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ABSTRACT 

This study attempts to quantitatively evaluate the apparent reduction in 

elastic moduli, generally observed in metallic materials during unloading 

and/or cyclic elasto-plastic deformation, based on Field Theory of Multiscale 

Plasticity (FTMP). Two typical arrangements of bowing-out dislocation 

segments that yield mutually-distinct trends are examined by utilizing the 

FTMP-based duality diagram representation scheme. It is demonstrated 

that not only the scheme allows us to visualize the associated energy flow 

but also to correlate the resultant apparent shear modulus reduction rate in 

a unified manner by the duality coefficient measured on the duality 

diagrams. The scheme is demonstrated to be effective also for more 

complex cases accompanied by pinning/unpinning and the following 

relaxation processes. 

 
 

1. INTRODUCTION  

Dislocation is a major carrier of plasticity in crystalline solids, which is often compared to 

“wrinkle” of a wide-spreading carpet as a tangible simile. Although dominant roles of 

dislocations have been well-recognized and well-documented to date, still there seem to be 

many mysteries remain unfolded, e.g., with respect to their critical roles in controlling 

micro/macroscopic properties of the targeted crystalline materials. One of the reasons is that 

dislocations do not always determine the system response individually but frequently do as 

groups, like as substructures evolving during the course of elasto-plastic deformation.  One of 

such eloquent examples is “dislocation cells” that are universally observed in plastically-

deformed crystals [1] [2], in the sense that they substantially controls the overall mechanical 

properties notwithstanding we do not essentially know why and how they are formed. Since 

the dislocation cells are composed of extremely large number of dislocations having roughly 

a periodic structure with wavelengths commensurate with submicron to micron, which is 

much larger than the magnitude of Burgers vector (characteristic (intrinsic) length of 

dislocation), it may safely be said that this dilemma is a critical “missing link” against 

achieving multiscale modeling of plasticity in terms of “transcending” scales. 
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To solve the above dilemma, we ought to establish, above all, how to view dislocation 

aggregates in coarse-grained manner, maintaining their linear nature including the 

configurational complexities when necessary. Figure 1 shows a schematic drawing for 

“discrete vs. continuum” dislocations in 2D and 3D.  One can notice exclusive difficulties in 

expressing 3D discrete dislocations based on a continuum picture, whereas relatively easy 

method may be found for 2D counterparts such as using distribution functions like for 

aggregates of particles. We must admit almost nothing has been done in this respect since 

Kröner suggested a use of statistical mechanics in his approach based on multi-point 

dislocation correlation functions for expressing distributed dislocations [3]. 

We have advocated a generic theoretical framework called FTMP (Field Theory of 

Multiscale Plasticity) [4] [5] [6] [7], together with the associated evaluation schemes, with 

which we successfully demonstrated to be able to capture the evolutionary aspects of 

dislocation ensembles, both qualitatively and quantitatively, as evolving inhomogeneities. 

Based on FTMP, we tackled the above problem in several respects, e.g., collapsing mixed 

dislocation walls [8] and GNBs (Geometrically Necessary Boundaries) [9], against simulated 

results by using discrete dislocation dynamics (DD) [10] [11], where dynamic behaviors of 

wall-constructing dislocation networks are successfully treated in a unified manner, 

particularly, by utilizing the FTMP-based duality diagram representation scheme. In this 

paper, we take afresh up another sort of dynamic behaviors of discrete dislocations that leads 

to softening of macroscopic stress responses of material systems, i.e., apparent reduction in 

the elastic (shear) modulus.  

Experimentalists might have noticed decreasing elastic modulus observable in loading and 

reloading stress-strain curves (e.g., [12] [13]), implying the elastic modulus (e.g., Young’s 

modulus) is not always be constant at least apparently during elasto-plastic deformation. This 

phenomenon causes many engineering problems, greatly affecting the predicting precisions 

of practically-important mechanical properties of metallic materials such as spring back and 

the amount of ratcheting [14]. Few studies, however, seem to have been carried out (this 

phenomenon seem to have not been taken so seriously by analytical researchers) probably and 

partially because of lack of such practical experiences.  

The simplest mechanism yielding the “apparent” reduction in the elastic modulus is 

damping motions of pinned dislocation segments [15] [16]. During loading and unloading, 

pinned dislocation segments bow out and subsequently come back to the original 

configurations if there is no internal stress. This “reversible” plastic response consequently 

contributes to the “apparent softening” in the elastic stress-strain response, which appears as 

the apparent “reduction in the shear modulus.”  

This study extensively discusses the “apparent reduction in the shear modulus” based on 

FTMP by focusing on damping motions of dislocation segments via their bowing-out 

movements, against a series of simulated dislocation systems by using DD. Starting from a 

simple set of configurations of pinned segments of dislocations, we also extend the discussion 

to more complex conditions accompanied by their unpinning and relaxation processes. 
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Figure 1. Discrete vs. continuum representations of dislocation aggregates. 

 

2. ABOUT “APPARENT” REDUCTION IN ELASTIC MODULUS 

Let Δ𝛾𝛾𝑝𝑝 be the recovered plastic strain and Δ𝜇𝜇 be the apparent decrement of the shear modulus 

caused by Δ𝛾𝛾𝑝𝑝, we have, 

 𝛾𝛾𝑒𝑒 + Δ𝛾𝛾𝑝𝑝 = (𝜇𝜇−1 + Δ𝜇𝜇−1)𝜏𝜏 = 𝜇𝜇−1{1 + (𝜇𝜇/Δ𝜇𝜇)}𝜏𝜏                             (1) 

 

What we resultantly observe as the shear modulus from the given stress-strain response is 𝜇𝜇{1 + (𝜇𝜇/Δ𝜇𝜇)}−1 instead of 𝜇𝜇. Therefore, the “apparent” reduction ratio of the shear modulus 

is given by, 

 𝜇𝜇′/𝜇𝜇 ≡ {1 + (𝜇𝜇/Δ𝜇𝜇)}−1                                                (2) 

 

where 𝜇𝜇′ denotes the shear modulus to be observed. 

The above Δ𝛾𝛾𝑝𝑝 in Eq. (1) is derived in a way presented in Figure 2, where a pinned 

dislocation segment under an applied shear stress 𝜏𝜏, is schematically shown, with bowed-out 

curvature of 1/𝑅𝑅 = 𝜏𝜏𝜏𝜏/𝑇𝑇 and the corresponding swept-out area of Δ𝐴𝐴. Here, the line tension 

 𝑇𝑇 is approximately given by 𝑇𝑇 ≈ 𝜇𝜇𝜏𝜏2/2. The reversible plastc shear increment produced by 

the bowing is, 

 Δ𝛾𝛾𝑝𝑝 = 𝜏𝜏Δ𝐴𝐴/𝑉𝑉 
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Figure 2. Schematic drawing of derivation process for deriving the attendant 

apparently reduced shear modulus due to a bowing-out dislocation segment. 

 

where by small bow out 

 Δ𝐴𝐴 = 𝜑𝜑𝑅𝑅2 − (𝑅𝑅2sin2𝜑𝜑)/2 

 

Expansion of the sin2𝜑𝜑 by small arguments gives, 

 Δ𝐴𝐴 = 8𝑅𝑅2𝜑𝜑3/12 

 

but since by small bow out 2𝜑𝜑𝑅𝑅 ≈ 𝑙𝑙, 
 Δ𝐴𝐴 = 𝑙𝑙3/(12𝑅𝑅) 

 

Going upon substitution, we finally have, 

 Δ𝛾𝛾𝑝𝑝 = 𝑙𝑙3𝜏𝜏/(6𝜇𝜇𝑉𝑉) 
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Since Δ𝛾𝛾𝑝𝑝 is reversible, it will masquerade as an added elastic strain giving an apparent 

reduced shear modulus, as argued above. Substituting this Δ𝛾𝛾𝑝𝑝 into Equation (1), considering 

N dislocations in a cube with the edge length L, we ultimately have, 

 𝜇𝜇/𝜇𝜇′ = {1 + 𝑙𝑙3𝑁𝑁/(6𝐿𝐿3)}−1                                                 (3) 

 

3. ANALYTICAL MODEL AND PROCEDURE 

3.1. FTMP-based Incompatibility Model and Duality Diagram Representation 

Given 3D dislocation configurations, the dislocation density tensor 𝛼𝛼𝑖𝑖𝑖𝑖 is firstly evaluated for 

each sub-cell, where the simulation cell is divided into 100×100×100 sub-cells in the present 

study. Here, a coarse-grained line vector is introduced for the dislocations contained in each 

sub-cell, without which all the details about the segment-wise geometrical fluctuations affect 

the distinction between edge and screw components. The definition of 𝛼𝛼𝑖𝑖𝑖𝑖 in this context is 

given as [17], 

 𝐵𝐵𝑖𝑖 = 𝛼𝛼𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖                                                            (4) 

 

where 𝐵𝐵𝑖𝑖 is the Burgers vector corresponding to the coarse-grained line vector and 𝑑𝑑𝑑𝑑𝑖𝑖 is the 

area through which the dislocations penetrate. Note the total length of the dislocations within 

the sub-cell is renormalized into the coarse-grained counterpart to conserve the density. 

Based on the thus evaluated dislocation density tensor defined in Equation (9), the 

incompatibility tensor is further evaluated as [18], 

 𝜂𝜂𝑖𝑖𝑖𝑖 = −�∈𝑖𝑖𝑖𝑖𝑖𝑖 𝜕𝜕𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖�𝑆𝑆𝑆𝑆𝑆𝑆                                               (5) 

 

where the spatial derivative is evaluated for a given arbitrary coarse-grained region by 

utilizing the least-square method [19]. 

According to the flow-evolutionary hypothesis [7] in FTMP, the incompatibility tensor is 

equated with the fluctuation part of the energy-momentum tensor, where both the tensors are 

defined in the four-dimensional space-time. The temporal components provide the following 

specific relationship (assuming static conditions), 

 𝜂𝜂𝐾𝐾𝐾𝐾 = 𝜅𝜅𝛿𝛿𝛿𝛿𝑒𝑒                                                         (6) 

 

where 𝜅𝜅 is named duality coefficient. Based on Equation (11), we can draw duality diagrams, 

i.e., the relationship between the trace of the incompatibility tensor and (the fluctuation part 

of) the elastic strain energy. The duality diagram representation allows us to “visualize” the 

energy conversion process or “energy flow” in terms of dislocation movements within the 

system. 
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3.2. Analytical Conditions and Simulation Models 

We perform a series of dislocation dynamics simulations [11] for obtaining dislocation 

systems to be examined. Figure 3 shows the simulation cell with (2000b)3 edges, together with 

an edge dislocation segment on a prescribed slip plane. We assume α-Fe (BCC), with the 

density 7.88×103 kg/m3, the shear modulus 80.0 GPa, Poisson's ratio ν = 0.324, and the 

magnitude of Burgers vector b = 2.483×10-10 m. The external shear stress τ is applied as shown 
in Figure 3 until 500 steps (loading) and is then reversed until 1,000 steps (unloading), with 

the increment of the simulation time step being 1.8×10-12 sec. 

 

 
Figure 3. Schematic drawing of simulation cell and loading condition. 

 

 
Figure 4. Schematics of simulation models with two representative dislocation 

arrangements, Case A (horizontal arrangement) and Case B (vertical arrangement). 
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Pinned dislocation segments are placed in the simulation cell as schematically shown in Figure 

4, where the initial length of each segment is set to be 200b (b is the magnitude of Burgers 

vector). We consider roughly two arrangements of the dislocation segments, as shown in the 

figure, i.e. horizontal (Case A) and vertical (Case B) arrangements with respect to the slip 

plane. Note the Case B (vertical arrangement) may be regarded as a simplified model for 

dislocation walls. In this study, we arrange the edge dislocations so that the number of 

dislocations N = 45, 75, 125, 175, 225 and 325 for both the cases. 

 

4. RESULTS AND DISCUSSIONS 

4.1. Stress-strain response and apparent reduction in shear modulus 

Figure 5(a) shows the simulation set ups for Cases A and B. We also present the upper view 

for N=175 in Figure 5(b) as a representative case, showing bowing-out dislocation segments. 

As observed in these snapshots, we immediately notice that the bowing-out motions are 

greatly restricted in Case B compared with those in Case A, probably because of the induced 

back stress field by themselves. 

 

 
Figure 5. Snapshots of (a) initial configurations of whole models and (b) bowing-

out dislocation segments in the case of N=175 for Cases A and B. 
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Figure 6(a) and (b) displays the corresponding variations of shear stress-shear strain curves 

with the number of dislocation segments to Figure 5 for Cases A and B, respectively. First 

thing that we can confirm is the decreasing slopes of them with increasing number of 

dislocation segments for both the cases. The second, on the other hand, is the much smaller 

slopes for Case B than those for Case A, reflecting the restricted bowing-out motions of the 

dislocation segments demonstrated in Figure 5. Figure 6(c) compares the representative shear 

stress-strain curves between the two cases, by taking a representative condition, i.e., N=175. 

Both the cases, however, exhibit nearly “reversible” stress-strain responses; the plastic shear 

strain caused by the bowing-out motions of dislocation segments is roughly recovered to zero 

when the segments come back to the original configuration (i.e., straight line). 

The corresponding “apparent” reduction ratios of the shear modulus to the results in Figure 

6 are calculated by using Equation (2). Figure 7 shows variations of the “apparent” reduction 

rate of the shear modulus with increasing number of dislocation segments N, comparing Cases 

A, B and the theory given by Equation (3) (where L=2000b and l=200b are substituted). The 

results for Case A agree well with the theory, whereas Case B exhibits deviation from the 

theory as N increases.  The deviation corresponds to the greatly-restricted bowing-out motions 

of dislocation segments seen in Figure 5(b). 

 

 
Figure 6. Shear stress-plastic shear strain responses for (a) Cases A, (b) B and (c) 

both cases in the case of N=175. 
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Figure 7. Relationship between “apparent” reduction rate in shear modulus and 

the number of dislocation segments. 

 

4.2. Duality diagram representation 

We examine the above bowing-out responses of the dislocation segments by utilizing the 

duality diagram representation scheme, based on the flow-evolutionary hypothesis [7]. Here, 

the incompatibility tensor and the elastic strain energy are calculated by Equation (5) and the 

stress field of dislocations, respectively. Figure 8(a) compares duality diagrams for all the 

conditions of the number of dislocation segments N between Cases A and B, whose 

representatives (N=175) are detailed in Figure 8(b), respectively, while the extracted plots 

from (a) at the maximum stress (500steps) are shown in Figure 8(c). As demonstrated in Figure 

8(b), Case A exhibits a sharp increase and the subsequent decrease in η almost vertically in 
the diagram, meaning most of the externally-applied work is consumed as the incompatibility 

grows, without being stored in the dislocations. In sharp contrast, Case B tends to yield the 

horizontal growth in 𝜂𝜂, i.e., the growth rate saturates rapidly as the elastic strain energy 

increases, indicating that the external energy is effectively stored in the bowing-out dislocation 

segments until the critical configuration is reached. 
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Figure 8. Duality diagrams comparing Cases A and B, (a) through (c), together with 

correlation of apparent reduction rate of shear modulus with duality coefficient, 

(d). 

 

The above distinct trends between Cases A and B well correspond to those in the bowing-

out configurations of dislocation segments in Figure 5.  Thus way, the energy flow associated 

with the configurational changes of the dislocations can be visualized via the duality diagram. 

Regarding the extracted plots in Figure 8(c), we find linear relationships roughly holding 

between the incompatibility and the elastic strain energy for both the cases, respectively. The 

difference in the slopes is attributed to that in the energy conversion characteristics between 

the two cases discussed above: the large slope for Case A represents large energy conversion 

rate to the incompatibility-related degrees of freedom, whereas the small slope for Case B 

indicate the small conversion rate. 
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For evaluating this quantitatively, we further evaluate the duality coefficient via 𝜅𝜅 ≡∑𝜂𝜂 /∑𝛿𝛿𝑒𝑒 from Figure 8(c), which measures how much strain energy is converted to, i.e., 

dissipated into, local plasticity, i.e., the bowing-out motions of dislocation segments, in the 

present case, that manifests itself as the growth of the incompatibility tensor field. Figure 8(d) 

correlates the apparent reduction rate of the shear modulus with κ. There observed a good 
correlation between the two, regardless of not only the arrangements (Cases A and B) but also 

the number of dislocation segments, strongly implying the duality coefficient can be a 

parameter measuring the system response for the present dislocation systems in terms of the 

above-mentioned energy conversion characteristics. 

We extend the simulation set-up to more complex situation, where dislocation segments 

are rather randomly distributed. To this end, we make use of the model with distributed 

precipitates employed in [20]. Repulsive interactions against the precipitate models is 

assumed with N=100 and 400. Obtained results are compared in Figure 9, yielding a certain 

amount of “non-recoverable” shear strain due to occasional unpinning of the segments for 

both the cases.  For a quantitative discussion with respect to the relationship between the mean 

pinning space and the irreversible stress-strain behavior, we measure the “pinning space” 

distribution, and further fabricate five simplified models as displayed in Figure 10 based on 

it. 

 

 
Figure 9 Series of snapshots during loading and unloading processes for models 

with randomly-distributed precipitates (pinning points) [20], comparing two cases 

with N=100 and 400 (left), together with the corresponding system-wise shear 

stress-strain curves (right). 
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Figure 10 Pinning space distribution (left) of dislocation systems in Figure 9, 

together with schematics of simplified models based on it (right). 

 

 
Figure 11 A typical duality diagram obtained for simplified models, together with 

snapshots at representative steps in the case of N=10, where precipitates in Figure 

10 are not shown. 
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As representative case, some details of the duality diagram for the model with N=10 are 

presented in Figure 11, with snapshots at representative steps. In the duality diagram, roughly 

three processes are involved, in addition to the initial and final relaxation steps, i.e., pinning 

and unpinning processes, each manifested as “positive” and “negative” growths, respectively, 

together with transitions that bridge the two.  The maximum bowing-out configuration is 

shown to be reached at 700 steps, 200 step-after the maximum tension at 500 steps due to the 

inertial effect.  

Figure 12 displays all the duality diagrams including that for N=0. We observe larger 

incompatibility range as the number of precipitates increases and/or the inter-precipitate 

spacing decreases, otherwise roughly the same trend as that for N=10 in Figure 11, 

demonstrating basically the same dislocation behaviors during the process, except the case 

with N=0. 

 

 
Figure 12 Comparison of duality diagrams among five simplified models in Figure 

10. 

 

The corresponding stress-strain curve is displayed in Figure 13 to Figure 11 for N=10, 

comparing with those for other conditions. Clearly confirmed first is the deviation from the 

reference (N=0) are started to occur at 300 steps upon unpinning, whose trend is in common 

to all the models.  That confirmed second is the unloading response is characterized by the 

slope right before the final relaxation between 800 and 900 steps, which occasional pinning 

takes place during the transition process. 
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Figure 13 Stress-Strain curves comparing five simplified models in Figure 10, 

together with snapshots at representative steps for N=10. 

 

 
Figure 14 𝜅𝜅-based correlations of (a) loading slope, (b) unloading slope and (c) 

residual strain for five simplified models, together with system-wise stress-strain 

curves (redisplayed). 
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Figure 14 shows the results of comparing the duality coefficients and the quantity which 

characterize the stress-strain curves, i.e., residual strain and slopes at loading and unloading 

steps, for the five simplified models. As representative evaluation results, we present 

correlations of two representative slopes as confirmed above, together with the residual strain 

with the duality coefficient.  Since satisfactory correlations are obtained regardless the models, 

applicability of the method presented in the paper to more complex situations are 

demonstrated. 

 

5. CONCLUSION 

This study described apparent reduction in elastic moduli often observed empirically in 

metallic materials during plastic deformation due to damping motions of dislocation segments 

from the viewpoint of FTMP (Field Theory of Multiscale Plasticity). Bowing-out 

configurations of dislocation segments for two typical dislocation arrangements, i.e., those 

aligned on the horizontal and the vertical plane to the imparted shear stress, were simulated 

by discrete dislocation dynamics, showing mutually-distinct trends: The vertical arrangement 

exhibits greatly restricted bowing-out motions compared to the horizontal counterparts, 

resulting in relatively smaller reduction ratio. The obtained results were extensively examined 

by FTMP-based duality diagram representation scheme, which allowed not only to visualize 

the associated energy flow into the incompatibility-related degrees of freedom for each case, 

but also to quantitatively correlate the apparent reduction rate of the shear modulus in a unified 

manner via the duality coefficient. 

We also made an extended application of the above evaluation scheme to more complex 

conditions, where dislocation segments are pinned by a number of precipitates that yield 

relatively complicated behaviors including pinning/unpinning events during the imparted 

loading-unloading process. It was shown that basically the duality diagram-based scheme is 

applicable to them, leveraging the validity of the present FTMP-based approach. 
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