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Abstract. In this paper, we present a generic deep convolutional neural network 

(DCNN) for multi-class image segmentation. It is based on a well-established 

supervised end-to-end DCNN model, known as U-net. U-net is firstly modified 

by adding widely used batch normalization and residual block (named as BRU-

net) to improve the efficiency of model training. Based on BRU-net, we further 

introduce a dynamically weighted cross-entropy loss function. The weighting 

scheme is calculated based on the pixel-wise prediction accuracy during the train-

ing process. Assigning higher weights to pixels with lower segmentation accura-

cies enables the network to learn more from poorly predicted image regions. Our 

method is named as feedback weighted U-net (FU-net). We have evaluated our 

method based on T1-weighted brain MRI for the segmentation of midbrain and 

substantia nigra, where the number of pixels in each class is extremely unbal-

anced to each other. Based on the dice coefficient measurement, our proposed 

FU-net has outperformed BRU-net and U-net with statistical significance, espe-

cially when only a small number of training examples are available. The code is 

publicly available in GitHub1. 

Keywords: Convolutional Neural Network, Medical Image Segmentation, U-

net, Weighted Cross Entropy. 

1 Introduction 

Image segmentation is a fundamental and crucial step in many image analysis tasks. In 

this paper, we focus on medical applications. From classical image segmentation meth-

ods (e.g. region growing) to more robust methods (e.g. level-set [1] and graph-cut [2]), 

various techniques have been proposed to achieve automatic image segmentation in a 

wide range of clinical problems. More recently, machine learning based methods have 

achieved superior performance against other traditional methods. It typically requires a 

training process, where a human-designed feature descriptor (e.g. SIFT[3] etc.) is ap-

plied to represent local image characteristics. Subsequently, the extracted features are 

used to train a classification model for pixel-level classification to achieve image seg-

mentation.  

https://github.com/MinaJf/FU-net
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Since 2012, based on the idea of convolutional neural network (CNN) proposed by 

LeCun et al. [4] and followed by a technological breakthrough that allows deeper neural 

networks to be trained [5], deep CNNs have demonstrated remarkable capabilities in 

performing classification, segmentation, object detection, and other image processing 

tasks [6, 7]. Briefly, the CNN-based methods recognize objects based on a multi-scale 

feature representation obtained by applying many convolutional filters and non-linear 

activation functions at different image scales. The parameters of the convolutional fil-

ters are automatically learned during the training process through iterative back propa-

gation of the errors between the predicted outputs and the ground truth images. This 

enables an automatic feature learning and representation, which is the key advantage 

against classical machine learning methods that are based on manually designed fea-

tures.  

Many deep CNN based methods have been proposed to address image segmentation 

tasks. In earlier approaches, image segmentation is treated as a pixel-wise classification 

problem [8]. Deep CNN classification models are trained in a patch-based manner. 

These methods require millions of image patches for training and suffer from low com-

putational efficiency in both training and testing stages. One of the latest state-of-the 

art methods (known as U-net [9]) is based on an end-to-end deep CNN architecture. It 

is trained more efficiently and requires fewer training samples than the patch-based 

models. Following on this pioneer work, several improvements and modifications have 

been proposed. For instance, Drozdzal et al. [10] added short skip connections in addi-

tion to the long skip connections in the U-net to improve training efficiency and seg-

mentation accuracy. RU-net and R2U-net, proposed by Alom et al. [11], are based on 

U-net plus recurrent neural network and U-net plus the combination of recurrent neural 

network and residual network respectively. A nested U-net architecture called U-net++ 

is introduced in [12] that is proposed to replace the direct skip connections from encoder 

to decoder part by dense skip connections. A chain of multiple U-nets are utilized in 

LadderNet [13] to improve the flow of information.  

For most multi-class image segmentation problems, the number of pixels in each 

class is different from each other which potentially leads to less accurate predictions 

for some classes than others. Additionally, some of the image regions are easier to be 

classified (i.e. higher segmentation accuracy) than others due to more distinct local im-

age characteristics. It would be more efficient if the network can be dynamically 

adapted to learn from pixel locations with lower predicted accuracies during the training 

process. There are a few methods have been proposed to address these issues. Focal 

loss [14] is proposed to modify the cross entropy loss function for addressing the class 

imbalance problem. Similarly, online hard example mining method proposed by 

Shrivastava et al. [15] balances class samples by mining hard examples based on the 

loss values. Both methods focus on the problem of object classification, while the ap-

plication to image segmentation has not been thoroughly investigated.   

As the main contribution of this paper, we improve the U-net method by introducing 

a dynamically weighted cross-entropy loss function. The weight for each pixel is cal-

culated based on the predicted accuracy in each iteration. The pixel locations with 

higher prediction accuracies are assigned with lower weights, and vice versa. This en-

ables the network to learn more from poorly predicted image regions. We name our 
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proposed method as feedback weighted U-net (FU-net). We demonstrate the effective-

ness of the FU-net using a challenging brain magnetic resonance image (MRI) dataset 

with extremely unbalanced classes as well as different numbers of training samples.  

2 Methodology 

2.1 Network Architecture 

The U-net proposed by Ronnebergeret et al. [9] is based on convolutional neural net-

work, and consists of a contracting path and an expansive path. In the contracting path, 

each layer consists of two 3×3 convolutions (Conv), and each convolution is followed 

by a rectified linear unit (ReLU) as illustrated in Fig. 1(a). The feature map in the next 

successive layer is a down-sampled version of the output from the previous layer by 

using a max pooling of stride 2. Due to the down-sampling process, only very abstracted 

information remained at the end of the contracting path. To capture and rebuild the 

spatial context, a decoding path is required. In the expansive (decoding) path, the output 

feature map in each layer is up-sampled using 2×2 up-convolution with halved number 

of feature channels in the previous layer. Each layer also has two 3×3 convolutions, and 

each followed by a ReLU. Additionally, there are some concatenation operations to 

combine feature maps from the contracting layers to the corresponding expansive lay-

ers. 1×1 convolution is used in the final layer to convert the dimension of feature maps 

to the number of classes. Subsequently, softmax function [16] is applied to map the 

output value of each pixel to the range of [0, 1]. In the U-net paper [9], the authors 

proposed a weighted cross entropy loss function E for parameter optimization that is 

expressed in equation (1). 

 𝐸 =  ∑ 𝑤(𝑥) 𝑙𝑜𝑔(𝑝𝑙(𝑥)(𝑥)𝑥 ∈ 𝛺 ) (1) 

  

where pl(x)(x) is the predicated probability value for the corresponding true class l(x) of 

pixel x, and x ϵ 𝛺 such that 𝛺 indicating the domain of all image pixels. w(x) is the 

weight for pixel x. In paper [9], the weights are pre-calculated by assigning higher val-

ues to challenging boundary pixels based on a distance map. The weights are pre-de-

termined and application dependent.  

In our proposed method, we firstly improve the U-net by adding batch normalization 

(BN) [17] and residual block (RB) [18] to the network layers, as illustrated in Fig. 1(b). 

BN and RB are well-known techniques to achieve faster convergence and train deeper 

networks [19]. More importantly, we assign automatically calculated weight to w(x) in 

equation (1). The weights are pixel-wise values which are iteratively updated in each 

training iteration for each training image. Calculation of the weight is introduced in 

section 2.2.  
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Fig. 1. (a) Layer of the original U-net. (b) Layer by adding batch normalization (BN) and residual 

block (RB).  

2.2 Weighted Cross-entropy Cost Function 

In this section, we describe the method for automatically calculating the weight w(x) in 

equation (1).  

Object class with a larger number of pixels contributes more to the cross-entropy 

loss calculation and has larger influence on the gradient values for parameter optimiza-

tion. Abraham and Khan [20] and Wang et al. [21]  have applied dice coefficient loss 

to address the class imbalance issue. Weight calculated based on the number of pixels 

per class has also been proposed [6]. Different from these methods that use fixed weight 

calculations, we propose to calculate the weights dynamically according to the predi-

cation performance in each iteration. Our motivation is to increase the contribution 

from pixels that have larger prediction errors to the loss function calculation. This not 

only enables the balance of different classes implicitly, but also allows difficult local 

image regions to be emphasized for model training.  

A pixel-wise weight map is generated based on the pixel-wise probability values that 

are produced in each training iteration. The pixel locations with lower prediction accu-

racies are assigned to higher weights and vice versa. Hence, the network is able to focus 

on learning from poorly predicted image regions. The feedback weight is a continuous 

function that maps the input values to the range of [0.01 1], which is expressed as: 

 𝑤(𝑥) = 𝑒−𝑙𝑜𝑔100×𝑝𝑙(𝑥)𝛽
 (2) 

 

In equation (2), larger values of pl(x) indicate higher predicated probability values of the 

true class, which are assigned to lower weights for calculating the loss function for 

network backpropagation. Fig. 2 shows the behaviors of the weighting functions by 

varying the hyperparameter β in equation (2). β is experimentally determined in section 

3.  Note that log100 is used to constrain the minimum weight to be 0.01 instead of 0, 

which prevents the pixels with high prediction accuracies being completely neglected 

from training.  

Note that the same mapping function in equation (2) is applied to all training images, 

and mini-batch method [22] is used for parameter optimization. In each batch, a training 

image with larger poorly predicted regions contributes more than an image with a 

higher prediction accuracy. This effectively not only balances the image regions but 

also balance the ‘easy’ and ‘difficult’ training examples. This is particularly beneficial 

for model training based on a small number of training examples with certain bias. We 

demonstrate this advantage by varying the size of the training data in the evaluation 

section.  
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Fig. 2. Plot of the mapping function of equation (2) with different values of β. 

3 Experiments and Results 

In this section, we evaluate the proposed method based on T1-weighted brain MRI for 

segmentation of Midbrain (MB) and Substantia Nigra (SN). Certain quantitative meas-

urements (e.g. volume) of SN has been found to associate with Parkinson disease [23]. 

However, it is extremely time consuming to annotate it manually and it is challenging 

to train a machine learning model for automatic segmentation due to the small size of 

SN. The T1-weighted brain MRI data were acquired in Nottingham University Hospital 

and was approved by the local ethics committee for this research. The dataset contains 

a total of 102 subjects with 30 axial image slices each. Experienced radiologist manu-

ally selected 3 or 4 slices that contain both the MB and SN, and annotated the contours 

of MB and SN. This resulted in a total of 310 2D slices for the segmentation evaluation 

in this paper.  

Original U-net, U-net with batch normalization and residual block (BRU-net), 

BRU-net with feedback weight (FU-net) were compared with each other. The dice co-

efficient (DC) was used as the evaluation criterion. Note that the separate effects of 

adding batch normalization and residual block were not tested, as they were normally 

used simultaneously to achieve better performance. We performed three experiments 

for each method: randomly selected 200/ 100/ 50 images for training, 10 images for 

validation and the remaining 100/ 200/ 250 images for testing.  

The parameters for model training are listed as follows. The batch size was 5. The 

optimizer was Adam [24] with learning rate of 0.001. The number of feature channels 

in the first layer was 16 and doubled in each of the down-sampled layers. The dropout 

rate was 0.25, and the number of epochs was 400. The number of iterations within each 

epoch for the three experiments were 40, 20 and 10 respectively (corresponding to ex-

periments with 200, 100 and 50 training images). We evaluated the performances by 

varying the hyperparameter β (equation (2)) from 1 to 4 for the 100 training/200 testing 

experiment. When β=3, it achieved the best performance. Hence, β=3 was used for all 
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the remaining experiments. The main aim of the evaluation is to compare the perfor-

mances of the proposed improvements rather than achieve an ultimate performance for 

a particular medical application. Hence, data augmentation was not used. 

Table 1 lists the numerical results of the mean DC ± standard deviation (Std) of the 

three methods by varying the number of training samples. We also report the P values 

of paired t-test by comparing U-net with BRU-net and BRU-net with FU-net respec-

tively.  

 

Table 1. Comparison of different methods using different number of training samples. The mean 

dice coefficient (DC) ± standard deviation (Std) and P values of paired t-tests are reported. Num-

bers in bold indicate the best method that statistically (P<0.01) better than other methods.  

 

Number of train-

ing/testing examples 

Method Mean of DC ± Std   

MB SN 

200/100 U-net 0.9000±0.03    0.7095±0.17 

BRU-net 0.8775±0.14 0.7164±0.18 

FU-net 0.8929±0.05    0.7563±0.15 

100/200 U-net 0.8584±0.18   0.7022±0.18 

BRU-net 0.8550±0.16    0.7005±0.15 

FU-net 0.8710±0.15 0.7575±0.16 

50/250  

 

U-net 0.8135±0.19    0.4831±0.26 

BRU-net 0.8088±0.15   0.6387±0.17 

FU-net 0.8182±0.20   0.7087±0.24 

  P values of paired t-test 

200/100 U-net/ BRU-net 0.0589     0.6086 

BRU-net/ FU-net 0.1260    0.0026 

100/200 U-net/ BRU-net 0.6050     0.8706 

BRU-net/ FU-net 0.6062     <0.0001 

50/250  

 

U-net/ BRU-net 0.5725 <0.0001 

BRU-net/ FU-net 0.3138     <0.0001 

 

It is seen from the results in table 1 that all three methods achieved similar segmen-

tation performance (no statistical significance) for the MB segmentation regardless of 

the number of training samples. However, for the SN class where the number of pixels 

is much smaller than the MB class and more difficult to be segmented, the proposed 

FU-net consistently outperformed the U-net and BRU-net methods for all the experi-

ments with statistical significance. When training using only 50 images, the perfor-

mance of FU-net remained high (DC=0.7087) which is much higher than the BRU-net 

(DC=0.6387) and U-net (DC=0.4831).  

We also provide some visual examples to demonstrate the advantages of our pro-

posed method. In Fig. 3, we present the segmentation results of an example image based 

on 50, 100 and 200 training images. Fig. 3(a) and (b) are the original image and ground 

truth annotation respectively. In Fig. 3(b), the darker region is the MB and lighter region 

is the SN. Fig. 3 (c), (d) and (e) are the segmentation results for U-net, BRU-net and 
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FU-net respectively using 50 training examples. Some false positives and false nega-

tives can be easily identified for the U-net and BRU-net methods, as indicated by red 

arrows. Fig. 3(f), (g) and (h) and Fig. 3 (i), (j) and (k) are the results for the three meth-

ods using 100 and 200 training examples respectively. Similarly, the FU-net results 

visually provide more similar outputs to the ground truth image than the other two 

methods. This is consistent with the numerical results reported in table 1.  

 

 

 

 

 

 
(a)  (b) 
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(d) 

 
(e) 

 
(f) 
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Fig. 3. (a) The original image. (b) The ground truth. (c) (d) (e) Segmentation results by U-net 

/BRU-net /FU-net respectively using 50 training samples. (f) (g) (h) Segmentation results by U-

net /BRU-net /FU-net respectively using 100 training samples. (i) (j) (k) Segmentation results by 

U-net /BRU-net /FU-net respectively using 200 training samples. 
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4 Conclusion 

In this paper, the basic structure of U-net is adopted. We have improved the cost func-

tion of U-net by proposing a method to generate dynamic weight. This method enables 

the prediction accuracy at each training iteration to be used for regionally focused train-

ing. The proposed method has been evaluated on a challenging multi-class brain tissue 

segmentation task. Based on the results, FU-net significantly outperforms the original 

U-net and an improved version of U-net (BRU-net). We have shown that FU-net is a 

generic and useful technique for model training with unbalanced class labels and with 

smaller number of training examples. It can be easily applied to any DCNN based seg-

mentation framework as long as cross entropy is used as the loss function. Future work 

will focus on method evaluation of different 2D/3D datasets and improvement of the 

method for tasks with a small number of training samples.  

Acknowledgement 

The authors acknowledge Nvidia for donating a graphic card for this research.  

References 

1. Chan, T.F. and Vese, L.A., Active contours without edges. IEEE Transactions on 

Image Processing, 2001. 10(2): p. 266-277. 

2. Boykov, Y., Veksler, O., and Zabih, R., Fast approximate energy minimization via 

graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001. 

23(11): p. 1222 - 1239. 

3. Lowe, D.G., Distinctive Image Features from Scale-Invariant Keypoints. International 

Journal of Computer Vision, 2004. 60(2): p. 91-110. 

4. LeCun, et al., Gradient-based learning applied to document recognition. Proceedings 

of the IEEE, 1998. 86(11): p. 2278-2324. 

5. Krizhevsky, A., Sutskever, I., and Hinton, G.E., ImageNet classification with deep 

convolutional neural networks, in International Conference on Neural Information 

Processing Systems 2012. p. 1097-1105. 

6. Sudre, C.H., et al., Generalised dice overlap as a deep learning loss function for highly 

unbalanced segmentations, in Deep learning in medical image analysis and multimodal 

learning for clinical decision support. 2017, Springer. p. 240-248. 

7. Simonyan, K. and Zisserman, A., Very deep convolutional networks for large-scale 

image recognition. arXiv preprint arXiv:1409.1556, 2014. 

8. Farabet, C., et al., Learning hierarchical features for scene labeling. IEEE transactions 

on pattern analysis and machine intelligence, 2013. 35(8): p. 1915-1929. 

9. Ronneberger, O., Fischer, P., and Brox, T.. U-net: Convolutional networks for 

biomedical image segmentation. in International Conference on Medical image 

computing and computer-assisted intervention. 2015. Springer. 



9 

10. Drozdzal, M., et al., The importance of skip connections in biomedical image 

segmentation, in Deep Learning and Data Labeling for Medical Applications. 2016, 

Springer. p. 179-187. 

11. Alom, M.Z., et al., Recurrent residual convolutional neural network based on u-net 

(r2u-net) for medical image segmentation. arXiv preprint arXiv:1802.06955, 2018. 

12. Zhou, Z., et al. UNet++: A Nested U-Net Architecture for Medical Image 

Segmentation. 2018. Cham: Springer International Publishing. 

13. Zhuang, J.J., LadderNet: Multi-path networks based on U-Net for medical image 

segmentation. 2018. 

14. Lin, T.-Y., et al. Focal loss for dense object detection. in Proceedings of the IEEE 

international conference on computer vision. 2017. 

15. Shrivastava, A., Gupta, A., and Girshick, R.. Training region-based object detectors 

with online hard example mining. in Proceedings of the IEEE Conference on Computer 

Vision and Pattern Recognition. 2016. 

16. Goodfellow, I., Bengio, Y., and Courville, A., Deep learning. 2016: MIT press. 

17. Ioffe, S. and Szegedy, C., Batch normalization: Accelerating deep network training by 

reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015. 

18. He, K., et al. Deep residual learning for image recognition. in Proceedings of the IEEE 

conference on computer vision and pattern recognition. 2016. 

19. Milletari, F., Navab, N., and Ahmadi, S.-A.. V-net: Fully convolutional neural 

networks for volumetric medical image segmentation. in 3D Vision (3DV), 2016 

Fourth International Conference on. 2016. IEEE. 

20. Abraham, N. and Khan, N.M.J., A Novel Focal Tversky loss function with improved 

Attention U-Net for lesion segmentation. 2018. 

21. Wang, C., et al., A two-stage 3D Unet framework for multi-class segmentation on full 

resolution image. 2018. 

22. Ruder, S.J., An overview of gradient descent optimization algorithms. 2016. 

23. Schwarz, S.T., et al., In vivo assessment of brainstem depigmentation in Parkinson 

disease: potential as a severity marker for multicenter studies. Radiology, 2016. 283(3): 

p. 789-798. 

24. Kingma, D.P. and Ba, J., Adam: A method for stochastic optimization. arXiv preprint 

arXiv:1412.6980, 2014. 

 


