
International Journal on Software Tools Technology Transfer manuscript No.
(will be inserted by the editor)

Ali Ebnenasir · Sandeep S. Kulkarni · Anish Arora

FTSyn: A Framework for Automatic Synthesis of
Fault-Tolerance

Abstract In this paper, we present a software frame-
work for adding fault-tolerance to existing finite-state
programs. The input to our framework is a fault-
intolerant program and a class of faults that perturbs the
program. The output of our framework is a fault-tolerant
version of the input program. Our framework provides
(i) the first automated tool for the synthesis of fault-
tolerant distributed programs, and (ii) an extensible plat-
form for researchers to develop a repository of heuristics
that deal with the complexity of adding fault-tolerance to
distributed programs. We also present a set of heuristics
for polynomial-time addition of fault-tolerance to dis-
tributed programs.

We have used this framework for automated synthesis
of several fault-tolerant programs including a simplified
version of an aircraft altitude switch, token ring, Byzan-
tine agreement, and agreement in the presence of Byzan-
tine and fail-stop faults. These examples illustrate that
our framework can be used for synthesizing programs
that tolerate different types of faults (process restarts,
Byzantine and fail-stop) and programs that are subject
to multiple faults (Byzantine and fail-stop) simultane-

Ali Ebnenasir
Computer Science Department
Michigan Technological University
Houghton MI 49931, USA
Tel.: +906-487-4372
Fax: +906-487-2283
E-mail: aebnenas@mtu.edu

Sandeep S. Kulkarni
Department of Computer Science and Engineering
Michigan State University
East Lansing MI 48824, USA
Tel.: +517-355-2387
Fax: +517-432-1061
E-mail: sandeep@cse.msu.edu

Anish Arora
Department of Computer Science and Engineering
Ohio State University
Columbus OH 43210 USA
Tel.: +614-292-1836
Fax: +614-292-2911
E-mail: anish@cse.ohio-state.edu

ously. We have found our framework to be highly use-
ful for pedagogical purposes, especially for teaching con-
cepts of fault-tolerance, automatic program transforma-
tion, and the effect of heuristics.

Keywords Fault-tolerance · Automatic addition of
fault-tolerance · Formal methods · Program synthesis ·
Distributed programs

1 Introduction

In the initial design of a fault-tolerant program, it is often
difficult to identify all the faults that may perturb the
program. Thus, when new faults that affect an existing
program are identified, it becomes necessary to upgrade
the system to deal with those new faults. Moreover, dur-
ing such addition of fault-tolerance, it is necessary to
reuse the existing program as much as possible. Specifi-
cally, when the new fault does not occur, we expect the
program to behave in the same way as it behaved before
the upgrade.

It is desirable to use an automated synthesis algo-
rithm while adding fault-tolerance to a program as the
synthesized program is correct by construction, and there
will be no need for its proof of correctness. To automat-
ically synthesize a fault-tolerant program, we can be-
gin either with its formal specification (e.g., [6–9, 19]),
or with (the transitions of) the fault-intolerant version
thereof (e.g., [27, 28]). In the context where we need to
upgrade an existing program, we follow the latter ap-
proach and reuse the existing program.

One of the difficulties in automating the addition
of fault-tolerance to distributed programs is the com-
plexity of such addition. In [27, 31], the authors have
shown that, in general, the addition of fault-tolerance
to distributed programs is NP-complete in the state
space of the fault-intolerant program. To deal with this
complexity and to synthesize programs that have large
state space, heuristic-based approaches are proposed in
[21, 28, 29]. These heuristic-based approaches reduce the

2 Ali Ebnenasir et al.

complexity of synthesis by forfeiting the completeness of
adding fault-tolerance (see Section 4 for the description
of heuristics). In other words, if heuristics are applicable
then a heuristic-based algorithm will generate a fault-
tolerant program in polynomial-time (in the state space
of the fault-intolerant program). However, if the heuris-
tics are not applicable then the algorithm may declare
failure even though it is possible to add fault-tolerance
to the given fault-intolerant program.

The development and the application of heuristics is
complicated by the fact that, for a given set of heuris-
tics, we need to determine which combinations of those
heuristics are applicable in the synthesis of a fault-
tolerant program. In [28], Kulkarni, Arora, and Chippada
apply their heuristics for the synthesis of a canonical ver-
sion of Byzantine agreement program by careful explo-
ration of reachable states and transitions. However, for
programs with very large state space, such manual ex-
ploration of state space is not practical. This problem
becomes even more challenging where a combination of
heuristics fails to be applicable in the synthesis of a fault-
tolerant program and developers need to determine what
went wrong during the synthesis. To address such ques-
tions, an extensible software tool is necessary where we
provide (i) the ability to apply different combinations of
a set of heuristics; (ii) the ability to add new heuristics,
and (iii) the ability for automatic generation of mean-
ingful representation of the cases where the addition of
fault-tolerance fails.
Goals. To address the above-mentioned issues, we de-
velop a software framework, called Fault-Tolerance Syn-
thesizer (FTSyn), for the synthesis of fault-tolerant pro-
grams from their fault-intolerant version. FTSyn has the
following properties:

1. Ability to add fault-tolerance to existing fault-
intolerant programs. One group of users who use
FTSyn are the developers of fault-tolerant programs.
For this group of users, FTSyn should provide mech-
anisms for the addition of fault-tolerance. Thus, at
different stages in the synthesis of a fault-tolerant
program, these developers should be able to inter-
act with FTSyn in order to apply different built-in
heuristics (in their desired order) depending on the
program being synthesized.
In the cases where the application of heuristics fails,
developers should be able to determine the cause of
failure. In other words, they should be able to query
FTSyn to obtain meaningful representations for the
failure cases. Towards this end, they must be able
to automatically generate the intermediate versions
of the program being synthesized, and automatically
identify counterexamples of desired fault-tolerance
properties. This way, they can determine the heuris-
tics that should be applied next.

2. Ability to add new heuristics. Another group of users
are the developers of heuristics who need to evaluate
the applicability of their new heuristics in reducing

the complexity of fault-tolerance addition. In order to
increase the efficiency of synthesis, the developers of
heuristics may need to improve the existing heuristics
or add new heuristics for different tasks during syn-
thesis. Thus, FTSyn should allow improvements or
additions of heuristics with a low overhead. In other
words, FTSyn should be extensible.

3. Ability to change internal representations. The in-
ternal representation of entities such as programs and
faults affects the efficiency of the synthesis of fault-
tolerant programs. It is difficult to determine the
ideal internal representation of these entities as each
representation has its own advantages and disadvan-
tages. Moreover, depending on the user requirements
at run-time, FTSyn should switch between different
internal representations of a particular entity. Hence,
we should be able to modify the way these entities
are represented with a low overhead.

Contributions of the paper. The main contributions
of the paper are as follows.

– We extend the scope of program synthesis by design-
ing and implementing an extensible software frame-
work, called FTSyn, for adding fault-tolerance to ex-
isting distributed programs.

– We provide the possibility of changing the internal
representation of different entities in FTSyn. Towards
this end, we effectively utilize some of the design
patterns in [20]. We note that the identification of
appropriate implementation structures for programs,
faults, and specifications is a research problem that
is outside the scope of this paper. Nonetheless, we
provide the necessary software framework for such
investigation.

– We provide the option of obtaining an intermediate
version of the synthesized program in Promela [2]
modeling language; this option is especially useful if
the heuristics being used fail, and it becomes neces-
sary to analyze the intermediate version of the syn-
thesized program to identify if another heuristic could
be used or how a new heuristic can be developed.

– We note that FTSyn provides a suitable platform
for teaching some basic concepts of distributed and
fault-tolerant systems (e.g., distribution issues, non-
determinism, faults, and fault tolerance); i.e., FTSyn
is used for pedagogical purposes as well.

We have used FTSyn to synthesize several fault-
tolerant programs among them (i) a simplified version
of an altitude switch that tolerates the corruption of al-
titude sensors; (ii) a token ring protocol that tolerates
process-restart faults; (iii) an agreement protocol that
tolerates Byzantine faults; (iv) an agreement program
that tolerates both Byzantine faults and fail-stop faults;
(v) an alternating bit protocol program that tolerates
message-loss faults, and (vi) a Triple Modular Redun-
dancy program that tolerates input-corruption faults.
These examples illustrate the potential of FTSyn in

FTSyn: A Framework for Automatic Synthesis of Fault-Tolerance 3

adding tolerance against faults of different natures (e.g.,
input-corruption, Byzantine, message loss, etc).
Organization of the paper. In Section 2, we present
preliminary concepts. Then, in Section 3, we provide an
overview of how developers of fault-tolerance can inter-
act with FTSyn to add fault-tolerance to programs. We
also use an example program to demonstrate the input
and the output of FTSyn. Subsequently, in Section 4, we
present the theory behind the internal working of FTSyn,
where we present heuristics applied during synthesis. In
Section 5, we show how one can integrate new heuristics
in FTSyn and can change the internal representation of
the components of FTSyn. In Section 6, we present a
simplified version of an altitude switch synthesized us-
ing FTSyn. We discuss scalability issues related to our
framework in Section 7. We make concluding remarks
and discuss future work in Section 8. We note that a de-
tailed user manual including the source code of FTSyn
is available in [1].

2 Preliminaries

In this section, we present the theoretical background
on which FTSyn is based. We present basic concepts in
Section 2.1 and then, in Section 2.2, we recall the prob-
lem statement of adding fault-tolerance to programs. Fi-
nally, in Section 2.3, we represent a non-deterministic
algorithm from [27,28] for adding fault-tolerance to dis-
tributed programs.

2.1 Basic Concepts

In this section, we give the definitions of programs, prob-
lem specifications, state predicates, faults, and fault-
tolerance. The programs are defined in terms of their
state space and their transitions. The definition of spec-
ifications is adapted from Alpern and Schneider [3]. The
definition of faults and fault-tolerance is adapted from
Arora and Gouda [4] and Kulkarni [26]. The issues of
modeling distributed programs is adapted from Kulka-
rni and Arora [27], and Attie and Emerson [7].
Program. A program p is defined by a finite set of vari-
ables, say V = {v1, .., vu}, and a finite set of processes, say
P = {P1, · · · , Pn}, where u and n are positive integers.
Each variable is associated with a finite domain of values.
Let v1, v2, .., vu be variables of p, and let D1, D2, .., Du be
their respective domains. A state of p is obtained by as-
signing each variable a value from its respective domain.
Thus, a state s of p has the form: 〈l1, l2, .., lu〉 where
∀i : 1 ≤ i ≤ u : li ∈ Di. The state space of p, Sp, is the
set of all possible states of p.

A process, say Pj (1 ≤ j ≤ n), in p is associated
with a set of program variables, say rj , that Pj can read
and a set of variables, say wj , that Pj can write. We
assume that wj ⊆ rj , i.e., Pj cannot blindly write any

variable. Process Pj consists of a set of transitions δj ;
each transition is of the form (s0, s1) where s0, s1 ∈ Sp.
Later in this section, we address the effect of read/write
restrictions on δj . The set of transitions of p, δp, is equal
to the union of the transitions of its processes.

A state predicate of p is any subset of Sp. A state
predicate S is closed in the program p (respectively, δp)
iff (if and only if) the following condition holds:

∀s0, s1 :: (((s0, s1)∈δp) ∧ (s0∈S)) ⇒ (s1∈S).
A sequence of states, σ = 〈s0, s1, ...〉 with len(σ)

states, is a computation of p iff the following two condi-
tions are satisfied: (1) ∀j : 0 < j < len(σ) : (sj−1, sj)∈δp,
and (2) if σ is finite and terminates in a state sl then
there does not exist a state s such that (sl, s) ∈ δp.
(Note that len(σ) could be infinity.) A finite sequence
of states, 〈s0, s1, ..., sk〉, is a computation prefix of p iff
∀j : 0 < j ≤ k : (sj−1, sj) ∈ δp , where k is a positive
integer.

The projection of program p on a state predicate
S, denoted as p|S, is the set of transitions {(s0, s1) :
(s0, s1)∈δp ∧ s0, s1∈S}; i.e., p|S consists of the transi-
tions of p that start in S and end in S.
Notation. When it is clear from the context, we use p
and δp interchangeably. We say that a state predicate S
is true in a state s iff s∈S.
Specification. A specification is a set of infinite se-
quences of states that is suffix-closed and fusion-closed.
Suffix closure of a set means that if a state sequence σ is
in that set then so are all the suffixes of σ. Fusion clo-
sure of a set means that if state sequences 〈α, s, γ〉 and
〈β, s, δ〉 are in that set then so are the state sequences
〈α, s, δ〉 and 〈β, s, γ〉, where α and β are finite prefixes of
state sequences, γ and δ are suffixes of state sequences,
and s is a program state.

Following Alpern and Schneider [3], we rewrite a
specification as a conjunction of a safety specification and
a liveness specification. Since the specification is suffix-
closed and fusion-closed, it is possible to represent the
safety specification of a program as a set of bad tran-
sitions that the program is not allowed to execute (see
Page 26, Lemma 3.6 of [26] for proof). Thus, for pro-
gram p, its safety specification is a subset of Sp ×Sp. We
do not explicitly specify the liveness specification as we
show that the fault-tolerant program satisfies the live-
ness specification (in the absence of faults) iff the fault-
intolerant program satisfies the liveness specification.

Given a program p, a state predicate S, and a spec-
ification spec, we say that p satisfies spec from S iff (1)
S is closed in p, and (2) every computation of p that
starts in a state where S is true is in spec. If p satisfies
spec from S and S 6= {}, we say that S is an invariant
of p for spec. For a finite sequence (of states) α, we say
that α maintains (does not violate) spec iff there exists
an infinite sequence of states β such that αβ ∈ spec. We
say that p maintains (does not violate) spec from S iff
(1) S is closed in p, and (2) every computation prefix of
p that starts in a state in S maintains spec. Note that

4 Ali Ebnenasir et al.

the definition of maintains focuses on finite sequences of
states, whereas the definition of satisfies concentrates on
infinite sequences of states. Since a specification is a set
of infinite sequences of states, if p satisfies spec from S
then all computations of p that start in S must be infi-
nite. However, p may deadlock if it starts in a state that
is not in S. Moreover, notice that p is allowed to con-
tain a self-loop of the form (s0, s0) inside its invariant S;
i.e., it is permissible for p to reach s0 and remain there
forever.

Notation. Let spec be a specification. We use the term
safety of spec to mean the smallest safety specification
that includes spec. Whenever the specification is clear
from the context, we will omit it; thus, S is an invariant
of p abbreviates S is an invariant of p for spec.

Distribution model. We identify how read/write re-
strictions on a process affect its transitions. Given a tran-
sition (s0, s1), it is straightforward to determine the vari-
ables that need to be changed in order to transition from
state s0 to s1. Specifically, if x(s0) denotes the value of
x in state s0 and x(s1) denotes the value of x in state s1

then we say that (s0, s1) writes the value of x iff x(s0) 6=
x(s1). Thus, the write restrictions amount to ensuring
that the transitions of a process only modify those vari-
ables that it can write. More specifically, if process Pj can
only write the variables in wj and the value of a variable
other than that in wj is changed in the transition (s0, s1)
then (s0, s1) cannot be used in obtaining the transitions
of Pj . In other words, if Pj can write only the variables in
wj then Pj cannot use the transitions in nw(wj), where
nw(wj) = {(s0, s1) : (∃x : x 6∈wj : x(s0) 6=x(s1))}.

Read restrictions require us to group transitions and
ensure that the entire group is included or the entire
group is excluded. (The idea of grouping has also ap-
peared in previous work [7, 27].) As an example, con-
sider a program consisting of variables a and b and let
their domain be {0, 1}. Moreover, consider a process
that cannot read the variable a. We can think of the
transition from the state 〈a = 0, b = 0〉 to the state
〈a = 0, b = 1〉 as an atomic if statement ‘if a is 0 and
b is 0 then set b to 1’. In this case, the process must
read a. However, if we also include the transition from
the state 〈a = 1, b = 0〉 to the state 〈a = 1, b = 1〉 then
these two transitions can be thought of as ‘if b is 0
then set b to 1’. In other words, the inability to read
causes the transitions (〈a = 0, b = 0〉, 〈a = 0, b = 1〉) and
(〈a=1, b=0〉, 〈a=1, b=1〉) to be grouped. In the set of
transitions of a process, we need to include all transitions
in this group or exclude all of them.

More generally, consider the case where rj is the set
of variables that Pj can read, wj is the set of variables
that Pj can write, and wj ⊆ rj . Process Pj can include
the transition (s0, s1) iff Pj also includes the transition
(s′0, s

′

1) where s0 (respectively, s1) and s′0 (respectively,
s′1) are identical as far as the variables in rj are con-
cerned, and s0 (respectively, s′0) and s1 (respectively, s′1)
are identical as far as the variables not in rj are consid-

ered. We define these transitions as group(rj)(s0,s1) for
the case wj ⊆ rj , where

group(rj)(s0,s1) = {(s′0, s
′

1) :
(∀x : x∈rj : x(s0)=x(s′0) ∧ x(s1)=x(s′1)) ∧
(∀x : x 6∈rj : x(s′0) = x(s′1) ∧ x(s0) = x(s1)) }

The grouping introduced by the read restrictions in-
creases the complexity of synthesizing distributed pro-
grams [27,31]. To clarify this, we consider the case where
transitions (s0, s1) and (s′0, s

′

1) are grouped together,
(s0, s1) is a desirable transition (e.g., because it is used
to satisfy the specification in the absence of faults), and
(s′0, s

′

1) should never be executed (e.g., because it vio-
lates the safety specification). In this scenario, we are
faced with two choices (1) include this group and en-
sure that s′0 is never reached, or (2) exclude this group
and lose the useful transition (s0, s1). Thus, we need to
perform a tradeoff between states and transitions. The
authors of [27] have used this crucial fact to show that
adding fault-tolerance to distributed programs is NP-
hard. One approach to deal with such exponential com-
plexity is to design heuristics that deterministically iden-
tify which transition (respectively, state) can be included
in the fault-tolerant program (see Section 4 for examples
of such heuristics).
Faults. We systematically represent the faults that a
program is subject to by a set of transitions. Thus, a class
of fault f for program p is a subset of the set Sp × Sp.
We use p[]f to denote the transitions obtained by taking
the union of the transitions in p and the transitions in
f . We say that a state predicate T is an f -span (read as
fault-span) of p from S iff the following two conditions
are satisfied: (1) S ⊆ T (equivalently, S ⇒ T), and (2)
T is closed in p[]f . Thus, at each state where an invariant
S of p is true, an f -span T of p from S is also true. The
state predicate T , similar to S, is closed in p. Moreover,
if any transition in f is executed in a state where T is
true, then T is also true in the resulting state. It follows
that for all computations of p that start at states where
S is true, T is a boundary in the state space of p to which
(but not beyond which) the state of p may be perturbed
by the occurrence of the transitions in f .

As we defined a computation of p, we say that a se-
quence of states, σ = 〈s0, s1, ...〉 with len(σ) states, is
a computation of p in the presence of f iff the following
three conditions are satisfied: (1) ∀j : 0 < j < len(σ) :
(sj−1, sj)∈(δp∪f), (2) if σ is finite and terminates in state
sl then there does not exist state s such that (sl, s)∈δp,
and (3) ∃n : n ≥ 0 : (∀j : j > n : (sj−1, sj)∈δp). The first
requirement captures that in each step, either a program
transition or a fault transition is executed. The second
requirement captures that faults do not have to execute,
i.e., if the program reaches a state where only a fault
transition can be executed, it is not required that the
fault transition be executed. It follows that fault tran-
sitions cannot be used to deal with deadlocked states.

FTSyn: A Framework for Automatic Synthesis of Fault-Tolerance 5

Finally, the third requirement captures that the number
of fault occurrences in a computation is finite. Such re-
quirement also appears in previous work [4, 5, 13, 34] in
order to ensure that eventually recovery can occur.
Fault-tolerance. We say that p is masking f -tolerant
to spec from S iff the following two conditions hold: (1)
in the absence of f , p satisfies spec from S, and (2) there
exists T such that (a) T is an f -span of p from S, (b)
p[]f maintains spec from T , and (c) every computation
of p[]f that starts from a state in T has a state in S. ⊓⊔

2.2 Problem Statement for Addition of Fault-Tolerance

For a given class of faults f , the objective of the addition
of fault-tolerance to an existing fault-intolerant program
p is to ensure no new behaviors are added in the absence
of f and to add the necessary fault-tolerance behaviors in
the presence of f . Let S be an invariant of p from where p
satisfies its specification spec. Also, let p′ be the program
derived by adding fault-tolerance to p and let S ′ be the
invariant of p′. If S′ includes states that are not in S
then, in the absence of faults, the computations of p′ may
reach such states and generate new ways for satisfying
spec. Also, a similar case will occur if p′ | S′ includes
transitions that do not belong to p | S ′. Hence, we require
that S′ ⊆ S and p′|S′ ⊆ p|S′. Thus, the problem of fault-
tolerance addition is defined as follows (from [27]):

The Addition Problem
Given p, S, spec and f such that p satisfies spec from S,
Identify p′ and S′ such that

S′ ⊆ S,
p′|S′ ⊆ p|S′, and
p′ is masking f -tolerant to spec from S ′. ⊓⊔

2.3 Non-deterministic Synthesis Algorithm for
Distributed Programs

Kulkarni and Arora [27] show that the addition of
masking fault-tolerance to distributed programs is NP-
complete (in program state space). They present a non-
deterministic polynomial algorithm in [27,28] for the ad-
dition of fault-tolerance to distributed programs. We re-
peat this algorithm in Figure 1 since the implementation
of FTSyn is based on a deterministic version of this al-
gorithm.

The Add ft algorithm (see Figure 1) first computes a
set of states, denoted ms (i.e., marked states), from where
safety can be violated by the execution of fault transi-
tions alone. Thus, the fault-tolerant program should not
reach a state in ms. Then, it computes a set of tran-
sitions, denoted mt (i.e., marked transitions), that vi-
olate safety or reach a state in ms. It follows that a
fault-tolerant program should not execute a transition
in mt. Then, the Add ft algorithm non-deterministically

guesses the fault-tolerant program, p′, its invariant, S′

and its fault-span, T ′. Finally, the algorithm verifies that
the guessed fault-tolerant program satisfies the three
conditions of the addition problem (see Section 2.2). This
goal is achieved by verifying the six formulas F1-F6.

3 FTSyn Overview

In this subsection, we explain how developers of fault-
tolerance should prepare the input to FTSyn and how
FTSyn provides the output to its users. The input of
FTSyn consists of the fault-intolerant program, its in-
variant, its safety specification, its initial states, and a
class of faults (see Figure 2).

We represent the input fault-intolerant program by
Dijkstra’s guarded commands [14]. A guarded command
(action) is of the form grd → st, where grd is a state
predicate and st is a statement that updates the pro-
gram variables. The guarded command grd → st in-
cludes all program transitions {(s0, s1) : grd holds at
s0 and the atomic execution of st at s0 takes the pro-
gram to state s1}. In other words, we use guarded com-
mands as a shorthand for representing the set of program
transitions. The output of FTSyn is also represented by
guarded commands (see Figure 2).

We note that there exist automated techniques (e.g.,
[23,24]) by which one can transform fault-intolerant pro-
grams written in common programming languages to the
guarded commands language. Moreover, after the syn-
thesis of a fault-tolerant program, there exist tolerance-
preserving techniques (e.g., [12, 22, 33]) that allow us to
refine the structure of the synthesized fault-tolerant pro-
gram (represented in guarded commands).

3.1 Token Ring Program

In this section, we demonstrate the addition of fault-
tolerance to a simple example of a token ring program
to illustrate the way developers can communicate with
FTSyn to add fault-tolerance. Our goal in this section is
to provide an overall picture about the input/output of
FTSyn.

The fault-intolerant token ring program consists of
four processes P0, P1, P2, and P3 arranged in a ring. Each
process Pi, 0 ≤ i ≤ 3, has a variable xi with the domain
{−1, 0, 1}. We say that process Pi, 1 ≤ i ≤ 3, has the
token if and only if (xi 6= xi−1) and fault transitions have
not corrupted Pi and Pi−1. Process P0 has the token if
(x3 = x0) and fault transitions have not corrupted P0

and P3. Process Pi, 1 ≤ i ≤ 3, copies xi−1 to xi if the
value of xi is different from xi−1. This action propagates
the token to the next process. If (x0 = x3) holds then
process P0 copies the value of (x3 ⊕ 1) to x0, where ⊕
denotes addition in modulo 2. Thus, if we initialize every
xi, 0 ≤ i ≤ 3, with 0 then process P0 has the token and

6 Ali Ebnenasir et al.

Add ft(p, f : set of transitions, S : state predicate, spec : specification, g0, g1, ..., gmax : groups of transitions)
{

ms := {s0 : ∃s1, s2, ...sn : (∀j : 0≤j<n : (sj , s(j+1)) ∈ f) ∧ (s(n−1), sn) violates spec };
mt := {(s0, s1) : ((s1∈ms) ∨ (s0, s1) violates spec) };

Guess S′, T ′, and p′ :=
⋃

(gi : gi is chosen to be included in the fault-tolerant program);
Verify the following

(F1) p′|S′⊆p|S′;
(F2) S′ ⇒ T ′; T ′ is closed in p′[]f ; // T ′ is a fault-span of p′.
(F3) T ′ ∩ ms = {}; (p′|T ′) ∩ mt = {}; // Safety cannot be violated from states in T ′.
(F4) (∀s0 : s0∈ T ′ : (∃s1 :: (s0, s1)∈p′)); // T ′ does not have deadlocks.
(F5) S′ 6={}; S′ ⊆ S; S′ is closed in p′; // S′ is an invariant of p′.
(F6) p′|(T ′−S′) is acyclic; // p′ cannot stay in (T ′ − S′) forever.

}

Fig. 1 The non-deterministic algorithm for automatic addition of fault-tolerance to distributed programs.

the token circulates along the ring. In the input file of
FTSyn, we specify the actions of P0 as follows (keywords
are shown in italic):

1 process P0
2 begin
3 (x0 == x3) -> x0 = ((x3+1)%2);
4 read x0, x3;
5 write x0;
6 end

While in the input of FTSyn we specify P1, P2, and P3

separately, for the ease of presentation, we present their
actions in a parameterized format as follows (1 ≤ i ≤ 3).

1 process Pi
2 begin
3 (xi != x(i-1)) -> xi = x(i-1);
4 read xi, x(i-1);
5 write xi;
6 end

Read/Write restrictions. Each process Pi, 1 ≤ i ≤
3, is only allowed to read xi−1 and xi, and is allowed to
write xi. Process P0 is allowed to read x3 and x0, and
to write x0. We specify the read/write restrictions of a
process by read and write keywords inside the body of
the process (see Lines 4 and 5 in the body of Pi).
Faults. Faults are also modeled as a set of guarded
commands that change the values of program variables.
In the case of the token ring program, faults may cor-
rupt at most three processes. In this example, faults are
detectable in that a process that is corrupted can detect
if it is in a corrupted state. Hence, we model the fault
at process Pi by setting xi = −1. Thus, one of the fault
actions that corrupts x0 is represented as follows:

1 fault TokenCorruption
2 begin
3 (((x0!=-1)&&(x1!=-1)) || ((x0!=-1)&&(x2!=-1)) ||
4 ((x0!=-1)&&(x3!=-1)) || ((x1!=-1)&&(x2!=-1)) ||
5 ((x1!=-1)&&(x3!=-1)) || ((x2!=-1)&&(x3!=-1)))
6 -> x0 = -1;
7 end

The above fault action stipulates that faults may oc-
cur if there exist at least two uncorrupted processes. Note
that there exist no read/write restrictions for the fault

transitions because we assume that fault transitions can
read and write arbitrary program variables.
Safety specification. The safety specification of the
fault-intolerant program is represented as a Boolean ex-
pression over program variables. In the token ring pro-
gram, the safety specification stipulates that no non-
faulty process is allowed to copy a corrupted value from
its predecessor. Note that, in this example, only pro-
gram transitions may violate safety after faults perturb
the state of the program. In the input of FTSyn, we rep-
resent the safety specification as follows.

1 (((x1s!=-1)&&(x1d==-1))||((x2s!=-1)&&(x2d==-1))||
2 ((x3s!=-1)&&(x3d==-1))||((x3s==-1)&&(x0s!=x0d)))

Note that we have added a suffix “s” (respectively,
suffix “d”) to variable names that stands for source (re-
spectively, destination). Since the above condition spec-
ifies the set of transitions tspec using their source and
destination states, we need to distinguish between the
value of a specific variable xi in the source state of tspec

(i.e., xis denotes the value of xi in the source state of
tspec) and in the destination state of tspec (i.e., xid de-
notes the value of xi in the destination state of tspec).
Invariant. The invariant is also specified as a Boolean
expression over program variables. The invariant of the
token ring program consists of the states where no pro-
cess is corrupted and there exists only one token in the
ring.

1 invariant
2 ((x0==1)&&(x1==0)&&(x2==0)&&(x3==0)) ||
3 ((x0==1)&&(x1==1)&&(x2==0)&&(x3==0)) ||
4 ((x0==1)&&(x1==1)&&(x2==1)&&(x3==0)) ||
5 ((x0==1)&&(x1==1)&&(x2==1)&&(x3==1)) ||
6 ((x0==0)&&(x1==0)&&(x2==0)&&(x3==0)) ||
7 ((x0==0)&&(x1==0)&&(x2==0)&&(x3==1)) ||
8 ((x0==0)&&(x1==0)&&(x2==1)&&(x3==1)) ||
9 ((x0==0)&&(x1==1)&&(x2==1)&&(x3==1))

Initial states. We also specify some initial states in the
input of FTSyn. While these initial states are included in
the invariant of the fault-intolerant program, we find that
explicitly listing them assists in adding fault-tolerance.
The initial states of the token ring program are as follows
(init and state are keywords):

FTSyn: A Framework for Automatic Synthesis of Fault-Tolerance 7

1 init
2 state x0 = 0; x1 = 0; x2 = 0; x3 = 0;
3 state x0 = 1; x1 = 1; x2 = 1; x3 = 1;

The output fault-tolerant program. The output
of FTSyn is also generated in guarded commands. For
the token ring program, the actions of process P0 in the
synthesized fault-tolerant program are as follows:

1 (x0==-1) && (x3==1) -> x0 := 0;
2 |
3 (x0==1) && (x3==1) -> x0 := 0;
4 |
5 (x0==0) && (x3==0) -> x0 := 1;
6 |
7 (x0==-1) && (x3==0) -> x0 := 1;

The above actions mean that P0 can copy the value
of (x3 ⊕ 1) to x0 as long as x3 6= −1. We present the
actions of other processes in a parameterized format.

1 (xi==1) && (x(i-1)==0) -> xi := 0;
2 |
3 (xi==-1) && (x(i-1)==0) -> xi := 0;
4 |
5 (xi==0) && (x(i-1)==1) -> xi := 1;
6 |
7 (xi==-1) && (x(i-1)==1) -> xi := 1;

The above actions state that each process Pi, for 1 ≤
i ≤ 3, can copy the value of xi−1 to xi if ((xi−1 6= −1)∧
(xi 6= xi−1)) holds (i.e., Pi−1 is not corrupted). We would
like to note that the token ring program that we have
automatically synthesized using FTSyn is the same as
the program that was manually designed in [26].

3.2 User Interactions

Although FTSyn can automatically synthesize a fault-
tolerant program without user intervention, there are
some situations where (i) user intervention can help to
speed up the synthesis of fault-tolerant programs, or (ii)
a fully automatic approach fails. In this subsection, we
present the nature of the interactions that fault-tolerance
developers can have with FTSyn.

FTSyn permits developers to semi-automati-
cally supervise the synthesis procedure. In such super-
vised synthesis, fault-tolerance developers interact with
FTSyn and apply their insights during the synthesis.
In order to achieve this goal, we have devised some
interaction points (see Figure 2) where the developers
can stop the synthesis algorithm and query it.

At each interaction point, the users can make the
following kinds of queries: (i) apply a specific heuris-
tic for a particular task; (ii) apply some heuristics in
a particular order; (iii) view the incoming program (re-
spectively, fault) transitions to a particular state; (iv)
view the outgoing program (respectively, fault) transi-
tions from a particular state; (v) check the membership
of a particular state (respectively, transition) to a spe-
cific set of states (respectively, set of transitions); e.g.,
check the membership of a given state s in the set of ms

states, and finally (vi) view the intermediate representa-
tion of the program that is being synthesized. Since the
goal of the paper is to focus on the technical details of
FTSyn and its application in adding fault-tolerance, we
omit the details about the user interface of FTSyn. We
refer the reader to the tutorial about using FTSyn in [1].

While we expect that the queries included in this ver-
sion will be sufficient for a large class of programs, we also
provide an alternative for the cases where the heuristics
fail and these queries are insufficient. Specifically, in such
cases, the users of FTSyn need to determine what went
wrong during synthesis. The answer to this question is
very difficult without the help of automated techniques,
especially for programs with large state space. To address
this issue, developers of fault-tolerance can obtain the
corresponding intermediate program in Promela model-
ing language [2]. This program can then be checked by
the SPIN model checker to determine the exact scenario
where the intermediate program does not provide the
required fault-tolerance property. The counterexamples
generated by SPIN help the users to identify the appro-
priate heuristics that should be applied in the subsequent
steps of synthesis.

4 Theoretical Background

In this section, we present the underlying theory behind
FTSyn. Specifically, we present a set of heuristics inte-
grated in FTSyn (see Figure 2). We demonstrate how
we employ such heuristics while adding fault-tolerance
to distributed programs. We use the token ring program
introduced in Section 3 as a running example throughout
this section.

Recall that in the discussion about read restrictions
in Section 2.1, we argued that while synthesizing dis-
tributed fault-tolerant programs, we are faced with the
following choice: either ensure that (1) some state, say
s′0, is not reached, or (2) some transition, say (s0, s1), is
not included in the fault-tolerant program. To make the
suitable choice, we develop a set of heuristics by consid-
ering whether (i) the transition being excluded is in the
fault-intolerant program, (ii) the state being excluded is
in the invariant of the fault-intolerant program, or (iii)
recovery is possible from the state that is to be excluded.
By default, we prefer to exclude a transition (and its cor-
responding group) over excluding a state. This is due to
the fact that if we choose to exclude a state, we need
to exclude all transitions that reach that state. We also
consider the invariant states to be valuable, i.e., every
attempt is made to ensure that a state in the invariant
of the fault-intolerant program is not excluded. Based
on these preferences, we develop four heuristics, and use
them in our synthesis algorithm.

The synthesis algorithm implemented in FTSyn com-
prises eight steps organized in four fractions (see Figure
2), namely initialize, preserve invariant, modify invari-

8 Ali Ebnenasir et al.

�✂✁ ✄✆☎✞✝✠✟✡�☞☛✌✁ ✍ ✎✌✏ ✑✞✒✔✓

�✕✁ ✄✆☎✞✖✠✟✡�☞☛✗✁ ✍ ✎✌✏ ✑✞✒✠✘
✏✌✙✡✚✔✎ ✁ ☛✗✁ ✄✆✎✛✍ ✜✢✎✗✍ ✣✤✄✥�✢✦

�✕✁ ✄✆☎★✧✤✟✕�☞☛✌✁ ✍ ✎✌✏ ✑✞✒✠✝

✩✫✪✭✬✂✮✆✯ ✰ ✱✕✲✴✳✗✳✗✳

✵ ✜✂✁ ✄✆✚ ☛✭✶✗✁ ✍ ✙✕✜✷☎✤✙✂✍ ✜✭✁

�✂✁ ✄✆☎✠✸✂✟✡✹✺☛✭✻ ✶✆✼✂✻ ☛ ✁ ✄✾✽❀✿

�✂✁ ✄❁☎✞❂☞✟✂✹❃☛✭✻ ✶✆✼✢✻ ☛❄✁ ✄✺✽❅✯

�✂✁ ✄❁☎✞❆☞✟✤�✢☛✌✁ ✍ ✎✌✏ ✑✞✒✢❂

�✂✁ ✄❁☎✞✘☞✟✤�✢☛✌✁ ✍ ✎✌✏ ✑✞✒✢❆

�✂✁ ✄❁☎★✓✤✟✤�✢☛✌✁ ✍ ✎✌✏ ✑✞✒✢✘
✏ ✙✕✚❇✎ ✁ ☛❄✁ ✄✭✎❃✙✡✼✡✁ ✎✗✍ ✣✕✄❈�✢✦

✩❇✪✭✬✂✮✆✯ ✰ ✱✡✲✴✳✗✳

❉✠❊✢✄❋✣✤✄❁●✕✄✭✻ ✙✕☎✢✄❁✚✴✙✕✏
✏ ☛✆✼✕✻ ✁ ❍ ✁ ✙✕✻ ✄✆✚ ☛✆✜✂✁☞✎✌✑✢✎ ✁ ✄✆■

❏❑✼✢✄✆✚ ✑✸✭▲✂▼✞☛✆✜✢✣❖◆P✍ ✜✞◗✭✼✢☛✆✚ ✣✂✄✆✣
✶✭✙✕■❘■✞☛❁✜✢✣✤✎❀✻ ☛✗✜✢◗✕✼✂☛✭◗✤✄
❂☞▲✤❙❈☛✆✜✢✣✷✿✗▼✢❚✭✮❋✍ ✜✥✁ ✄✆✚ ■★✎✫✙✕✏
✎ ✁ ☛✗✁ ✄❑☎✡✚ ✄✆✣✤✍ ✶✭☛❄✁ ✄✭✎

❯✺✄✆✎✌✼✕✻ ✁ ✎
❱✭❲✕❳❈❚✭✿✭✟❑▼✠❨✤✍ ✜✞◗✕✼✂☛✆✚ ✣✤✄✭✣
✶✭✙✕■✞■★☛❄✜✢✣✤✎✫✻ ☛✆✜✢◗✭✼✢☛✭◗✕✄❑☛✗✜✢✣
❙✠❨✡☛✭✎❃☛❋✎ ✁ ☛✗✁ ✄✺☎✤✚ ✄✆✣✂✍ ✶❁☛❄✁ ✄
❩✕❲✤❬✥✱❭✟✥✹✺☛❁✜✂✜✢✙✭✁❭✎✌✑✤✜✡✁ ❊✂✄✭✎✗✍ ❪✆✄
☛✺✏✌☛❄✼✢✻ ✁ ❍ ✁ ✙✕✻ ✄❁✚ ☛✗✜✂✁✠☎✡✚✌✙✂◗✕✚ ☛✆■

☎✂❫☞�☞❫✡✎✌☎✢✄✭✶✆❫✡✏ ☎✢✦❄❫☞�✤✦
✵ ✜✂✁ ✄✆✚ ☛❁✶❄✁ ✍ ●✕✄

❴❈✎✗✄✆✚❇✵ ✜✆✁ ✄❁✚ ✏ ☛✆✶✭✄

❏✥✼✤✄❄✚ ✑❯❃✄✭✎✌✼✕✻ ✁ ✎

✩✔✪✆✬✤✮✆✯ ✰ ✱✕✲✴✳✭❵✕✳✌✲✠✰ ✯ ✰ ✬✕❛ ✰ ❜✡❚

❙✢❝✤✲✢✯ ❞❇❚✭✿✌✰ ✿✔❡✥❛ ❢✭✱✤✪✆✰ ✯ ❞❭✽

Fig. 2 Deterministic execution of FTSyn.

ant, and resolve cycles. The first fraction, as in Add ft,
compute ms and mt respectively (see fraction (I) in
Figure 2). The remaining steps proceed to identify the
fault-tolerant program, p′, its invariant, S′, and its fault-
span, T ′, so that formulae F1-F6 (see Figure 1) are true.
Specifically, all steps ensure that F1 is always true. The
third step in Figure 2 computes a new fault-span and
ensures that the formula F2 is true. The fourth step
then removes transitions and/or states from the fault-
span computed in Step 3 so that formula F3 becomes
true. Since Step 4 may violate F2, we redo Steps 3 and
4. When no progress is made in the last repetition of
Steps 3-4, we continue to Step 5 where we deal with
deadlock states that are outside S ′. (Also, to prevent an
infinite loop, we keep an upper bound on how often each
iteration may continue.) After Step 5, we repeat Steps
3-5 to re-satisfy F2 and F3. Throughout Steps 3-5, we
do not modify the invariant (see fraction (II) in Figure
2). This requirement is based on the premise that states
in the invariant are valuable and should not be removed
prematurely. When there is no progress from Steps 3-5,
we continue to Step 6 where we recalculate the invariant
while ensuring that F5 stays true (i.e., the invariant is
closed). In Step 7, we deal with states in S ′ where F4
is false (i.e., deadlock states). Finally, in Step 8, we deal
with cases where formula F6 is false (i.e., non-progress
cycles). The eight steps of our algorithm are as follows:

Step 1. Identifying a set of states from where ex-
ecution of faults alone can violate safety. Consider
a transition, (s0, s1), which is a fault transition and vio-
lates safety. We must ensure that the fault-tolerant pro-
gram never reaches state s0. Also, in this scenario, if
(s−1, s0) is a fault transition then we must ensure that
the program never reaches s−1. Hence, we identify the set
of states, ms (i.e., marked states), from where execution
of one or more fault actions violate safety.

Application in the token ring program. In the case of
the token ring program, safety is violated when a process
propagates a corrupted value from its predecessor. Thus,

fault transitions do not directly violate safety, and as a
result, the set of ms states is empty.
Step 2. Identifying a set of transitions that should
not be executed by the program. A transition that
violates safety cannot be executed in the fault-tolerant
program. Moreover, if a transition reaches a state in ms
(from where faults alone may violate safety) then that
transition should not be included either. Hence, we iden-
tify the set of transitions, mt (i.e., marked transitions),
that should not be executed in the fault-tolerant pro-
gram.

Application in the token ring program. Since ms is
empty for the token ring program, the set of mt transi-
tions is equal to the set of program transitions that di-
rectly violate safety. Let 〈x0, x1, x2, x3〉 denote a state of
the token ring program. Then, as an example, the tran-
sition that process P1 takes from state b = 〈−1, 0, 0, 0〉
to c = 〈−1,−1, 0, 0〉 violates the safety of specification.
Thus, (b, c) belongs to the set of mt transitions.

Heuristic 1: A transition that starts in a state in
ms may be used by the fault-tolerant program.

Reasoning behind Heuristic 1. If (s′0, s
′

1) is a transi-
tion such that s′0 ∈ ms, then (s′0, s

′

1) may be included in
the transitions of the fault-tolerant program. This heuris-
tic is based on the premise that the synthesis algorithm
will ensure that state s′0 will never be reached. This
heuristic is useful when (s′0, s

′

1) is grouped with some
other transition that is desirable in the fault-tolerant
program. (Thus, in the scenario discussed at the start
of the section, we can choose to include the group that
contains (s′0, s

′

1) and ensure that state s′0 is not reached.)
Application in the token ring program. Since ms is

empty for the token ring program, Heuristic 1 is not ap-
plicable for this program.
Step 3. Identifying the fault-span of the fault-
intolerant program. In order to determine the fault-
span of the fault-intolerant program, we identify the set

FTSyn: A Framework for Automatic Synthesis of Fault-Tolerance 9

of reachable states by the computations of the fault-
intolerant program in the presence of faults. Such com-
putations start in a state in the invariant of the fault-
intolerant program and may reach states outside the in-
variant by a mixture of fault and program transitions.

Application in the token ring program. The state space
of the token ring program presented in Section 3.1 in-
cludes 81 states. For example, starting from an invari-
ant state a = 〈0, 0, 0, 0〉, fault transitions may per-
turb the program to b = 〈−1, 0, 0, 0〉, where process P0

is corrupted. From b, process P1 copies the corrupted
value and the fault-intolerant program reaches state
c = 〈−1,−1, 0, 0〉. Thus, starting from the invariant, a
combination of program and fault transitions can take
the state of the program to any possible state in the
whole state space. Therefore, for the token ring program,
its fault-span is equal to its entire state space with 81
states.

Heuristic 2: If a transition (s0, s1) is in mt and
s0 is not reached in the computations – that start
in a state in the invariant – of the fault-intolerant
program in the presence of faults, then (s0, s1) may
be included in the fault-tolerant program.

Application in the token ring program. Since the fault-
span of the token ring program is equal to its state space,
all states are reachable.
Step 4. Identifying transitions in the fault-
intolerant program that may be included in the
fault-tolerant program. Beginning with the fault-
tolerant program that consists of no transitions, we use
the following heuristic to include the groups of the fault-
tolerant program.

Heuristic 3: A transition can be included in the
fault-tolerant program if it is not in mt or if it is
permitted by Heuristics 1 and/or 2. A group can be
included only if all its transitions can be included.

In order to ensure that F1 also remains true in Step 4,
if we add a transition that originates from the invariant,
we ensure that the resulting state is also in the invariant.
During the first iteration of Step 4, this is straightforward
as the invariant of the fault-intolerant program is closed
in the fault-intolerant program. However, this check is
done explicitly after the invariant is recalculated in Steps
6-7.
Reasoning behind Step 4 and Heuristic 3. We use this
heuristic to determine how long the fault-intolerant pro-
gram can continue safely even if faults occur. By ensuring
that states in ms and transitions in mt are removed, we
ensure that F3 becomes true.

Application in the token ring program. In the case of
the token ring program, we must exclude all mt tran-
sitions; i.e., the set of program transitions that directly
violate safety. Such transitions are those during which
an uncorrupted process copies the corrupted value of its
predecessor. After removing such transitions (and their

corresponding group), we include the remaining tran-
sitions in the fault-tolerant program. For example, the
group associated with the transition (b, c), where b =
〈−1, 0, 0, 0〉 and c = 〈−1,−1, 0, 0〉, contains nine transi-
tions 〈−1, 0, y, z〉 → 〈−1,−1, y, z〉, where −1 ≤ y, z ≤ 1,
that must be excluded from the set of transitions of
the fault-tolerant program. Note that since in the source
states of these nine transitions at least one process (i.e.,
P0) is corrupted, none of these transitions starts in the
invariant.

Repeat Steps 3 and 4. After completing Step 4,
we recalculate the fault-span with the revised program
to determine if any additional transitions of the fault-
intolerant program may be included. This repetition can
proceed until there are no more changes. If there are no
changes in Steps 3-4 then F2 and F3 have become true.

Application in the token ring program. Since in the
token ring program faults can at most corrupt three
processes, all the incoming transitions to the state
〈−1,−1,−1,−1〉 are program transitions that violate
safety. Since such transitions will not be included
in the fault-tolerant program, the new fault-span
of the token ring program does not include state
〈−1,−1,−1,−1〉. Also, the removal of safety-violating
transitions causes 16 other states to become unreach-
able: 〈−1, 1, 0, 1〉, 〈−1, 0, 1, 0〉, 〈0, 1,−1, 0〉, 〈1, 0,−1, 1〉
, 〈0, 1, 0, y〉, 〈0, y, 1, 0〉, 〈1, y, 0, 1〉, and 〈1, 0, 1, y〉, where
−1 ≤ y ≤ 1. Thus, the recalculated fault-span includes
64 states.

Step 5. Resolving deadlocks. State sd is deadlocked
if there is no program transition that originates in sd.
Note that such states cause violation of formula F4. If sd

is in the invariant of the fault-intolerant program and sd

is a deadlocked state in the fault-intolerant program then
in this step we ignore the deadlock at sd. We deal with
remaining deadlocks states (in the fault-span, outside the
invariant) using the following heuristic.

Heuristic 4: Given a deadlocked state sd that does
not belong to the invariant, either include a recovery
transition from sd to an invariant state, or make sd

unreachable from the invariant without eliminating
any invariant states.
(Step 5.1) If it is possible to add a transition from
sd to a state in the invariant (i.e., single-step recov-
ery) then we add such a transition. Note that in
distributed programs, we must add the group cor-
responding to that transition. We require that the
added group satisfies the following two conditions:
(1) no transition in that group is in mt (except as
permitted by Heuristics 1-3), and (2) if any transi-
tion in that group originates in the invariant of the
fault-intolerant program, then it satisfies the second
condition of the transformation problem, i.e., that
transition is a transition of the fault-intolerant pro-
gram.

10 Ali Ebnenasir et al.

(Step 5.2) If such a (recovery) group cannot be
added, we consider whether sd can be reached from
the invariant with the execution of faults alone.

If yes (Step 5.2.1), we leave sd as is.
If no (Step 5.2.2), we ensure that the fault-
tolerant program does not reach sd by removing
some program transitions.

Reasoning behind Step 5 and Heuristic 4. The above
heuristic is based on the principle that we would not like
to eliminate any states and/or transitions unless abso-
lutely required to do so. Hence, if we can recover from
a state then we keep that state in the fault-span of the
fault-tolerant program. If it is not possible to recover
from sd, and sd can be reached by execution of faults
alone from a state in the invariant then we allow sd to
be included temporarily. This is due to the fact that if we
were to require that sd is not reached then we would have
to eliminate the corresponding state(s) from the invari-
ant. We, however, consider states in the invariant of the
fault-intolerant program to be valuable as the invariant
of the fault-tolerant program is a subset of the invariant
of the fault-intolerant program. If we prematurely elim-
inate the states in the invariant of the fault-intolerant
program, then it may prevent us from obtaining a fault-
tolerant program.

However, if a deadlocked state sd cannot be reached
due to fault transitions alone then it implies that some
program transition, say t, must be executed before sd is
reached. Hence, we could prevent the fault-tolerant pro-
gram from reaching the deadlocked state by removing
t. Hence, we attempt to eliminate t, i.e, we ensure that
state sd is never reached. Towards this end, we consider
transitions of the form (s′, sd). If (s′, sd) is a fault tran-
sition, we ensure that state s′ is never reached. This is
due to the fact that if state s′ is reached then state sd

can be reached by the execution of the fault. If (s′, sd) is
a program transition obtained in Step 4, we may choose
to ensure that (1) (s′, sd) is not included in the fault-
tolerant program, or (2) state s′ is never reached. Fol-
lowing the principle that states are more valuable than
transitions, we remove the transition (s′, sd) from con-
sideration in the fault-tolerant program. However, if the
removal of such transitions (and their associated group)
causes some state, say s0, to be a deadlocked state, we
follow the second approach; i.e., we include the transi-
tions originating from state s0 and attempt to ensure
that state s0 is never reached. During this algorithm, if
we encounter a state that can be reached from a state
in the invariant by execution of faults alone, we do not
pursue further elimination. Such states will be consid-
ered later in Step 6. Thus, the algorithm to eliminate
a state sd is as follows: (We let S to be the invariant
of the fault-intolerant program and p to be the set of
transitions obtained in Step 4.)

Application in the token ring program. To synthesize a
fault-tolerant token ring program, in Step 5, we identify
deadlock states created due to removing mt transitions.

Eliminate(sd : state, S : state predicate, p : transitions) {
1) If sd was considered earlier for elimination then return;
2) Remove transitions of the form (s′, sd) from p;
3) If there exists a fault transition (s′, sd) then Eliminate(s′, S, p);
4) If all the transitions from some state, say s0, are removed then

- Add the transitions of p that start from s0;
- If s0 is unreachable from S by execution of faults alone then

Eliminate(s0, S, p); }

Fig. 3 Making deadlock states unreachable without remov-
ing invariant states.

Recall that since ms is empty, mt only includes program
transitions that directly violate safety. For example, af-
ter we remove the transition (b, c), where b = 〈−1, 0, 0, 0〉
and c = 〈−1,−1, 0, 0〉, state b becomes a deadlock state.
In the case of the token ring program, since no mt tran-
sitions (and their grouped transitions) originate in the
invariant, removing mt transitions does not create any
deadlock state inside the invariant. Thus, all deadlock
states are outside the invariant of the token ring pro-
gram.

In Step 5 (see fraction (II) in Figure 2), the synthe-
sis algorithm adds single-step recovery transitions from
deadlock states to the invariant by allowing a corrupted
process to copy an uncorrupted value from its prede-
cessor. For example, from state 〈0,−1, 0, 0〉, process P1

can copy the value of x0, and as a result, the program
recovers to the state 〈0, 0, 0, 0〉 inside its invariant. How-
ever, such addition of single-step recovery transitions
is not possible from states where more than one pro-
cess is corrupted (e.g., 〈0,−1, 0,−1〉). Such states are
directly reachable from the invariant by fault transitions
alone. Thus, the synthesis algorithm fails to eliminate
such states in Step 5.

Repeat Step 3-5. After the completion of Step 5, we
repeat Steps 3-5. Let pr be the revised program obtained
from Steps 4 and 5. In Step 3, we use the transitions of
pr to identify the fault-span. However, while computing
the fault-span, we do not explore states that were not
eliminated in Step 5.2.2. (If we explore these states, we
will get the same deadlocked states which we were trying
to eliminate in Step 5.2.2) Then, in Step 4, we consider
transitions of pr that can still be used. We also determine
if transitions from the original fault-intolerant program
can be added; this may occur if the fault-span recalcu-
lated in Step 3 is different. Subsequently, we resolve the
deadlocks as mentioned in Step 5. While repeating Step
5, additional recovery transitions could be added due to
the revised fault-span. We continue this until a fixpoint
is reached. (Alternatively, we could stop after certain it-
erations and continue to Step 6.)

Application in the token ring program. Repeating Steps
3-5 will not change the fault-span recalculated in repeat-
ing Steps 3 and 4 right after Step 4. Thus, with a fault-
span that includes some unresolved deadlock states, the
synthesis algorithm moves to Step 6.

FTSyn: A Framework for Automatic Synthesis of Fault-Tolerance 11

Step 6. Removing states from the invariant. Steps
3-5 ensure that no state in the invariant is removed. More
specifically, if s0 is a state in the invariant then the execu-
tion of faults alone from state s0 can cause the program
to reach state sd, where sd is a deadlock state and no re-
covery is possible from sd. Thus, the synthesis algorithm
simply quits in Step 5.2.1. Likewise, Step 5.2.2 also quits
if it encounters a state whose elimination would require
the elimination of a state in the invariant. For both these
situations, we remove the offending states from the in-
variant in this step. Note that by removing states thus,
the revised invariant of the fault-tolerant program will be
a subset of the invariant of the fault-intolerant program.
Reasoning behind Step 6. Since repetitions of Steps
3-5 have reached a fixpoint, all deadlocked states fall in
category 5.2.1 or 5.2.2. This suggests that there are some
offending states in the invariant which should not be in
the invariant of the fault-tolerant program.

Application in the token ring program. At this step,
the fault-span of the token ring program contains a set
of states D1 with only one corrupted process in which a
single-step recovery has already been included in Step 5,
and a set of deadlock states D2 (with more than one cor-
rupted processes in each state) whose states are reach-
able from the invariant directly by a sequence of fault
transitions. Thus, to make the deadlock states D2 un-
reachable, the synthesis algorithm needs to remove all
invariant states.
Step 7. Recalculating the invariant. After Step 6,
we recalculate the new invariant for the fault-tolerant
program. In Step 6, we may have eliminated some
state(s) in the invariant. We use the following program
to recalculate the invariant.

ConstructInvariant(S : state predicate, p : transitions)
// Returns a subset of S such that computations of p
// within that subset are infinite
{ while (∃s0 : s0∈S : (∀s1 : s1∈S : (s0, s1) 6∈p))

S := S − {s0} }

ConstructInvariant eliminates the state s0 from S if
there is no transition of the form (s0, s1) such that
(s0, s1) is a transition of p and s1 is in S (i.e., s0 is
a deadlock state). Step 6 can produce such state s0 if
it eliminates the state s1. After computing the invari-
ant using ConstructInvariant, we recalculate the program
transitions to ensure that the revised invariant is closed
in the program. Towards this end, if the program ob-
tained in Step 6 contains a transition of the form (s0, s1)
where s0 is in the revised invariant but s1 is not in the
revised invariant then we remove the transition (s0, s1)
(and the group associated with it). With the revised pro-
gram, there may be new deadlock states created within
the invariant. Hence, we apply ConstructInvariant again
with the revised program. We continue this until the re-
vised invariant is closed in the program transitions or the
revised invariant is empty. In the latter case, we declare
that synthesis fails.

Application in the token ring program. Since the algo-
rithm removes all states in the invariant of the token ring
program, the resulting invariant will be empty. Thus,
the synthesis fails in this step. In Section 5, we present a
heuristic for adding multiple-step recovery that results in
synthesizing the fault-tolerant token ring program pre-
sented in Section 3.1.
Repeat Steps 3-7. After completing Step 7, we redo
Steps 3-7, i.e., with this reduced invariant, we compute
the new fault-span. Then, we decide which transitions
of the fault-intolerant program may be used in Step 4.
Since the synthesis of the token ring program failed in
Step 7, this case is not applicable for this program.
Step 8. Removing cycles. Let p′ be the program
obtained after repetitions of Steps 3-7, let S ′ be its in-
variant, and let T ′ be its fault-span. In Step 8, we con-
sider cycles of the form 〈s0, s1, ..., s0〉 where s0 6∈ S′ and
s0 ∈ T ′. We need to remove such cycles; otherwise the
computation of p′ can remain in these states forever. For
this reason, we arbitrarily drop one transition (and the
corresponding group) from this cycle.
Repeat Steps 3-8. If the program obtained after
Step 8 does not satisfy the formulas in Add ft, we re-
peat Steps 3-8 with the program obtained in Step 8. If
after some predetermined number of iterations, a fault-
tolerant program is not found, our algorithm declares
failure in finding a fault-tolerant program.
Comment on the heuristics. Since the problem of
adding fault-tolerance to distributed programs is NP-
complete [27,31] (in the state space of the fault-intolerant
program), we cannot design a sound and complete
polynomial-time synthesis algorithm unless P = NP .
Thus, although the heuristics that we have presented in
this section are sound (i.e., if they result in the synthesis
of a fault-tolerant program then the synthesized program
meets the requirements of the addition problem), they
may fail to synthesize a fault-tolerant program in some
cases (e.g., the single-step recovery heuristic presented
in Step 5.1 failed to synthesize a masking fault-tolerant
token ring program). As a result, there is a well-defined
need for a repository of heuristics available to developers
of fault-tolerance that can be extended by developers of
heuristics. In Section 5.1, we show how we provide an
extensible design for FTSyn to achieve this goal.

5 An Extensible and Changeable Design for
FTSyn

In this section, we first give an overview of the design
of FTSyn. Then, in Section 5.1, we show how developers
can extend the design of FTSyn by adding new heuris-
tics. Subsequently, in Section 5.2, we illustrate how one
can change the implementation of the components of FT-
Syn without a significant overhead. Additional details of
the design of FTSyn that may be of interest to users
interested in extending FTSyn are included in [1].

12 Ali Ebnenasir et al.

In the conceptual (object-oriented) design of FTSyn,
we model each one of the entities (i.e., Program, Process,
Fault, SafetySpecification, Invariant, and InitialStates) in-
volved in the problem of adding fault-tolerance as a class.
Using the initial states and program/fault transitions, we
generate the fault-span of the fault-intolerant program
as a set of reachable states; i.e., the reachability graph of
the fault-intolerant program. Hence, we regard the fault-
span of the fault-intolerant program as an input entity
and we model it as a class in the design of FTSyn. After
taking the input entities, FTSyn instantiates an object
corresponding to each one of the design classes. Subse-
quently, FTSyn executes the synthesis algorithm on the
reachability graph of the fault-intolerant program to gen-
erate a reachability graph of the fault-tolerant program.
The output entities (i.e., fault-tolerant program and its
invariant) are also instances of the existing classes in the
design of FTSyn. Next, we demonstrate how one can in-
tegrate new heuristics into the design of FTSyn.

5.1 Extending FTSyn: Illustration of Integrating New
Heuristics for Resolving Deadlocks

In this section, we illustrate how we have developed two
new heuristics for adding recovery from deadlock states,
and have integrated these new heuristics in FTSyn.
Heuristic 5: Adding multi-step recovery. The Step
5.1 of Heuristic 4 (presented in Section 4) only adds
single-step recovery from deadlock states to the invari-
ant. As a result, it fails in cases where single-step re-
covery is not possible. For example, Heuristic 4 failed to
add recovery to states where there is more than one cor-
rupted process (e.g., 〈0,−1,−1,−1〉) in the token ring
program. The idea behind our new heuristic is that we
provide recovery from a deadlock state, say s′d, via an-
other deadlock state, say sd, from where we have already
added a recovery transition.

Likewise Heuristic 4, Heuristic 5 also consists of two
passes. In the first pass, we conduct a fixpoint compu-
tation that searches through the deadlock states outside
the invariant in the fault-span. In the first iteration of
the fixpoint computation, we find all deadlock states from
where single-step recovery to the invariant is possible.
In the second iteration, we find all deadlock states from
where single-step recovery is possible to recovery states
explored in the previous iteration. Continuing thus, we
reach an iteration of the fixpoint computation where ei-
ther no more deadlock states exist or no more recovery is
possible. In the latter case, we choose to deal with the re-
maining deadlock states in the second pass. In the former
case, at the end of the fixpoint computation, we will have
a set of states, RecoveryStates, from where there exists
a multi-step recovery path to the invariant. (Notice that
adding a recovery transition in a distributed program
requires the satisfaction of the grouping requirements.)

In the second pass, we try to remove sd if sd is di-
rectly reachable by fault transitions from the invariant

and no recovery can be added from sd. If the removal of
sd requires the removal of one or more invariant states
then we remove those offending invariant states. During
deadlock resolution, if the invariant becomes empty then
we declare that the synthesis algorithm failed to synthe-
size a fault-tolerant program.

Application in the token ring program. Heuristic 4 adds
recovery to states where there is only one corrupted pro-
cess; e.g., d = 〈0, 0, 0,−1〉. Using our new heuristic, we
add recovery from states where there exist exactly two
corrupted processes, e.g., e = 〈0, 0,−1,−1〉, to states
where there exists only one corrupted process. Likewise,
we add recovery from states where there exist exactly
three corrupted processes, e.g., g = 〈0,−1,−1,−1〉, to
states where there exist exactly two corrupted processes.
In this case, a recovery from the state g to the invariant
contains three steps where (i) P1 corrects itself by copy-
ing the value of x0 and reaching state e; (ii) P2 corrects
itself by copying the value of x1 and reaching state d,
and (iii) P3 corrects itself by copying the value of x2 and
reaching the invariant state 〈0, 0, 0, 0〉.

In order to provide extensibility in FTSyn, we em-
ploy a set of design patterns [20] in the object-oriented
design of FTSyn. For example, we have applied the Strat-
egy design pattern [20] to the DeadlockResolver method
of the ReachabilityGraph class in the design of FTSyn
that implements deadlock resolution schemes. The ap-
plication of the Strategy pattern to this method allows
us to easily extend the design of FTSyn upon develop-
ing new heuristics for adding recovery to deadlock states.
We have integrated the above heuristic in FTSyn with-
out any changes in the existing design of FTSyn. Using
this new heuristic, we have automatically synthesized the
masking fault-tolerant token ring program presented in
Section 3.1.

Heuristic 6: The strategy of Heuristic 6 is similar to
that in Heuristic 5, except that the domain of the fixpoint
computation includes all the states outside the invariant
in the fault-span (i.e., (T ′ − S′)) instead of just resolved
deadlock states. In other words, Heuristic 6 is more gen-
eral than Heuristic 5. (Likewise, Heuristic 5 is more gen-
eral than Heuristic 4.) We have also used Heuristic 6 for
enhancing the fault-tolerance of nonmasking programs
to masking fault-tolerance [29], where a nonmasking pro-
gram only guarantees recovery to the invariant, but does
not guarantee safety during recovery. The integration of
Heuristic 6 was fairly simple. We integrated Heuristic 6
as an alternative strategy of deadlock resolution in the
DeadlockResolver method.

The application of heuristics. The Heuristic 5 suf-
fices for the synthesis of the fault-tolerant token ring pro-
gram presented in Section 3.1. However, in the synthesis
of an agreement protocol in the presence of arbitrary
faults [32], we applied Heuristic 6 since Heuristic 5 failed
(see [1]). Given a particular problem, the developers can
either use their insight to choose the appropriate heuris-
tic or they can rely on FTSyn to make that choice. The

FTSyn: A Framework for Automatic Synthesis of Fault-Tolerance 13

former choice provides more efficiency whereas the latter
choice allows more automation.

5.2 Changing the Implementation of FTSyn

As we mentioned in the Introduction, it is difficult to
determine a priori the internal representation that one
should use for different components of FTSyn, namely
Program, Fault, Specification, and Invariant, involved in
the synthesis of fault-tolerant programs. Thus, it is nec-
essary to provide the ability to modify the internal repre-
sentation of these components while reusing the remain-
ing parts of FTSyn. In fact, there are situations where
one needs to use one internal representation while exe-
cuting in one fraction of FTSyn (see Figure 2), and a
different internal representation for the same component
while executing in another fraction of FTSyn.

In the conceptual design of FTSyn, we consider a
class SafetySpecification that models the safety specifi-
cation of programs. We have two different implementa-
tions for the class SafetySpecification: (1) linked-list, and
(2) symbolic. The linked-list implementation contains a
list of elements where each element represents a set of
safety-violating transitions. Thus, during synthesis, to
verify the safety of an individual transition t, we tra-
verse the linked-list to verify the membership of t to the
set of safety-violating transitions. The symbolic imple-
mentation directly uses the specification predicates that
represent the safety specification in the input of FTSyn
(for an example, see Section 6 or Subsection 3.1). Af-
terwards, the symbolic implementation substitutes the
values of program variables at the source and the des-
tination of t in the specification predicate to verify the
safeness of t.
Reasoning about a query. The symbolic implemen-
tation helps to improve the efficiency of the synthe-
sis when we need to automatically synthesize a fault-
tolerant program without any user intervention. Specifi-
cally, the symbolic implementation reduces the problem
of checking the safety of a transition to an instance of the
satisfiability problem, where only a yes/no answer is pro-
vided. However, when users interact with FTSyn, they
may need to know why and how a transition violates the
safety specification. To fulfill users’ requirements, in the
symbolic implementation, we can only provide the val-
ues of program variables in the source and target states
of the safety-violating transitions, which are difficult to
interpret. On the other hand, in the SafetySpecification
linked-list, different scenarios of violating safety speci-
fication are represented as different sets of transitions.
Thus, the linked-list structure can provide a better in-
tuition as to why a particular transition violates safety.
Therefore, to provide reasoning about the violation of
safety, FTSyn switches the implementation of the Safe-
tySpecification class from the symbolic to the linked-list
structure.

6 Example: Altitude Switch Controller

In this section, we demonstrate how we used FTSyn
to synthesize a simplified version of an altitude switch
(ASW) used in aircraft altitude controller. We have
adapted this example from [10] and the output program
of FTSyn is the same as the fault-tolerant program that
is manually designed in [10]. This example illustrates the
applicability of FTSyn in automatic synthesis of practi-
cal applications.
The fault-intolerant altitude switch (ASW). The
ASW program monitors a set of input variables and gen-
erates an output. There exist four internal variables, a
mode variable that determines the operating mode of
the program, and four input variables that represent the
state of the altitude sensors. The internal variables are
as follows: (i) AltBelow is equal to 1 if the altitude is
below a specific threshold, otherwise, it is equal to 0; (ii)
ActuatorStatus is equal to 1 if the actuator is powered
on, otherwise, it is equal to 0; (iii) Inhibit is equal to 1
when the actuator power-on is inhibited, otherwise, it is
equal to 0, and (iv) Reset is equal to 0 if the system is
being reset.

The ASW program can be in three different modes:
(i) the Initialization mode when the ASW system is
initializing; (ii) the Await-Actuator mode if the system
is waiting for the actuator to power on, and (iii) the
Standby mode. We use an integer variable Status to
represent the system modes in the program where (i)
Status = −1 if the system is in the initialization mode;
(ii) Status = 0 if the system is in the Await-Actuator
mode, and (iii) Status = 1 if the system is in the Standby
mode.

Moreover, we model the signals that come from the
input (analog and digital) altitude sensors to indicate
the occurrence of faults using the following variables: (i)
AltFail is equal to 1 when altitude sensors are failed; (ii)
if the system fails in the Initialization mode then the vari-
able InitFailed will be set to 1, otherwise, InitFailed re-
mains 0; (iii) if the altitude sensors fail (i.e., AltFail = 1)
and do not recover in a certain number of built-in reset
attempts then the variable AltFailOver will be equal
to 1, otherwise, AltFailOver remains 0, and (iv) if
the Actuator fails in the Await-Actuator mode then
the variable AwaitOver will be equal to 1, otherwise,
AwaitOver remains 0.

The output of the ASW program is identified based
on the system mode. The ASW program has an output
integer variable WakeupActuator that is equal to 1 if the
system is in the Await-Actuator mode and is equal to 0
otherwise. The domain of all variables except Status is
equal to {0, 1}.

The fault-intolerant program consists of only one pro-
cess, called Controller. In the input of FTSyn, we specify
the Controller process as follows:

1 process Controller
2 begin

14 Ali Ebnenasir et al.

3

4 ((Status == -1) && (InitFailed == 0))
5 ->Status = 1;
6 |
7 ((Status == 1) && (Reset == 0))
8 -> Status = -1; Reset = 1;
9 |

10 ((Status == 1) && (AltBelow == 0) &&
11 (Inhibit == 0) && (ActuatorStatus ==0))
12 -> Status = 0; AltBelow = 1;
13 |
14 ((Status == 0) && (ActuatorStatus == 0))
15 -> Status = 1;
16 ActuatorStatus = 1;
17 |
18 ((Status == 0) && (Reset == 0))
19 -> Status = -1; Reset = 1;
20

21 read AltBelow, ActuatorStatus, Inhibit, Reset,
22 AltFail, InitFailed, AltFailOver,
23 AwaitOver, WakeupActuator, Status;
24

25 write WakeupActuator, AltBelow, ActuatorStatus,
26 Inhibit, Reset, Status;
27 end

The ASW program changes its mode from Initializa-
tion to Standby. The program transitions to the Initial-
ization mode when it is either in Standby or in Await-
Actuator mode and the reset signal is received. If the
program is in the Standby mode, the altitude is not be-
low a pre-determined threshold, the actuator power-on
is not inhibited and the actuator is not powered on, then
the program goes to Await-Actuator mode. In the Await-
Actuator mode, the program either powers on the actu-
ator and goes to the standby mode, or transitions to the
Initialization mode upon receiving the reset signal.
Read/Write restrictions. The Controller process can
read all program variables and can write only a subset
of variables.
Faults. The malfunction of the altitude sensors may
perturb the state of the program to a faulty state. We
introduce a new mode, where Status = 2, that represents
the system is in a faulty state. We represent the fault
actions as follows:

1 fault Malfunction
2 begin
3

4 (InitFailed == 1) -> InitFailed = 0;
5 Status = 2;
6 |
7 (AltFailOver == 1) -> AltFailOver = 0;
8 Status = 2;
9 |

10 (AwaitOver == 1) -> AwaitOver = 0;
11 Status = 2;
12

13 end

Note that the guards of the above actions represent
conditions under which the program detects the occur-
rence of faults and switches to the faulty mode. We could
have added the following actions to the list of fault ac-
tions to model the effect of faults.

1 (InitFailed == 0) -> InitFailed = 1;
2 |
3 (AltFailOver == 0) -> AltFailOver = 1;
4 |
5 (AwaitOver == 0) -> AwaitOver = 1;

The above actions perturb the program to states
where at least one of the variables InitFailed,
AltFailOver, and AwaitOver is equal to one; i.e., shows
the occurrence of faults. Since in this case there exist only
two values 0 and 1 in the domain of these variables, we
have adopted a simpler approach where we set the values
of these variables to 1 in the initial states of the program.
In this example, the structure of the synthesized fault-
tolerant program remains the same.
Safety specification. The problem specification re-
quires that the program does not change its mode from
Standby to Await-Actuator if the altitude sensors are
failed; i.e., AltFail is equal to 1. Also, from the faulty
state, the program can only go to the Initialization mode.
Moreover, in the faulty state, the program can recover if
it is not reset. In the input file, we represent the specifi-
cation as a state predicate.

1

2 ((AltFails == 1) && (Statuss == 1) &&
3 (Statusd == 0)) ||
4 ((Statuss == 2) &&
5 ((Statusd == 1) || (Statusd == -1))) ||
6 ((Statuss == 2) && (Resets == 0))

As we described in Subsection 3.1, to distinguish the
value of a variable (e.g., AltFail) at the source of a tran-
sition from its value at the destination, we append the
variable names with suffixes ’s’ and ’d’ (e.g., AltFails
and AltFaild).
Invariant. The invariant of the program consists of the
states where the program is not in the faulty state; i.e.,
Status 6= 2. We specify the invariant as follows:

1 invariant
2

3(Status != 2)

Initial states. We specify the initial state as follows:

1 init
2

3 state
4 WakeupActuator = 0;
5 AltBelow = 1;
6 ActuatorStatus = 0;
7 Inhibit = 0;
8 Reset = 0;
9 AltFail = 0;

10 InitFailed = 1;
11 AwaitOver = 1;
12 AltFailOver = 1;
13 Status = -1;

Fault-tolerant program. FTSyn automatically gen-
erates the following fault-tolerant program. (Bold fonts
represent the code updates.) We present the actions of
the Controller process as follows:

FTSyn: A Framework for Automatic Synthesis of Fault-Tolerance 15

1 ((Status == -1) && (InitFailed == 0))
2 -> Status = 1;
3 |
4 ((Status == 1) && (Reset == 0))
5 -> Status = -1; Reset = 1;
6 |
7 ((Status == 1) && (AltBelow == 0) &&
8 (Inhibit == 0) && (ActuatorStatus ==0) &&
9 (AltFail == 0))

10 -> Status = 0; AltBelow = 1;
11 |
12 ((Status == 0) && (ActuatorStatus == 0))
13 -> Status = 1; ActuatorStatus = 1;
14 |
15 ((Status == 0) && (Reset == 0))
16 -> Status = -1; Reset = 1;
17 |
18

19 ((Status == 2) && (Reset == 0))
20 -> Status = -1; Reset = 1;

The fault-tolerant program has a new recovery ac-
tion (see Lines 19-20 above), where it recovers to the
initialization mode from faulty state (i.e., states where
Status = 2 holds). Moreover, a new constraint has been
added to the third action (see Line 9) where the pro-
gram is allowed to change its state to the Await-Actuator
mode only when the input sensors are not corrupted; i.e.,
the condition (AltFail = 0) holds.

7 Discussion

In this section, we discuss some theoretical, practical,
and pedagogical aspects of FTSyn.
Complexity. In principal, the problem of adding fault
tolerance to distributed programs is NP-complete in pro-
gram state space [27, 31]. The complexity of synthesis,
however, can be reduced to polynomial time if we use
appropriate heuristics and the heuristics are applicable.
Thus, one of the important problems in synthesis is to
identify heuristics that will keep the complexity of syn-
thesis manageable. The FTSyn framework proposed in
this paper is especially useful for testing and developing
such heuristics.
Scalability. While the initial version of FTSyn adds
fault tolerance to small programs (with reachable states
in the scale of a few millions of states), the (space/time)
efficiency of FTSyn is certainly comparable to that
of early model checkers. The largest program that we
have synthesized using the initial version of FTSyn
is an agreement program that is simultaneously per-
turbed by Byzantine and fail-stop faults (1.3 millions
of states) [1, 30]. To our knowledge, this program is the
first automatically synthesized agreement program that
simultaneously tolerates both Byzantine and fail-stop
faults (see [1]). Researchers were using early versions of
model checkers for checking small protocols and verify-
ing the correctness of operating system kernels [15, 25].
The state space of the models checked in early 90s was
approximately 500,000 states [25], which is comparable

to our initial results with FTSyn. We have recently de-
veloped a symbolic version [11] and a distributed version
of FTSyn [16] that adds fault tolerance to programs that
have about 2120 reachable states.

While space and time efficiency of FTSyn are im-
portant issues, other design goals of FTSyn (such as the
ability to check the effectiveness of heuristics) are orthog-
onal to complexity issues. For example, the complexity
of determining whether or not a specific group of tran-
sitions violates safety is independent from the heuristics
that determine a set of groups that should be included
in a program so that the program recovers to its invari-
ant. To illustrate this, we have implemented a SAT-based
version of FTSyn where one can either take advantage
of SAT solvers to verify the safety of a group of tran-
sitions [17], or exhaustively verify every transition of a
given group of transitions.
Educational applications. We have used FTSyn in
graduate classes where students used the automated
approach to obtain the fault-tolerant programs that
have already been synthesized in FTSyn. Subsequently,
they focused on interactive synthesis of the same fault-
tolerant programs. During this interactive synthesis,
they applied different heuristics and observed the inter-
mediate programs. This allowed them to evaluate differ-
ent heuristics.

8 Concluding Remarks and Future Work

In this paper, we presented a software framework, called
Fault-Tolerance Synthesizer (FTSyn), for adding fault-
tolerance to existing fault-intolerant (distributed) pro-
grams. Since the problem of adding fault-tolerance to
distributed programs is NP-complete [27, 31] in the
state space of the fault-intolerant program, we pre-
sented sound heuristics for polynomial-time addition of
fault-tolerance. In the cases where heuristics are appli-
cable, FTSyn synthesizes a fault-tolerant program in
polynomial-time using a set of built-in heuristics that
can be used by developers of fault-tolerant programs to
automatically add fault-tolerance. Moreover, FTSyn is
extensible in that developers of heuristics can easily in-
tegrate new heuristics in FTSyn without a significant
overhead.

We demonstrated how one can use FTSyn to auto-
matically add fault-tolerance to a token ring program
that is subject to process-restart faults, and an altitude
switch controller that is subject to input faults. Sev-
eral other examples are available at [1] among which an
agreement program that simultaneously tolerates Byzan-
tine and fail-stop faults. To our knowledge, this program
is the first automatically synthesized distributed pro-
gram that simultaneously tolerates Byzantine and fail-
stop faults.

There are several future directions to this work. In
[31], we have identified a class of specifications and pro-

16 Ali Ebnenasir et al.

grams for which failsafe fault-tolerance can be added in
polynomial time (in the state space of the fault-intolerant
program) – where a failsafe fault-tolerant program guar-
antees to satisfy its safety specification in the presence
of faults. Using the results of [31], we have developed
heuristics that can study the structure of programs (re-
spectively, specifications) to determine if these condi-
tions are met [18]. Another extension of the framework is
to take advantage of the structural similarity of the pro-
cesses [6, 8] in order to reduce the complexity of adding
fault-tolerance to a fault-intolerant program.
Acknowledgment. We would like to thank Constance
Heitmeyer at Naval Research Laboratory for her com-
ments and suggestions on the altitude switch example.

References

1. A framework for automatic synthesis of fault-tolerance.
http://www.cse.msu.edu/~sandeep/software/Code/
synthesis-framework/

2. Spin language reference. http://spinroot.com/spin/
Man/promela.html

3. Alpern, B., Schneider, F.B.: Defining liveness. Informa-
tion Processing Letters 21, 181–185 (1985)

4. Arora, A., Gouda, M.G.: Closure and convergence: A
foundation of fault-tolerant computing. IEEE Transac-
tions on Software Engineering 19(11), 1015–1027 (1993)

5. Arora, A., Kulkarni, S.S.: Designing masking fault-
tolerance via nonmasking fault-tolerance. IEEE Trans-
actions on Software Engineering 24(6), 435–450 (1998).
(A preliminary version appears in the Proceedings of the
Fourteenth Symposium on Reliable Distributed Systems,
Bad Neuenahr, 174–185, 1995)

6. Attie, P.: Synthesis of large concurrent programs via pair-
wise composition. CONCUR’99: 10th International Con-
ference on Concurrency Theory pp. 130–145 (1999)

7. Attie, P., Emerson, A.: Synthesis of concurrent programs
for an atomic read/write model of computation. ACM
TOPLAS (a preliminary version of this paper appeared
in PODC96) 23(2) (2001)

8. Attie, P., Emerson, E.: Synthesis of concurrent systems
with many similar processes. ACM Transactions on Pro-
gramming Languages and Systems 20(1), 51–115 (1998)

9. Attie, P.C., Arora, A., Emerson, E.A.: Synthesis of fault-
tolerant concurrent programs. ACM Transactions on
Programming Languages and Systems (TOPLAS). (A
preliminary version of this paper appeared in PODC
1998.) 26(1), 125 – 185 (2004)

10. Bharadwaj, R., Heitmeyer, C.: Developing high assurance
avionics systems with the SCR requirements method. In
Proceedings of the 19th Digital Avionics Systems Con-
ference, Philadelphia, PA (2000)

11. Bonakdarpour, B., Kulkarni, S.S.: Exploiting symbolic
techniques in automated synthesis of distributed pro-
grams. In: IEEE International Conference on Distributed
Computing Systems, pp. 3–10 (2007)

12. Demirbas, M., Arora, A.: Convergence refinement. Inter-
national Conference on Distributed Computing Systems
pp. 589–597 (2002)

13. Dijkstra, E.W.: Self-stabilizing systems in spite of dis-
tributed control. Communications of the ACM 17(11)
(1974)

14. Dijkstra, E.W.: A Discipline of Programming. Prentice-
Hall (1990)

15. Duval, G., Julliand, J.: Modeling and verification of
rubis micro-kernel with spin. The First SPIN Work-
shop (1995). Available at http://spinroot.com/spin/
Workshops/ws95/papers.html

16. Ebnenasir, A.: Diconic addition of failsafe fault-tolerance.
In: Proceedings of the 22nd IEEE/ACM international
conference on Automated Software Engineering, pp. 44–
53 (2007)

17. Ebnenasir, A., Kulkarni, S.S.: SAT-based synthesis of
fault-tolerance. In Fast Abstracts of International Con-
ference on Dependable Systems and Networks, Palazzo
dei Congressi, Florence, Italy. (2004)

18. Ebnenasir, A., Kulkarni, S.S.: Efficient synthesis of fail-
safe fault-tolerant distributed programs. Tech. Rep.
MSU-CSE-05-13, Computer Science and Engineering,
Michigan State University, East Lansing, Michigan
(2005)

19. Emerson, E., Clarke, E.: Using branching time temporal
logic to synthesize synchronization skeletons. Science of
Computer Programming 2(3), 241–266 (1982)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design
Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Publishing Company (1995)

21. Gärtner, F.C., Jhumka, A.: Automating the addition
of failsafe fault-tolerance: Beyond fusion-closed specifi-
cations. Formal Techniques in Real-Time and Fault-
Tolerant Systems (FTRTFT), Grenoble, France, LNCS
3253, 183–198 (2004)

22. Gouda, M., McGuire, T.: Correctness preserving trans-
formations for network protocol compilers. Prepared for
the Workshop on New Visions for Software Design and
Productivity: Research and Applications (2001)

23. Havelund, K., Pressburger, T.: Model checking java pro-
grams using java pathfinder. International Journal on
Software Tools for Technology Transfer (STTT) 2(4),
366–381 (2000)

24. Holzmann, G.J.: From code to models. In Proceedings
of the Second International Conference on Application
of Concurrency to System Design (ACSD’01) pp. 3–10
(2001)

25. Joesang, A.: Security protocol verification using spin.
The First SPIN Workshop (1995). Available at http:
//spinroot.com/spin/Workshops/ws95/papers.html

26. Kulkarni, S.S.: Component-based design of fault-
tolerance. Ph.D. thesis, Ohio State University (1999)

27. Kulkarni, S.S., Arora, A.: Automating the addition of
fault-tolerance. In Proceedings of the 6th International
Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems pp. 82–93 (2000)

28. Kulkarni, S.S., Arora, A., Chippada, A.: Polynomial time
synthesis of Byzantine agreement. Symposium on Reli-
able Distributed Systems pp. 130–139 (2001)

29. Kulkarni, S.S., Ebnenasir, A.: Enhancing the fault-
tolerance of nonmasking programs. Proceedings of the
23rd International Conference on Distributed Comput-
ing Systems pp. 441–449 (2003)

30. Kulkarni, S.S., Ebnenasir, A.: A framework for automatic
synthesis of fault-tolerance. Tech. Rep. MSU-CSE-03-
16, Computer Science and Engineering, Michigan State
University, East Lansing MI 48824, Michigan (2003)

31. Kulkarni, S.S., Ebnenasir, A.: Complexity issues in auto-
mated synthesis of failsafe fault-tolerance. IEEE Trans-
actions on Dependable and Secure Computing 2(3), 201–
215 (2005)

32. Lamport, L., Shostak, R., Pease, M.: The Byzantine gen-
erals problem. ACM Transactions on Programming Lan-
guages and Systems 4(3), 382–401 (1982)

33. Nesterenko, M., Arora, A.: Stabilization-preserving
atomicity refinement. Journal of Parallel and Distributed
Computing 62(5), 766–791 (2002)

34. Varghese, G.: Self-stabilization by local checking and cor-
rection. Ph.D. thesis, MIT/LCS/TR-583 (1993)

