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ABSTRACT

Traditional set prediction models can struggle with simple datasets due to an
issue we call the responsibility problem. We introduce a pooling method for
sets of feature vectors based on sorting features across elements of the set. This
can be used to construct a permutation-equivariant auto-encoder that avoids this
responsibility problem. On a toy dataset of polygons and a set version of MNIST,
we show that such an auto-encoder produces considerably better reconstructions
and representations. Replacing the pooling function in existing set encoders with
FSPool improves accuracy and convergence speed on a variety of datasets.

1 INTRODUCTION

Consider the following task: you have a dataset wherein each datapoint is a set of 2-d points that
form the vertices of a regular polygon, and the goal is to learn an auto-encoder on this dataset. The
only variable is the rotation of this polygon around the origin, with the number of points, size, and
centre of it fixed. Because the inputs and outputs are sets, this problem has some unique challenges.

Encoder: This turns the set of points into a latent space. The order of the elements in the set is
irrelevant, so the feature vector the encoder produces should be invariant to permutations of the
elements in the set. While there has been recent progress on learning such functions (Zaheer et al.,
2017; Qi et al., 2017), they compress a set of any size down to a single feature vector in one step. This
can be a significant bottleneck in what these functions can represent efficiently, particularly when
relations between elements of the set need to be modeled (Murphy et al., 2019; Zhang et al., 2019b).

Decoder: This turns the latent space back into a set. The elements in the target set have an
arbitrary order, so a standard reconstruction loss cannot be used naïvely – the decoder would have
to somehow output the elements in the same arbitrary order. Methods like those in Achlioptas et al.
(2018) therefore use an assignment mechanism to match up elements (section 2), after which a usual
reconstruction loss can be computed. Surprisingly, their model is still unable to solve the polygon
reconstruction task with close-to-zero reconstruction error, despite the apparent simplicity of the
dataset.

In this paper, we introduce a set pooling method for neural networks that addresses both the encoding
bottleneck issue and the decoding failure issue. We make the following contributions:

1. We identify the responsibility problem (section 3). This is a fundamental issue with existing
set prediction models that has not been considered in the literature before, explaining why
these models struggle to model even the simple polygon dataset.

2. We introduce FSPOOL: a differentiable, sorting-based pooling method for variable-size sets
(section 4). By using our pooling in the encoder of a set auto-encoder and inverting the
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sorting in the decoder, we can train it with the usual MSE loss for reconstruction without
the need for an assignment-based loss. This avoids the responsibility problem.

3. We show that our auto-encoder can learn polygon reconstructions with close-to-zero er-
ror, which is not possible with existing set auto-encoders (subsection 6.1). This benefit
transfers over to a set version of MNIST, where the quality of reconstruction and learned
representation is improved (subsection 6.2). In further classification experiments on CLEVR
(subsection 6.3) and several graph classification datasets (subsection 6.4), using FSPool in
a set encoder improves over many non-trivial baselines. Lastly, we show that combining
FSPool with Relation Networks significantly improves over standard Relation Networks in
a model that heavily relies on the quality of the representation (subsection 6.5).

2 BACKGROUND

The problem with predicting sets is that the output order of the elements is arbitrary, so computing an
elementwise mean squared error does not make sense; there is no guarantee that the elements in the
target set happen to be in the same order as they were generated. The existing solution around this
problem is an assignment-based loss, which assigns each predicted element to its “closest” neighbour
in the target set first, after which a traditional pairwise loss can be computed.

We have a predicted set Ŷ with feature vectors as elements and a ground-truth set Y , and we
want to measure how different the two sets are. These sets can be represented as matrices with

the feature vectors placed in the columns in some arbitrary order, so Ŷ = [ŷ(1), . . . , ŷ(n)] and

Y = [y(1), . . . ,y(n)] with n as the set size (columns) and d as the number of features per element

(rows). In this work, we assume that these two sets have the same size. The usual way to produce Ŷ
is with a multi-layer perceptron (MLP) that has d× n outputs.

Linear assignment One way to do this assignment is to find a linear assignment that minimises
the total loss, which can be solved with the Hungarian algorithm in O(n3) time. With Π as the space
of all n-length permutations:

LH(Ŷ ,Y ) = min
π∈Π

n
∑

i

||ŷ(i) − y(π(i))||2 (1)

Chamfer loss Alternatively, we can assign each element directly to the closest element in the target
set. To ensure that all points in the target set are covered, a term is added to the loss wherein each
element in the target set is also assigned to the closest element in the predicted set. This has O(n2)
time complexity and can be run efficiently on GPUs.

LC(Ŷ ,Y ) =
∑

i

min
j

||ŷ(i) − y(j)||2 +
∑

j

min
i

||ŷ(i) − y(j)||2 (2)

Both of these losses are examples of permutation-invariant functions: the loss is the same regardless

of how the columns of Y and Ŷ are permuted.

3 RESPONSIBILITY PROBLEM

It turns out that standard neural networks struggle with modeling symmetries that arise because
there are n! different list representations of the same set, which we highlight here with an example.
Suppose we want to train an auto-encoder on our polygon dataset and have a square (so a set of 4
points with the x-y coordinates as features) with some arbitrary initial rotation (see Figure 1). Each
pair in the 8 outputs of the MLP decoder is responsible for producing one of the points in this square.
We mark each such pair with a different colour in the figure.

If we rotate the square (top left in figure) by 90 degrees (top right in figure), we simply permute the
elements within the set. They are the same set, so they also encode to the same latent representation

2



Published as a conference paper at ICLR 2020

90◦

ǫ30◦ 60◦ − ǫ

Figure 1: Discontinuity (red arrow) when rotating the set of points. The coloured points denote which
output of the network is responsible for which point. In the top path, the set rotated by 90◦ is the same
set (exactly the same shape before and after rotation) and encodes to the same feature vector, so the
output responsibility (colouring) must be the same too. In this example, after 30◦ and a further small
clockwise rotation by ǫ, the point that each output pair is responsible for has to suddenly change.

and decode to the same list representation. This means that each output is still responsible for
producing the point at the same position after the rotation, i.e. the dark red output is still responsible
for the top left point, the light red output is responsible for the top right point, etc. However, this also
means that at some point during that 90 degree rotation (bottom path in figure), there must exist a
discontinuous jump (red arrow in figure) in how the outputs are assigned. We know that the 90 degree
rotation must start and end with the top left point being produced by the dark red output. Thus, we
know that there is a rotation where all the outputs must simultaneously change which point they are
responsible for, so that completing the rotation results in the top left point being produced by the
dark red output. Even though we change the set continuously, the list representation (MLP or RNN
outputs) must change discontinuously.

This is a challenge for neural networks to learn, since they can typically only model functions without
discontinuous jumps. As we increase the number of vertices in the polygon (number of set elements),
it must learn an increasing frequency of situations where all the outputs must discontinuously change
at once, which becomes very difficult to model. Our experiment in subsection 6.1 confirms this.

This example highlights a more general issue: whenever there are at least two set elements that can be
smoothly interchanged, these discontinuities arise. We show this more formally in Appendix A. For
example, the set of bounding boxes in object detection can be interchanged in much the same way as
the points of our square here. An MLP or RNN that tries to generate these (like in Rezatofighi et al.
(2018); Stewart & Andriluka (2016)) must handle which of its outputs is responsible for what element
in a discontinuous way. Note that traditional object detectors like Faster R-CNN do not have this
responsibility problem, because they do not treat object detection as a proper set prediction task with
their anchor-based approach. When the set elements come from a finite domain (often a set of labels)
and not Rd, it does not make sense to interpolate set elements. Thus, the responsibility problem does
not apply to methods for such problems, for example Welleck et al. (2018); Rezatofighi. et al. (2017).

4 FEATUREWISE SORT POOLING

The main idea behind our pooling method is simple: sorting each feature across the elements of
the set and performing a weighted sum. The numerical sorting ensures the property of permutation-
invariance. The difficulty lies in how to determine the weights for the weighted sum in a way that
works for variable-sized sets.

A key insight for auto-encoding is that we can store the permutation that the sorting applies in the
encoder and apply the inverse of that permutation in the decoder. This allows the model to restore
the arbitrary order of the set element so that it no longer needs an assignment-based loss for training.
This avoids the problem in Figure 1, because rotating the square by 90◦ also permutes the outputs of
the network accordingly. Thus, there is no longer a discontinuity in the outputs during this rotation.
In other words, we make the auto-encoder permutation-equivariant: permuting the input set also
permutes the neural network’s output in the same way.

We describe the model for the simplest case of encoding fixed-size sets in subsection 4.1, extend it to
variable-sized sets in subsection 4.2, then discuss how to use this in an auto-encoder in subsection 4.3.
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Figure 2: Overview of our FSPOOL model for variable-sized sets. In this example, the weights define
piecewise linear functions with two pieces. The four dots on each line correspond to the positions
where f is evaluated for a set of size four.

4.1 FIXED-SIZE SETS

We are given a set of n feature vectors X = [x(1), . . . ,x(n)] where each x(i) is a column vector of
dimension d placed in some arbitrary order in the columns of X ∈ R

d×n. From this, the goal is to
produce a single feature vector in a way that is invariant to permutation of the columns in the matrix.

We first sort each of the d features across the elements of the set by numerically sorting within the

rows of X to obtain the matrix of sorted features ~X:

~Xi,j = SORT(Xi,:)j (3)

where Xi,: is the ith row of X and SORT(·) sorts a vector in descending order. While this may appear

strange since the columns of ~X no longer correspond to individual elements of the set, there are good
reasons for this. A transformation (such as with an MLP) prior to the pooling can ensure that the
features being sorted are mostly independent so that little information is lost by treating the features
independently. Also, if we were to sort whole elements by one feature, there would be discontinuities
whenever two elements swap order. This problem is avoided by our featurewise sorting.

Efficient parallel implementations of SORT are available in Deep Learning frameworks such as

PyTorch, which uses a bitonic sort (O(log2 n) parallel time, O(n log2 n) comparisons). While the
permutation that the sorting applies is not differentiable, gradients can still be propagated pathwise
according to this permutation in a similar way as for max pooling.

Then, we apply a learnable weight matrix W ∈ R
d×n to ~X by elementwise multiplying and summing

over the columns (row-wise dot products).

yi =

n
∑

j

Wi,j
~Xi,j (4)

y ∈ R
d is the final pooled representation of ~X . The weight vector allows different weightings of

different ranks and is similar in spirit to the parametric version of the gather step in Gather-Excite
(Hu et al., 2018). This is a generalisation of both max and sum pooling, since max pooling can
be obtained with the weight vector [1, 0, . . . , 0] and sum pooling can be obtained with the 1 vector.
Thus, it is also a maximally powerful pooling method for multi-sets (Xu et al., 2019) while being
potentially more flexible (Murphy et al., 2019) in what it can represent.

4.2 VARIABLE-SIZE SETS

When the size n of sets can vary, our previous weight matrix can no longer have a fixed number of
columns. To deal with this, we define a continuous version of the weight vector in each row: we use
a fixed number of weights to parametrise a piecewise linear function f : [0, 1] → R, also known as
calibrator function (Jaderberg et al., 2015). For a set of size three, this function would be evaluated at
0, 0.5, and 1 to determine the three weights for the weighted sum. For a set of size four, it would be
evaluated at 0, 1/3, 2/3, and 1. This decouples the number of columns in the weight matrix from the
set size that it processes, which allows it to be used for variable-sized sets.
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To parametrise a piecewise linear function f , we have a weight vector w̄ ∈ R
k where k − 1 is the

number of pieces defined by the k points. With the ratio r ∈ [0, 1],

f(r, w̄) =

k
∑

i=1

max(0, 1− |r(k − 1)− (i− 1)|)w̄i (5)

The max(·) term selects the two nearest points to r and linearly interpolates them. For example,
if k = 3, choosing r ∈ [0, 0.5] interpolates between the first two points in the weight vector with
(1− 2r)w1 + 2rw2.

We have a different w̄ for each of the d features and place them in the rows of a weight matrix
W̄ ∈ R

d×k, which no longer depends on n. Using these rows with f to determine the weights:

yi =

n
∑

j=1

f(
j − 1

n− 1
,Wi,:) ~Xi,j (6)

y is now the pooled representation with a potentially varying set size n as input. When n = k, this
reduces back to Equation 4. For most experiments, we simply set k = 20 without tuning it.

4.3 AUTO-ENCODER

To create an auto-encoder, we need a decoder that turns the latent space back into a set. Analogously
to image auto-encoders, we want this decoder to roughly perform the operations of the encoder in
reverse. The FSPool in the encoder has two parts: sorting the features, and pooling the features. Thus,
the FSUnpool version should “unpool” the features, and “unsort” the features. For the former, we
define an unpooling version of Equation 6 that distributes information from one feature vector to a
variable-size list of feature vectors. For the latter, the idea is to store the permutation of the sorting
from the encoder and use the inverse of it in the decoder to unsort it. This allows the auto-encoder to
restore the original ordering of set elements, which makes it permutation-equivariant.

With y′ ∈ R
d as the vector to be unpooled, we define the unpooling similarly to Equation 6 as

~X ′

i,j = f(
j − 1

n− 1
,W ′

i,:)y
′

i (7)

In the non-autoencoder setting, the lack of differentiability of the permutation is not a problem due to
the pathwise differentiability. However, in the auto-encoder setting we make use of the permutation in
the decoder. While gradients can still be propagated through it, it introduces discontinuities whenever
the sorting order in the encoder for a set changes, which we empirically observed to be a problem.
To avoid this issue, we need the permutation that the sort produces to be differentiable. To achieve
this, we use the recently proposed sorting networks (Grover et al., 2019), which is a continuous
relaxation of numerical sorting. This gives us a differentiable approximation of a permutation matrix
Pi ∈ [0, 1]n×n, i ∈ {1, . . . , d} for each of the d features, which we can use in the decoder while still
keeping the model fully differentiable. It comes with the trade-off of increased computation costs
with O(n2) time and space complexity, so we only use the relaxed sorting in the auto-encoder setting.
It is possible to decay the temperature of the relaxed sort throughout training to 0, which allows the
more efficient traditional sorting algorithm to be used at inference time.

Lastly, we can use the inverse of the permutation from the encoder to restore the original order.

X ′
i,j = ( ~X ′

i,:P
T
i )j (8)

where P T
i permutes the elements of the ith row in ~X ′.

Because the permutation is stored and used in the decoder, this makes our auto-encoder similar to
a U-net architecture (Long et al., 2015) since it is possible for the network to skip the small latent
space. Typically we find that this only starts to become a problem when d is too big, in which case it
is possible to only use a subset of the Pi in the decoder to counteract this.
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5 RELATED WORK

We are proposing a differentiable function that maps a set of feature vectors to a single feature vector.
This has been studied in many works such as Deep Sets (Zaheer et al., 2017) and PointNet (Qi
et al., 2017), with universal approximation theorems being proven. In our notation, the Deep Sets
model is g(

∑

j h(X:,j)) where h : Rd → R
p and g : Rp → R

q. Since this is O(n) in the set size

n, it is clear that while it may be able to approximate any set function, problems that depend on
higher-order interactions between different elements of the set will be difficult to model aside from
pure memorisation. This explains the success of relation networks (RN), which simply perform this
sum over all pairs of elements, and has been extended to higher orders by Murphy et al. (2019). Our
work proposes an alternative operator to the sum that is intended to allow some relations between
elements to be modeled through the sorting, while not incurring as large of a computational cost as
the O(n2) complexity of RNs.

Sorting-based set functions The use of sorting has often been considered in the set learning
literature due to its natural way of ensuring permutation-invariance. The typical approach is to sort
elements of the set as units rather than our approach of sorting each feature individually.

For example, the similarly-named SortPooling (Zhang et al., 2018) sorts the elements based on one
feature of each element. However, this introduces discontinuities into the optimisation whenever two
elements swap positions after the sort. For variable-sized sets, they simply truncate (which again adds
discontinuities) or pad the sorted list to a fixed length and process this with a CNN, treating the sorted
vectors as a sequence. Similarly, Cangea et al. (2018) and Gao & Ji (2019) truncate to a fixed-size set
by computing a score for each element and keeping elements with the top-k scores. In contrast, our
pooling handles variable set sizes without discontinuities through the featurewise sort and continuous
weight space. Gao & Ji (2019) propose a graph auto-encoder where the decoder use the “inverse” of
what the top-k operator does in the encoder, similar to our approach. Instead of numerically sorting,
Mena et al. (2018) and Zhang et al. (2019b) learn an ordering of set elements instead.

Outside of the set learning literature, rank-based pooling in a convolutional neural network has been
used in Shi et al. (2016), where the rank is turned into a weight. Sorting within a single feature vector
has been used for modeling more powerful functions under a Lipschitz constraint for Wasserstein
GANs (Anil et al., 2018) and improved robustness to adversarial examples (Cisse et al., 2017).

Set prediction Assignment-based losses combined with an MLP or similar are a popular choice
for various auto-encoding and generative tasks on point clouds (Fan et al., 2017; Yang et al., 2018;
Achlioptas et al., 2018). An interesting alternative approach is to perform the set generation sequen-
tially (Stewart & Andriluka, 2016; Johnson, 2017; You et al., 2018). The difficulty lies in how to
turn the set into one or multiple sequences, which these papers try to solve in different ways. Since
the initial release of this paper, Zhang et al. (2019a) developed a set prediction method which uses
FSPool as a core component and motivate their work by our observations about the responsibility
problem. Interestingly, their model uses the gradient of the set encoder, which involves computing
the gradient of FSPool; this is closely related to the FSUnpool we proposed.

6 EXPERIMENTS

We start with two auto-encoder experiments, then move to tasks where we replace the pooling in an
established model with FSPool. Full results can be found in the appendices, experimental details can
be found in Appendix H, and we provide our code for reproducibility at [redacted].

6.1 ROTATING POLYGONS

We start with our simple dataset of auto-encoding regular polygons (section 3), with each point in
a set corresponding to the x-y coordinate of a vertex in that polygon. This dataset is designed to
explicitly test whether the responsibility problem occurs in practice. We keep the set size the same
within a training run and only vary the rotation. We try this with set sizes of increasing powers of 2.

Model The encoder contains a 2-layer MLP applied to each set element, FSPool, and a 2-layer
MLP to produce the latent space. The decoder contains a 2-layer MLP, FSUnpool, and a 2-layer MLP
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Figure 3: MNIST as point sets with different amounts of Gaussian noise (σ) and their reconstructions.
The baseline uses sum pooling and an MLP decoder, which had the best quantitative results among
the baselines. We used the best network for our model (0.28 × 104 average Chamfer loss) and
the best network for the baseline model (0.20× 104 average Chamfer loss). The examples are not
cherry-picked.

applied on each set element. We train this model to minimise the mean squared error. As baseline,
we use a model where the decoder has been replaced with an MLP and train it with either the linear
assignment or Chamfer loss (equivalent to AE-EMD and AE-CD models in Achlioptas et al. (2018)).

Results First, we verified that if the latent space is always zeroed out, the model with FSPool is
unable to train, suggesting that the latent space is being used and is necessary. For our training runs
with set sizes up to 128, our auto-encoder is able to reconstruct the point set close to perfectly (see
Appendix B). Meanwhile, the baseline converges significantly slower with high reconstruction error
when the number of points is 8 or fewer and outputs the same set irrespective of input above that,
regardless of loss function. Even when significantly increasing the latent size, dimensionality of
layers, tweaking the learning rate, and replacing FSPool in the encoder with sum, mean, or max, the
baseline trained with the linear assignment or Chamfer loss fails completely at 16 points. We verified
that for 4 points, the baseline shows the discontinuous jump behaviour in the outputs as we predict in
Figure 1. This experiment highlights the difficulty of learning this simple dataset with traditional
approaches due to the responsibility problem, while our model is able to fit this dataset with ease.

6.2 NOISY MNIST SETS

Next, we turn to the harder task of auto-encoding MNIST images – turned into sets of points – using
a denoising auto-encoder. Each pixel that is above the mean pixel level is considered to be part of
the set with its x-y coordinates as feature, scaled to be within the range of [0, 1]. The set size varies
between examples and is 133 on average. We add Gaussian noise to the points in the set and use the
set without noise as training target for the denoising auto-encoder.

Model We use exactly the same architecture as on the polygon dataset. As baseline models, we
combine sum/mean/max pooling encoders with MLP/LSTM decoders and train with the Chamfer
loss. This closely corresponds to the AE-CD approach (Achlioptas et al., 2018) with the MLP decoder
and the model by Stewart & Andriluka (2016) with the LSTM decoder. We tried the approach by
Zhang et al. (2019a), but it performs much worse than the other baselines, likely because it requires a
bigger encoder (our encoder has ∼3000 parameters, their encoder has ∼85000 parameters).

Results We show example outputs in Figure 3 and the full results in Appendix C. We focus on
comparing our FSPool-FSUnpool model against the best baseline, which uses the sum pooling
encoder and MLP decoder. In general, our model can reconstruct the digits much better than the
baseline, which tends to predict too few points even though it always has 342 (the maximum set size)
times 2 outputs available. Occasionally, the baseline also makes big errors such as turning 5s into 8s
(first σ = 0.01 example), which we have not observed with our model.
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Table 1: MNIST classification accuracy over 6 runs (different pre-trained networks between runs):
mean ± stdev for σ = 0.05. Frozen: training with frozen pre-trained auto-encoder weights. Unfrozen:
unfrozen auto-encoder weights (fine-tuning). Random init: auto-encoder weights not used.

1 epoch of training 10 epochs of training

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPOOL 82.2%±2.1 86.9%±1.3 84.7%±1.9 84.3%± 1.8 91.5%±0.5 91.9%±0.5

SUM 76.6%±1.3 68.7%±3.5 30.3%±5.6 79.0%±1.0 77.7%±2.3 72.7%±3.4

MEAN 25.7%±3.6 32.2%±10.5 30.1%±1.6 36.8%±5.0 75.0%±2.7 73.0%±1.7

MAX 73.6%±1.3 73.0%±3.5 56.1%±5.6 77.3%±0.9 80.4%±1.8 76.9%±1.3

6.2.1 CLASSIFICATION

Instead of auto-encoding MNIST sets, we can also classify them. We use the same dataset and
replace the set decoder in our model and the baseline with a 2-layer MLP classifier. We consider
three variants: using the trained auto-encoder weights for the encoder and freezing them, not freezing
them (finetuning), and training all weights from random initialisation. This tests how informative the
learned representations of the pre-trained auto-encoder and the encoder are.

Results We show our results for σ = 0.05 in Table 1. Results for σ = 0.00 and 100 epochs are
shown in Appendix D. Even though our model can store information in the permutation that skips
the latent space, our latent space contains more information to correctly classify a set, even when
the weights are fixed. Our model with fixed encoder weights already performs better after 1 epoch
of training than the baseline models with unfrozen weights after 10 epochs of training. This shows
the benefit of the FSPool-FSUnpool auto-encoder to the representation. When allowing the encoder
weights to change (Unfrozen and Random init), our results again improve significantly over the
baselines. Interestingly, switching the relaxed sort to the unrelaxed sort in our model when using the
fixed auto-encoder weights does not hurt accuracy. Training the FSPool model takes 45 seconds per
epoch on a GTX 1080 GPU, only slightly more than the baselines with 37 seconds per epoch.

6.3 CLEVR

CLEVR (Johnson, 2017) is a visual question answering dataset where the task is to classify an answer
to a question about an image. The images show scenes of 3D objects with different attributes, and the
task is to answer reasoning questions such as “what size is the sphere that is left of the green thing”.
Since we are interested in sets, we use this dataset with the ground-truth state description – the set of
objects (maximum size 10) and their attributes – as input instead of an image of the rendered scene.

Model For this dataset, we compare against relation networks (RN) (Santoro et al., 2017) – ex-
plicitly modeling all pairwise relations – Janossy pooling (Murphy et al., 2019), and regular pooling
functions. While the original RN paper reports a result of 96.4% for this dataset, we use a tuned
implementation by Messina et al. (2018) with 2.6% better accuracy. For our model, we modify this to
not operate on pairwise relations and replace the existing sum pooling with FSPool. We use the same
hyperparameters for our model as the strong RN baseline without further tuning them.

Results Over 10 runs, Table 2 shows that our FSPool model reaches the best accuracy and also
reaches the listed accuracy milestones in fewer epochs than all baselines. The difference in accuracy
is statistically significant (two-tailed t-tests against sum, mean, RN, all with p ≈ 0.01). Also, FSPool
reaches 99% accuracy in 5.3 h, while the fastest baseline, mean pooling, reaches the same accuracy
in 6.2 h. Surprisingly, RNs do not provide any benefit here, despite the hyperparameters being
explicitly tuned for the RN model. We show some of the functions f(·, W̄ ) that FSPool has learned in
Appendix E. These confirm that FSPool uses more complex functions than just sums or maximums,
which allow it to capture more information about the set than other pooling functions.
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Table 2: CLEVR results over 10 runs: mean ± stdev of accuracy after 350 epochs, epochs to reach
an accuracy milestone, and wall time required with a 1080 Ti GPU. * averages over only 8 runs
because 2 runs did not reach 99%. MAC (Hudson & Manning, 2018) is a model specifically designed
for CLEVR and the state-of-the-art for image inputs and without program supervision.

Epochs to reach accuracy Time for

Model Accuracy 98.00% 98.50% 99.00% 350 epochs

FSPOOL 99.27%±0.18 141± 5 166±16 209±33 8.8 h
RN 98.98%±0.25 144± 6 189±29 *268±46 15.5 h
JANOSSY 97.00%±0.54 – – – 11.5 h
SUM 99.05%±0.17 146±13 191±40 281±56 8.0 h
MEAN 98.96%±0.27 169± 6 225±31 273±33 8.0 h
MAX 96.99%±0.26 – – – 8.0 h
MAC 99.0 % – – – –

6.4 GRAPH CLASSIFICATION

We perform a large number of experiments on various graph classification datasets from the TU
repository (Kersting et al., 2016): 4 graph datasets from bioinformatics (for example with the graph
encoding the structure of a molecule) and 5 datasets from social networks (for example with the
graph encoding connectivity between people who worked with each other). The task is to classify the
whole graph into one of multiple classes such as positive or negative drug response.

Model We use the state-of-the-art graph neural network GIN (Xu et al., 2019) as baseline. This
involves a series of graph convolutions (which includes aggregation of features from each node’s set
of neighbours into the node), a readout (which aggregates the set of all nodes into one feature vector),
and a classification with an MLP. We replace the usual sum or mean pooling readout with FSPool
k = 5 for our model. We repeat 10-fold cross-validation on each dataset 10 times and use the same
hyperparameter ranges as Xu et al. (2019) for our model and the GIN baseline.

Results We show the results in Appendix F. On 6 out of 9 datasets, FSPool achieves better test
accuracy. On a different 6 datasets, it converges to the best validation accuracy faster. A Wilcoxon
signed-rank test shows that the difference in accuracy to the standard GIN has p ≈ 0.07 (W = 7)
and the difference in convergence speed has p ≈ 0.11 (W = 9). Keep in mind that just because the
results have p > 0.05, it does not mean that the results are invalid.

6.5 CLEVR WITH DEEP SET PREDICTION NETWORKS

Zhang et al. (2019a) build on the ideas in this paper to develop a model that can predict sets from an
image. Their model requires from a set encoder that the more similar two set inputs are, the more
similar their representations should be. This is harder than classification, because different inputs (of
the same class) should no longer map to the same representation. In this experiment, we quantify
the benefit of the RN + FSPool set encoder they used. We use their experimental set-up and replace
FSPool with sum (this gives the normal RN model) or max pooling. We train this on CLEVR to
predict the set of bounding boxes or the state description (this was the input in subsection 6.3).

Results Appendix G shows that for both bounding box and state prediction models, the RN encoder
using FSPool is much better than sum or max. This shows that it is possible to improve on standard
Relation Networks simply by replacing the sum with FSPool when the task is challenging enough.

7 DISCUSSION

In this paper, we identified the responsibility problem with existing approaches for predicting sets
and introduced FSPool, which provides a way around this issue in auto-encoders. In experiments
on two datasets of point clouds, we showed that this results in much better reconstructions. We
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believe that this is an important step towards set prediction tasks with more complex set elements.
However, because our decoder uses information from the encoder, it is not easily possible to turn it
into a generative set model, which is the main limitation of our approach. Still, we find that using
the auto-encoder to obtain better representations and pre-trained weights can be beneficial by itself.
Our insights about the responsibility problem have already been successfully used to create a model
without the limitations of our auto-encoder (Zhang et al., 2019a).

In classification experiments, we also showed that simply replacing the pooling function in an
existing model with FSPool can give us better results and faster convergence. We showed that FSPool
consistently learns better set representations at a relatively small computational cost, leading to
improved results in the downstream task. Our model thus has immediate applications in various types
of set models that have traditionally used sum or max pooling. It would be useful to theoretically
characterise what types of relations are more easily expressed by FSPool through an analysis like in
Murphy et al. (2019). This may result in further insights into how to learn better set representations
efficiently.
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Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards sparse
hierarchical graph classifiers. NeurIPS Workshop, Relational Representation Learning, 2018.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
Networks: Improving robustness to adversarial examples. In Proceedings of the 34th International
Conference on Machine Learning (ICML), 2017.

Haoqiang Fan, Hao Su, and Leonidas J. Guibas. A point set generation network for 3D object
reconstruction from a single image. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. SplineCNN: Fast geometric
deep learning with continuous B-spline kernels. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018.

Hongyang Gao and Shuiwang Ji. Graph U-Net, 2019. URL https://openreview.net/

forum?id=HJePRoAct7.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics (AISTATS), 2010.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In International Conference on Learning Representations
(ICLR), 2019.

Jie Hu, Li Shen, Samuel Albanie, Gang Sun, and Andrea Vedaldi. Gather-Excite: Exploiting feature
context in convolutional neural networks. In Advances in Neural Information Processing Systems
31 (NeurIPS), 2018.

Drew A. Hudson and Christopher D. Manning. Compositional Attention Networks for Machine
Reasoning. In International Conference on Learning Representations (ICLR), 2018.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. In Advances in Neural Information Processing Systems 28 (NeurIPS), 2015.

10

https://openreview.net/forum?id=HJePRoAct7
https://openreview.net/forum?id=HJePRoAct7


Published as a conference paper at ICLR 2020

Daniel D. Johnson. Learning graphical state transitions. In International Conference on Learning
Representations (ICLR), 2017.

Kristian Kersting, Nils M. Kriege, Christopher Morris, Petra Mutzel, and Marion Neumann. Bench-
mark data sets for graph kernels, 2016. URL http://graphkernels.cs.tu-dortmund.

de.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning Latent Permutations
with Gumbel-Sinkhorn Networks. In International Conference on Learning Representations
(ICLR), 2018.

Nicola Messina, Giuseppe Amato, Fabio Carrara, Fabrizio Falchi, and Claudio Gennaro.
Learning relationship-aware visual features, 2018. URL http://www.rcbir.org/

learning-relationship-aware-preprint.pdf.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In International Conference
on Learning Representations (ICLR), 2019.

Marion Neumann, Roman Garnett, Christian Bauckhage, and Kristian Kersting. Propagation kernels:
Efficient graph kernels from propagated information. Machine Learning, 102(2):209–245, 2016.
ISSN 0885-6125.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolutional neural networks
for graphs. In Proceedings of the 33rd International Conference on Machine Learning (ICML),
2016.

Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017.

S. Hamid Rezatofighi., Vijay Kumar B G, Anton Milan, Ehsan Abbasnejad, Anthony Dick, and
Ian Reid. DeepSetNet: Predicting sets with deep neural networks. In The IEEE International
Conference on Computer Vision (ICCV), 2017.

S. Hamid Rezatofighi, Roman Kaskman, Farbod T. Motlagh, Qinfeng Shi, Daniel Cremers, Laura
Leal-Taixé, and Ian Reid. Deep perm-set net: Learn to predict sets with unknown permutation and
cardinality using deep neural networks. arXiv:1805.00613, 2018.

Adam Santoro, David Raposo, David G Barrett, Mateusz Malinowski, Razvan Pascanu, Peter
Battaglia, and Tim Lillicrap. A simple neural network module for relational reasoning. In
Advances in Neural Information Processing Systems 30 (NeurIPS), 2017.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 12:
2539–2561, 2011. ISSN 1532-4435.

Zenglin Shi, Yangdong Ye, and Yunpeng Wu. Rank-based pooling for deep convolutional neural
networks. Neural Networks, 83:21 – 31, 2016. ISSN 0893-6080.

Russell Stewart and Mykhaylo Andriluka. End-to-end people detection in crowded scenes. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, and Kyunghyun Cho. Loss functions for
multiset prediction. In Advances in Neural Information Processing Systems 31 (NeurIPS), 2018.

11

http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
http://www.rcbir.org/learning-relationship-aware-preprint.pdf
http://www.rcbir.org/learning-relationship-aware-preprint.pdf


Published as a conference paper at ICLR 2020

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations (ICLR), 2019.

Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. FoldingNet: Point cloud auto-encoder via
deep grid deformation. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differentiable pooling. In Advances in Neural
Information Processing Systems 31 (NeurIPS), 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. GraphRNN: Generating
realistic graphs with deep auto-regressive models. In Proceedings of the 35th International
Conference on Machine Learning (ICML), 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov, and
Alexander J Smola. Deep Sets. In Advances in Neural Information Processing Systems (NeurIPS),
2017.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI), 2018.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Deep Set Prediction Networks. In Advances
in Neural Information Processing Systems (NeurIPS), 2019a.

Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Learning representations of sets through
optimized permutations. In International Conference on Learning Representations (ICLR), 2019b.

12



Published as a conference paper at ICLR 2020

A FORMAL RESPONSIBILITY PROBLEM

The following theorem is a more formal treatment of the responsibility problem resulting in disconti-
nuities.

Theorem 1. For any set function f : Sd
n → R

d×n (d ≥ 2, n ≥ 2, Sd
n is the set of all sets of size n

with elements in R
d) from a set of points S = {x1,x2, . . . ,xn} to a list representation of that set

L = [xσ(1),xσ(2), . . . ,xσ(n)] with some fixed permutation σ ∈ Π, there will be a discontinuity in f :
there exists an ε > 0 such that for all δ > 0, there exist two sets S1 and S2 where:

ds(S1,S2) < δ and dl(f(S1), f(S2)) ≥ ε. (9)

ds is a measure of the distance between two sets (e.g. Chamfer loss) and dl is the sum of Euclidean
distances (dl(A,B) =

∑

j ‖aj − bj‖2).

θ

Figure 4: Example of the set with two points.

Proof. We prove the theorem by considering mappings from a set of two points in two dimensions.
For larger sets or sets with more dimensions, we can isolate two points and two dimensions and
ignore the remaining points and dimensions.

Let us consider the set of two points S(θ) =
{[

− cos(θ)
− sin(θ)

]

,
[

cos(θ)
sin(θ)

]}

(see Figure 4). This is mapped

to a list L(θ) = f(S(θ)). Without loss of generality, we can assume that our list representation for

θ = 0 is L(0) =
[

− cos(0) cos(0)
− sin(0) sin(0)

]

=
[

−1 1
0 0

]

. Since the order of set elements is irrelevant and f is

a (permutation-invariant) set function, S(π) = S(0) and therefore L(π) = L(0) =
[

−1 1
0 0

]

. This
implies that for at least one value of θ = θ∗, there is a change in responsibility such that for θ ≤ θ∗,

the list representation will be L1(θ) =
[

− cos(θ)
− sin(θ)

cos(θ)
sin(θ)

]

while for θ > θ∗, the list representation will

be L2(θ) =
[

cos(θ)
sin(θ)

− cos(θ)
− sin(θ)

]

in order to satisfy L(π) = L(0). For any θ, dl(L1(θ),L2(θ)) = 4.

Let ε = 3.9 and δ be given. We can find a sufficiently small α > 0 so that ds(S(θ
∗),S(θ∗+α)) < δ

and dl(L(θ∗),L(θ∗ + α)) > ε.

The reason why this does not apply to our method is that rather than choosing a fixed σ for the list
representation, the permutation-equivariance (instead of the invariance of set functions) allows our
model to have L(π) 6= L(0).

B POLYGONS

Results In Table 3, Table 4, and Table 5, we show the results of various model and training loss
combinations. We include a random baseline that outputs a polygon with the correct size and centre,
but random rotation.

These show that FSPool with the direct MSE training loss is clearly better than the baseline with
either linear assignment or Chamfer loss on all the evaluation metrics. When the set size is 16 or
greater, the other combinations only perform as well as the random baseline because they output the
same constant set regardless of input.

13



Published as a conference paper at ICLR 2020

Table 3: Direct mean squared error (in hundredths) on Polygon dataset with different number of
points in the set. Lower is better.

Set size 2 4 8 16 32 64

FSPOOL 0.000 0.001 0.000 0.000 0.000 0.0001
RANDOM 100.323 100.134 99.367 99.951 99.438 99.523

Table 4: Chamfer loss (in hundredths) on Polygon dataset with different number of points in the set.
Lower is better.

Set size 2 4 8 16 32 64

FSPOOL 0.001 0.001 0.001 0.000 0.001 0.002
MLP + Chamfer 1.189 1.771 0.274 1.272 0.316 0.085
MLP + Hungarian 1.517 0.400 0.251 1.266 0.326 0.081
RANDOM 72.848 19.866 5.112 1.271 0.322 0.081

Table 5: Linear assignment loss (in hundredths) on Polygon dataset with different number of points
in the set. Lower is better.

Set size 2 4 8 16 32 64

FSPOOL 0.000 0.001 0.000 0.000 0.000 0.001
MLP + Chamfer 0.595 0.885 0.137 0.641 0.160 0.285
MLP + Hungarian 0.758 0.200 0.126 0.634 0.163 0.040
RANDOM 36.424 9.933 2.556 0.635 0.161 0.041

C MNIST RECONSTRUCTION

Results We show the results for the default MNIST setting in Table 6. Interestingly, the sum
pooling baseline has a lower Chamfer reconstruction error than our model, despite the example
outputs in Figure 3 looking clearly worse. This demonstrates a weakness of the Chamfer loss. Our
model avoids this weakness by being trained with a normal MSE loss (with the cost of a potentially
higher Chamfer loss), which is not possible with the baselines. The sum pooling baseline has a better
test Chamfer loss because it is trained to minimise it, but it is also solving an easier task, since it does
not need to distinguish padding from non-padding elements.

The main reason for this difference comes from the shortcoming of the Chamfer loss in distinguishing
sets with duplicates or near-duplicates. For example, the Chamfer loss between [1, 1.001, 9] and
[1, 9, 9.001] is close to 0. Most points in an MNIST set are quite close to many other points and there
are many duplicate padding elements, so this problem with the Chamfer loss is certainly present on
MNIST. That is why minimising MSE can lead to different results with higher Chamfer loss than
minimising Chamfer loss directly, even though the qualitative results seem worse for the latter.

We can make the comparison between our model and the baselines more similar by forcing the models
to predict an additional “mask feature” for each set element. This takes the value 1 when the point is
present (non-padding element) and 0 (padding element) when not. This setting is useful for tasks
where the predicted set size matters, as it allows points at the coordinates (0, 0) to be distinguished
from padding elements. These padding elements are necessary for efficient minibatch-wise training.

The results of this variant are shown in Table 7. Now, our model is clearly better: even though our
auto-encoder minimises an MSE loss, the test Chamfer loss is also much better than all the baselines.
Having to predict this additional mask feature does not affect our model predictions much because
our model structure lets our model “know” which elements are padding elements, while this is much
more challenging for the baselines.
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Table 6: Test Chamfer loss (in 10 000ths) for MNIST for different input noise levels σ over 6 runs.
Lower is better.

Noise σ 0.00 0.01 0.02 0.03 0.04 0.05

FSPOOL + FSUNPOOL 0.42±0.06 0.34±0.05 0.36±0.02 0.38±0.03 0.41±0.00 0.44±0.01

SUM + MLP 0.30±0.04 0.28±0.03 0.28±0.03 0.28±0.03 0.27±0.01 0.31±0.04

SUM + RNN 0.76±0.46 0.58±0.06 0.57±0.09 0.54±0.11 0.64±0.13 0.78±0.39

MAX + MLP 1.29±0.23 1.37±0.28 1.23±0.16 1.74±0.32 1.27±0.19 1.43±0.30

MEAN + MLP 1.41±0.12 1.22±0.18 1.33±0.29 1.25±0.09 1.31±0.15 1.49±0.31

Table 7: Test Chamfer loss (in 10 000ths) for MNIST with additional mask features (see description
in Appendix C) on every element for different input noise levels σ over 6 runs. Lower is better.

Noise σ 0.00 0.01 0.02 0.03 0.04 0.05

FSPOOL + FSUNPOOL 0.28±0.03 0.21±0.01 0.25±0.03 0.25±0.01 0.27±0.01 0.30±0.01

SUM + MLP 0.87±0.43 0.90±0.39 0.61±0.40 0.99±0.84 0.63±0.27 0.61±0.24

SUM + RNN 0.58±0.13 0.69±0.16 0.60±0.18 1.35±1.53 0.73±0.12 0.63±0.13

MAX + MLP 5.91±3.10 4.78±3.05 7.10±2.40 5.05±2.87 5.85±3.11 4.57±2.08

MEAN + MLP 5.92±3.10 4.55±3.17 6.84±2.84 7.11±2.39 3.04±0.78 6.34±2.53

Table 8: Classification accuracy (mean ± stdev) on MNIST σ = 0.00 over 6 runs.

1 epoch of training 10 epochs of training

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPOOL 86.3%±1.6 92.3%±1.1 90.5%±1.2 88.2%±1.4 96.0%±0.3 96.1%±0.3

SUM 82.3%±1.2 77.9%±3.4 35.3%±8.3 85.0%±0.8 84.2%±2.5 78.4%±3.9

MEAN 27.0%±3.3 43.5%±7.1 31.2%±1.0 42.0%±7.7 76.7%±2.6 77.2%±2.2

MAX 82.0%±1.8 84.1%±1.4 62.9%±3.5 86.8%±0.9 91.9%±1.3 87.7%±1.2

Table 9: Classification accuracy (mean ± stdev) on MNIST for 100 epochs over 6 runs.

σ = 0.05, 100 epochs σ = 0.00, 100 epochs

Frozen Unfrozen Random init Frozen Unfrozen Random init

FSPOOL 84.9%±1.7 93.9%±0.4 94.0%±0.3 88.6%±1.6 97.4%±0.3 97.5%±0.3

SUM 79.8%±1.0 85.3%±1.1 83.1%±1.9 85.6%±0.9 89.5%±2.5 88.3%±1.4

MEAN 48.2%±6.9 86.5%±0.8 84.1%±2.3 57.0%±7.7 90.3%±1.3 91.1%±0.8

MAX 78.8%±0.8 84.7%±1.0 84.6%±0.9 89.2%±0.8 95.3%±0.7 95.1%±1.5

D MNIST CLASSIFICATION

Results Table 8 and Table 9 show the results for σ = 0.00 and for 100 epochs for both σ = 0.05
and σ = 0.00 respectively. Note that these are based on pre-trained models from the default MNIST
setting without mask feature. Like before, the FSPool-based models are consistently superior to
all the baselines. Note that while (Qi et al., 2017) report an accuracy of ∼99% on a similar set
version of MNIST, our model uses noisy sets as input and is much smaller and simpler: we have
3820 parameters, while their model has 1.6 million parameters. Our model also does not use dropout,
batch norm, a branching network architecture, and a stepped learning rate schedule. When we try to
match their model size, our accuracies for σ = 0.00 increase to ∼99% as well.
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E CLEVR

Figure 5: Shapes of piecewise linear functions learned by the FSPool model on CLEVR. These
show r ∈ [0, 1] on the x-axis and f(r, w̄) on the y-axis for a particular w̄ of a fully-trained model.
A common shape among these functions are variants of max pooling: close to 0 weight for most
ranks and a large non-zero weight on either the maximum or the minimum value, for example in
row 2 column 2. There are many functions that simple maximums or sums can not easily represent,
such as a variant of max pooling with the values slightly below the max receiving a weight of the
opposite sign (see row 1 column 1) or the shape in the penultimate row column 5. The functions
shown here may have a stronger tendency towards 0 values than normal due to the use of weight
decay on CLEVR.

F GRAPH CLASSIFICATION

Experimental setup The datasets and node features used are the same as in GIN; we did not
cherry-pick them. Because the social network datasets are purely structural without node features, a
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Table 10: Cross-validation classification results (%) on various commonly-used graph classification
datasets, with the mean cross-validation accuracy averaged over 10 repeats and sample standard
deviations (±). Hyperparameters of entries marked with * are known to be selected based on
test accuracy instead of validation accuracy, so results are likely not comparable to other existing
approaches that were (hopefully) selected based on validation accuracy. Our results were selected
based on validation accuracy.

Social Network IMDB-B IMDB-M RDT-B RDT-M5K COLLAB

Num. graphs 1000 1500 2000 5000 5000
Num. classes 2 3 2 5 3
Avg. nodes 19.8 13.0 429.6 508.5 74.5
Max. nodes 136 89 3063 2012 492

DCNN (Atwood & Towsley, 2016) 49.1 33.5 – – 52.1
PATCHY-SAN (Niepert et al., 2016) 71.0 ±2.3 45.2 ±2.8 86.3 ±1.6 49.1 ±0.7 72.6 ±2.2

SORTPOOL (Zhang et al., 2018) 70.0 ±0.9 47.8 ±0.9 – – 73.8 ±0.5

DIFFPOOL (Ying et al., 2018) – – – – 75.5
WL* (Xu et al., 2019) 73.8 50.9 81.0 52.5 78.9
GIN-BASE* (Xu et al., 2019) 75.1 52.3 92.4 57.5 80.2

GIN-FSPOOL 72.1 ±2.0 49.9 ±1.7 89.1 ±1.2 51.8 ±0.9 80.0 ±0.4

- epochs 95 ±70 27 ±23 124 ±64 66 ±31 124 ±56

GIN-BASE 71.3 ±1.2 48.8 ±1.7 84.8 ±1.7 48.1 ±2.0 80.3 ±0.4

- epochs 83 ±73 57 ±59 156 ±58 211 ±27 204 ±26

Bioinformatics MUTAG PROTEINS PTC NCI1

Num. graphs 188 1113 344 4110
Num. classes 2 2 2 2
Avg. nodes 17.9 39.1 25.5 29.8
Max. nodes 28 620 109 111

PK (Neumann et al., 2016) 76.0 ±2.7 73.7 ±0.7 59.5 ±2.4 82.5 ±0.5

DCNN (Atwood & Towsley, 2016) 67.0 61.3 56.6 62.6
PATCHY-SAN (Niepert et al., 2016) 92.6 ±4.2 75.9 ±2.8 60.0 ±4.8 78.6 ±1.9

SORTPOOL (Zhang et al., 2018) 85.8 ±1.7 75.5 ±0.9 58.6 ±2.5 74.4 ±0.5

DIFFPOOL (Ying et al., 2018) – 76.3 – –
WL (Shervashidze et al., 2011) 84.1 ±1.9 74.7 ±0.5 58.0 ±2.5 85.5 ±0.5

WL* (Xu et al., 2019) 90.4 75.0 59.9 86.0
GIN-BASE* (Xu et al., 2019) 89.4 76.2 64.6 82.7

GIN-FSPOOL 85.9 ±2.4 73.8 ±0.9 59.3 ±1.8 79.2 ±0.6

- epochs 299 ±91 69 ±23 214 ±110 361 ±54

GIN-BASE 85.0 ±1.5 73.2 ±1.2 59.9 ±2.4 79.4 ±0.6

- epochs 244 ±95 160 ±123 202 ±100 412 ±55

constant 1 feature is used on the RDT datasets and the one-hot-encoded node degree is used on the
other social network datasets. The hyperparameter sweep is done based on best validation accuracy
for each fold in the cross-validation individually and over the same combinations as specified in GIN.

Note that in GIN, hyperparameters are selected based on best test accuracy. This is a problem,
because they consider the number of epochs a hyperparameter when accuracies tend to significantly
vary between individual epochs. For example, our average result on the PROTEINS dataset would
change from 73.8% to 77.1% if we were to select based on best test accuracy, which would be better
than their 76.2%.

While we initially also used k = 20 in FSPool for this experiment, we found that k = 5 was
consistently an improvement. The k = 20 model was still better than the baseline on average by a
smaller margin.
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Results We show our results of GIN-FSPool and the GIN baseline averaged over 10 repeats in
Table 10. On the majority of datasets, FSPool has slightly better accuracies than the strong baseline
and consistently takes fewer epochs to reach its highest validation accuracy. On the two RDT datasets,
this improvement is large. Interestingly, these are the two datasets where the number of nodes to be
pooled is by far the largest with an average of 400+ nodes per graph, compared to the next largest
COLLAB with an average of 75 nodes. This is perhaps evidence that FSPool is helping to avoid the
bottleneck problem of pooling a large set of feature vectors to a single feature vector.

We emphasise that the main comparison to be made is between the GIN-Base and the GIN-FSPool
model, since that is the only comparison where the only factor of difference is the pooling method.
When comparing against other models, the network architecture, training hyperparameters, and
evaluation methodology can differ significantly.

Keep in mind that while GIN-Base looks much worse than the original GIN-Base*, the difference is
that our implementation has hyperparameters properly selected by validation accuracy, while GIN-
Base* selected them by test accuracy. If we were to select based on test accuracy, our implementation
frequently outperforms their results. Also, they only performed a single run of 10-fold cross-
validation.

G DEEP SET PREDICTION NETWORKS

Table 11: Average Precision (AP, mean ± stdev) for different intersection-over-union thresholds of
the predicted bounding boxes over 6 runs. DSPN-RN-FSPool results are taken from Zhang et al.
(2019a).

Model AP50 AP90 AP95 AP98 AP99

DSPN-RN-FSPOOL (10 iters) 98.8±0.3 94.3±1.5 85.7±3.0 34.5±5.7 2.9±1.2

DSPN-RN-FSPOOL (20 iters) 99.8±0.0 98.7±1.1 86.2±7.2 24.3±8.0 1.4±0.9

DSPN-RN-FSPOOL (30 iters) 99.8±0.1 96.7±2.4 75.5±12.3 17.4±7.7 0.9±0.7

DSPN-RN-SUM (10 iters) 88.3±3.7 43.4±14.4 10.0±7.4 0.1±0.1 0.0±0.0

DSPN-RN-SUM (20 iters) 87.2±3.0 42.9±11.9 5.7±3.5 0.0±0.0 0.0±0.0

DSPN-RN-SUM (30 iters) 79.0±11.9 32.5±12.4 3.4±2.2 0.0±0.0 0.0±0.0

DSPN-RN-MAX (10 iters) 68.0±4.3 4.0±2.2 0.1±0.1 0.0±0.0 0.0±0.0

DSPN-RN-MAX (20 iters) 66.6±4.5 3.3±1.8 0.1±0.0 0.0±0.0 0.0±0.0

DSPN-RN-MAX (30 iters) 64.1±5.0 2.3±1.1 0.0±0.0 0.0±0.0 0.0±0.0

Table 12: Average Precision (AP, mean ± stdev) for different distance thresholds of the predicted
state descriptions over 6 runs. DSPN-RN-FSPool results are taken from Zhang et al. (2019a).

Model AP∞ AP1 AP0.5 AP0.25 AP0.125

DSPN-RN-FSPOOL (10 iters) 72.8±2.3 59.2±2.8 39.0±4.4 12.4±2.5 1.3±0.4

DSPN-RN-FSPOOL (20 iters) 84.0±4.5 80.0±4.9 57.0±12.1 16.6±9.0 1.6±0.9

DSPN-RN-FSPOOL (30 iters) 85.2±4.8 81.1±5.2 47.4±17.6 10.8±9.0 0.6±0.7

DSPN-RN-SUM (10 iters) 44.6±3.8 21.9±4.8 7.1±2.7 1.0±0.5 0.0±0.0

DSPN-RN-SUM (20 iters) 39.6±5.4 15.2±6.4 3.0±2.2 0.3±0.3 0.0±0.0

DSPN-RN-SUM (30 iters) 30.2±9.2 7.1±3.8 0.9±0.8 0.1±0.1 0.0±0.0

DSPN-RN-MAX (10 iters) 3.0±0.2 0.9±0.1 0.5±0.2 0.1±0.1 0.0±0.0

DSPN-RN-MAX (20 iters) 3.1±0.1 1.2±0.1 0.8±0.2 0.3±0.2 0.0±0.0

DSPN-RN-MAX (30 iters) 3.1±0.1 1.2±0.1 0.9±0.2 0.3±0.2 0.0±0.0

Results Table 11 and Table 12 show that the FSPool-based RN encoder is much better than any
of the baselines. The representation of DSPN-RN-FSPool is good enough that iterating the DSPN
algorithm for more steps than the model was trained with can benefit the prediction, while for the
baselines it generally just worsens.

18



Published as a conference paper at ICLR 2020

This is especially apparent for the harder dataset of state prediction, where more information has to
be compressed into the latent space.

H EXPERIMENTAL DETAILS

We provide the code to reproduce all experiments at [redacted].

For almost all experiments, we used FSPool and the unpooling version of it with k = 20. We guessed
this value without tuning, and we did not observe any major differences when we tried to change this
on CLEVR to k = 5 and k = 40. W̄ can be initialised in different ways, such as by sampling from a
standard Gaussian. However, for the purposes of starting the model as similarly as possible to the
sum pooling baseline on CLEVR and on the graph classification datasets, we initialise W̄ to a matrix
of all 1s on them.

H.1 POLYGONS

The polygons are centred on 0 with a radius of 1. The points in the set are randomly permuted to
remove any ordering in the set from the generation process that a model that is not permutation-
invariant or permutation-equivariant could exploit. We use a batch size of 16 for all three models and
train it for 10240 steps. We use the Adam optimiser (Kingma & Ba, 2015) with 0.001 learning rate
and their suggested values for the other optimiser parameters (PyTorch defaults). Weights of linear
and convolutional layers are initialised as suggested in Glorot & Bengio (2010). The size of every
hidden layer is set to 16 and the latent space is set to 1 (it should only need to store the rotation as
latent variable). We have also tried much hidden and latent space sizes of 128 when we tried to get
better results for the baselines.

H.2 MNIST RECONSTRUCTION

We train on the training set of MNIST for 10 epochs and the shown results come from the test set of
MNIST. For an image, the coordinate of a pixel is included if the pixel is above the mean pixel level
of 0.1307 (with pixel levels ranging 0–1). Again, the order of the points are randomised. We did not
include results of the linear assignment loss because we did not get the model to converge to results
of similar quality to the direct MSE loss or Chamfer loss, and training time took too long (> 1 day)
in order to find better parameters.

The latent space is increased from 1 to 16 and the size of the hidden layers is increased from 16 to 32.
All other hyperparameters are the the same as for the Polygons dataset.

H.3 CLEVR

The architecture and hyperparameters come from the third-party open-source implementation avail-
able at https://github.com/mesnico/RelationNetworks-CLEVR. For the RN base-
line, the set is first expanded into the set of all pairs by concatenating the 2 feature vectors of the pair
for all pairs of elements in the set. For the Janossy Pooling baseline, we use the model configuration
from Murphy et al. (2019) that appeared best in their experiments, which uses π-SGD with an LSTM
that has |h| as neighbourhood size.

The question representation coming from the 256-unit LSTM, processing the question tokens in
reverse with each token embedded into 32 dimensions, is concatenated to all elements in the set. Each
element of this new set is first processed by a 4-layer MLP with 512 neurons in each layer and ReLU
activations. The set of feature vectors is pooled with a pooling method like sum and the output of this
is processed with a 3-layer MLP (hidden sizes 512, 1024, and number of answer classes) with ReLU
activations. A dropout rate of 0.05 is applied before the last layer of this MLP. Adam is used with a
starting learning rate of 0.000005, which doubles every 20 epochs until the maximum learning rate of
0.0005 is reached. Weight decay of 0.0001 is applied. The model is trained for 350 epochs.
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Table 13: Average of best hyperparameters over 10 repeats.

IMDB-B IMDB-M RDT-B RDT-M5K COLLAB MUTAG PROTEINS PTC NCI1

GIN-FSPOOL

- dimensionality 64.0 64.0 64.0 64.0 64.0 28.8 19.2 28.8 30.4
- batch size 66.0 100 45.6 32.0 86.4 89.6 60.8 41.6 128
- dropout 0.25 0.15 0.35 0.10 0.40 0.15 0.35 0.20 0.50

GIN-BASE

- dimensionality 64.0 64.0 64.0 64.0 64.0 27.2 20.8 25.6 28.8
- batch size 86.4 93.2 72.8 100 100 70.4 60.8 60.8 128
- dropout 0.30 0.15 0.25 0.45 0.40 0.25 0.45 0.20 0.35

H.4 GRAPH CLASSIFICATION

The GIN architecture starts with 5 sequential blocks of graph convolutions. Each block starts with
summing the feature vector of each node’s neighbours into the node’s own feature vector. Then, an
MLP is applied to the feature vectors of all the nodes individually. The details of this MLP were
somewhat unclear in Xu et al. (2019) and we chose Linear-ReLU-BN-Linear-ReLU-BN in the end.
We tried Linear-BN-ReLU-Linear-BN-ReLU as well, which gave us slightly worse validation results
for both the baseline and the FSPool version. The outputs of each of the 5 blocks are concatenated
and pooled, either with a sum for the social network datasets, mean for the social network datasets
(this is as specified in GIN), or with FSPool for both types of datasets. This is followed by BN-
Linear-ReLU-Dropout-Linear as classifier with a softmax output and cross-entropy loss. We used the
torch-geometric library (Fey et al., 2018) to implement this model.

The starting learning rate for Adam is 0.01 and is reduced every 50 epochs. Weights are initialised
as suggested in Glorot & Bengio (2010). The hyperparameters to choose from are: dropout ratio
∈ {0, 0.5}, batch size ∈ {32, 128}, if bioinformatics dataset hidden sizes of all layers ∈ {16, 32}
and 500 epochs, if social network dataset the hidden size is 64 and 250 epochs. Due to GPU
memory limitations we used a batch size of 100 instead of 128 for social network datasets. The
best hyperparameters are selected based on best average validation accuracy across the 10-fold
cross-validation, where one of the 9 training folds is used as validation set each time. In other words,
within one 10-fold cross-validation run the hyperparameters used for the test set are the same, while
across the 10 repeats of this with different seeds the best hyperparameters may differ.

H.5 DEEP SET PREDICTION NETWORKS

The architecture and hyperparameters come from the third-party open-source implementation avail-
able at https://github.com/Cyanogenoid/dspn. The only thing we change from this is
replacing the pooling in the RN. All other hyperparameters are kept the same.

The input image is encoded with a ResNet-34 with two additional convolutional layers with 512
filters and stride two to obtain a feature vector for the image. This feature vector is decoded into
a set using the DSPN algorithm, which requires encoding an intermediate set with the set encoder
and performing gradient descent on it. This set encoder creates all pairs of sets like in normal RNs,
processes each pair with a 2-layer MLP with 512 neurons with one ReLU activation in the middle,
then pools this into a feature vector. The intermediate set is updated with the gradient 10 times in
training, but can be iterated a different amount in evaluation. The model is trained to minimise the
linear assignment loss with the Adam optimiser for 100 epochs using a learning rate of 0.0003.
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