNF to Sum-of-Products)

cnf_to_sop(expr) {
x = splitting variable
C = all sum terms with the variable x
reduced_expr = expr without the sum-terms in C
x_expr = sum-of-product expression of C
return (product_sop (x_expr, cnf_to_sop(reduced_expr)))

}

/* Obtain the product of two expressions;
expr1 has 2 terms, where the first term is a single variable */
product_sop (expr1, expr2) {

product_expr = product of expr1 and expr2
result_expr = single_cube_containment (product_expr)
return (result_expr)

}
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