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Abstract 
Environmental pollution and energy use in the light-duty transportation sector are currently regulated 

through fuel economy and emissions standards, which typically assess quantity of pollutants emitted 

and volume of fuel used per distance driven. In the United States, fuel economy testing consists of a 

vehicle on a treadmill, while a trained driver follows a fixed drive cycle. By design, the current 

standardized fuel economy testing system neglects differences in how individuals drive their vehicles on 

the road. As autonomous vehicle (AV) technology is introduced, more aspects of driving are shifted into 

functions of decisions made by the vehicle, rather than the human driver. Yet the current fuel economy 

testing procedure does not have a mechanism to evaluate the impacts of AV technology on fuel 

economy ratings, and subsequent regulations such as Corporate Average Fuel Economy targets. This 

paper develops a method to incorporate the impacts of AV technology within the bounds of current fuel 

economy test, and simulates a range of automated following drive cycles to estimate changes in fuel 

economy. The results show that AV following algorithms designed without considering efficiency can 

degrade fuel economy by up to 3%, while efficiency-focused control strategies may equal or slightly 

exceed the existing EPA fuel economy test results, by up to 10%.  This suggests the need for a new near-

term approach in fuel economy testing to account for connected and autonomous vehicles. As AV 

technology improves and adoption increases in the future, a further reimagining of drive cycles and 

testing is required.  
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1.1: Introduction 
Management of environmental pollution and energy use in the light-duty transportation sector is 

currently regulated through fuel economy and emissions standards. In the United States (U.S.), Japan, 

and the European Union these standards are in the form of quantity of pollutants emitted and volume 

of fuel used per distance driven (Atabani et al., 2011). Compliance with these standards is evaluated via 

a standardized fuel economy and emissions test. The U.S. test consists of a vehicle on a treadmill, while 

a trained driver follows a fixed velocity schedule, or drive cycle (EPA, n.d. A). During the test all effluent 

from the tailpipe is tested for pollutant levels, and carbon dioxide levels are used to estimate fuel usage 

(EPA, n.d. A). This is done for five different types of drive cycles, to simulate different conditions (EPA, 

n.d.  B). The results from each test are then aggregated to ascertain if the vehicle is complying with 

emissions standards. In addition, the tests are weighted four separate ways to determine fuel efficiency 

with respect to required standards and reporting to the consumer in the form of highway, city, and 

combined fuel efficiency (EPA, n.d.  B). . This system allows for a standardized method to compare all 

passenger vehicles in the U.S. market, streamlining the regulatory process. 

By design, the current standardized fuel economy testing system neglects differences in how 

individuals actually drive their vehicles on the road. As autonomous vehicle (AV) technology is 

introduced, more aspects of driving are shifted into functions of decisions made by the vehicle, rather 

than the human driver. Yet the current fuel economy testing procedure does not have a direct 

mechanism to evaluate the impacts of AV technology on fuel economy ratings. Autonomous and 

partially autonomous vehicle technology has advanced greatly over the past several years, with adaptive 

cruise control (ACC) with lane assist systems already reaching the market, and more advanced 

technologies have been announced for the coming years. While these systems may allow vehicle 

manufacturers to optimize their partially-autonomous vehicle control systems for fuel efficiency, these 

systems will not affect vehicle fuel economy ratings unless they are included in fuel economy testing. 

Hence, manufacturer incentives will not be aligned with improving fuel economy. Without inclusion into 

fuel economy ratings, autonomous technology will not help manufacturers meet their required 

Corporate Average Fuel Economy (CAFE) targets and manufacturers cannot advertise the increased 

vehicle fuel efficiency. Under such incentives, manufacturers are likely to make vehicle control decisions 

that increase vehicle desirability at the cost of fuel efficiency. Currently, the National Transportation 

Safety Board is considering if certain partially-autonomous technologies should be included as standard 

vehicle features for safety reasons (Mlot, 2015). Requiring autonomous technologies on new vehicles for 

safety reasons would enhance the importance of understanding their impacts on vehicle fuel economy. 

The EPA has addressed similar issues of emerging technologies through “off-cycle technology 

credits” for CAFE standards, and is likely to continue this practice for autonomous technology (EPA and 

NHTSA, 2010). A manufacturer may petition for an increase in a vehicle’s CAFE fuel economy rating if it 

can demonstrate the current two-cycle test does not capture some fuel efficiency gains that “new and 
innovative technologies” provide (EPA and NHTSA, 2010). There are three potential challenges if this 

approach is used for autonomous vehicle technology. First, off-cycle technology credits only apply to 

new and non-standard technologies. Once other manufacturers begin to adopt them, as has already 

happened for many early autonomous features, they are no longer eligible. Second, the process is non-

standardized. A manufacturer must submit a testing and validation method, which has to be granted 

preliminary approval, and go through a public review process. In addition, the EPA will not certify the 
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method or results (EPA and NHTSA, 2010), meaning that these technologies may not be tested 

equivalently across manufacturers. The final challenge is that this will only apply for CAFE standards and 

not fuel economy ratings that inform the consumer (EPA and NHTSA, 2010). Hence a manufacturer still 

cannot reflect the impacts of this technology in its fuel economy stickers and may face restrictions when 

trying to advertise any fuel economy benefits to consumers. 

As autonomous vehicle technologies become more prevalent, the current drive cycle system should 

be expanded to include drive cycles for autonomous and partially autonomous vehicles. This paper 

makes a contribution to the literature by demonstrating a method to incorporate autonomous following 

drive cycles into the existing EPA testing regimen. This method was developed primarily for near-term 

conditions, where the majority of traffic is comprised of conventionally-driven vehicles. This method 

would allow the current dynamometer testing to continue, while accounting for the introduction of AV 

technologies. This approach was tested on a range of possible driving behaviors, modeling different 

priorities that a vehicle manufacturer may wish to pursue to obtain new testing drive cycles. The fuel 

consumption resulting from these drive cycles were then simulated on a variety of vehicles using the 

Virginia Tech Comprehensive Fuel Consumption Model (Edwardes and Rakha, 2014; Park et al., 2013; 

Rakha et al., 2011; Saerens et al., 2013), and then compared. While the ultimate procedure adopted by 

EPA will have to comply with regulatory requirements, the methods outlined here demonstrate the 

need for a new approach and provide a starting point for discussion in the near-term. As AV technology 

improves and adoption increases in the future, a further reimagining of drive cycles and testing is 

required. This paper is organized as follows. First, the current drive cycles used for fuel economy testing 

are discussed. This is followed by a review of current literature and a description of the proposed 

addition to the current test. Next the ACC behavior used for testing is described and the fuel 

consumption model discussed. Finally, the results are discussed and their sensitivity to assumptions is 

tested. 

1.2: Current Drive Cycles 

Currently the EPA requires five separate drive cycles for passenger vehicle fuel economy testing. These 

are the Urban, Highway, High Speed, Air Conditioning, and Cold Temperature tests. While the first three 

are permitted to be tested in any temperature between 68°F and 86°F, the latter two must be done at 

95°F with the air conditioning on and 20°F, respectively (EPA, n.d.  B). The results of these cycles are 

then weighted in four different ways to find the emissions rate, urban and freeway fuel economies and 

combined fuel economy. This research uses the urban (FTP) and highway (HWFET) drive cycles, as the 

basis for the new autonomous drive cycles. 

 The urban drive cycle (FTP) simulates typical travel through a city with stops and acceleration 

changes, while the freeway drive cycle (HWFET) simulates smoother freeway travel and makes no 

complete stops until the end of the test. Figures 1 and 2 show the velocity schedules for the FTP and 

HWFET drive cycles respectively, while Table 1 summarizes some of the test details. Also worth noting is 

that the FTP calls for a cold engine start. This is important as the engine typically operates at its highest 

efficiency after warming up (EPA, n.d.  B). 
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Figure 1: Velocity Schedule of the EPA FTP Drive Cycle (EPA, n.d.  B)  

 

Figure 2: Velocity Schedule of the EPA HWFET Drive Cycle (EPA, n.d.  B) 

Table 1: U.S. EPA Drive Cycles Details (EPA, n.d.  B) 

Driving Schedule Attributes FTP HWFET 

Top Speed (km/h) 90.1 96.6 

Average Speed (km/h) 34.1 77.7 

Maximum Acceleration (km/h/s) 5.3 5.1 

Distance Covered (km) 17.7 16.6 

Time Elapsed (min) 31.2 12.75 

Individual Full Stops 23 0 

Percentage of Time Stopped 18 0 
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1.3: Previous Research 
 Rakha et al. developed the Virginia Tech Comprehensive Power-Based Fuel Consumption Model 

(Rakha et al., 2011). This model was produced in response to two problems found with other available 

fuel consumption models. The first is that many models tend to produce unrealistic optimization 

decisions, such as always maximizing acceleration until the target speed is reached (Rakha et al., 2011). 

The second is that many require non-public or inaccessible information on vehicle and engine 

characteristics. Their model was designed to only require EPA or European Fuel Economy ratings and 

manufacturer-provided physical vehicle characteristics. Further investigations and field tests were led by 

Park et al. to determine the accuracy of the model for real world driving (Park et al., 2013). While errors 

were found, they were found to generally be relatively small and manageable. Edwardes and Rakha then 

expanded this model to include light duty and hybrid buses and found average errors of 4.7% and 22% 

for laboratory and on-road fuel consumption testing, respectively (Edwardes and Rakha, 2014). 

 Gonder and Simpson (Gonder and Simpson, 2006) investigated the Society of Automotive 

Engineers (SAE) J1711 testing recommendation standards for plug-in hybrid vehicles. They discussed 

potential improvements to the standard, some of which have since been adopted in an adapted form by 

the EPA. These include separately reporting petroleum product consumption and electricity 

consumption, per unit of distance. Additionally they recommended the assumed charging frequency be 

increased and a method for determining the weights for the Full, Partial, and No charge test results.  

 Bhavsar et al. (Bhavsar et al., 2014) investigated energy reduction strategies for connected plug-

in hybrid vehicles. They tested four strategies: a base case strategy with conventional driver behavior; 

an optimization strategy using knowledge of the current traffic signal status of approaching 

intersections; a strategy using information of the headway of all leading vehicles; and a strategy using 

both information on the headways of all leading vehicles and any approaching light’s status. Traffic 
behavior for these driver scenarios was simulated and used to estimate fuel consumption. They 

simulated results for both full and partial technology adoption. For full adoption they found fuel 

consumption savings of 75% for the combined strategy, 71% for the intersection only strategy and 69% 

for the headway only strategy (Bhavsar et al., 2014). 

 Wu et al. (Wu et al., 2014) investigated the performance gains that could be expected from 

partial vehicle automation when using information of the current traffic signal status and schedule for 

the approaching intersection, when compared to human drivers given the same information. In the 

manual drive case the dashboard would indicate target velocities when approaching an intersection and 

the driver would attempt to obey the advice. This was tested on a track with real drivers and their speed 

profiles recorded. A speed profile was then developed to show what would have happened had the 

advice been followed perfectly in the assumed partial automation case. Fuel consumption was 

simulated using the EPA’s Motor Vehicle Emission Simulator. Partial automation was found to improve 

fuel consumption by approximately 5-7% compared to a human driver given similar instructions (Wu et 

al., 2014).  

 Rajamani and Shladover (Rajamani and Shladover, 2001) investigated cooperative adaptive 

cruise control (CACC) systems to ascertain the highest capacity gains and decreases in headway possible. 
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They found a decrease of headway to 1 second possible along with a near doubling of capacity from 

3,000 vehicles/lane/hour for just an ACC system to 6,400 vehicles/lane/hour for CACC systems. Kesting 

et al. (Kesting et al., 2008) developed an ACC strategy that would adapt its behavior to different traffic 

patterns. The system is able to autonomously determine if traffic conditions are in 1 of 4 states, and 

then adjust behavior to the most capacity and flow efficient response. Through simulations they found 

that equipping just 5% of a vehicle fleet with this technology could significantly decrease congestion and 

decrease travel times. Grumert et al. (Grumert et al., 2015) investigated setting variable speed limits for 

cooperative and autonomous vehicles to moderate traffic patterns and decrease emissions. They found 

significant increases in traffic harmonization and decreases in vehicular emissions when variable speed 

limits were used and as the portion of cooperative autonomous vehicles increased. 

 Feng et al. (Feng et al., 2015) investigated using connected vehicles to decrease delays at 

intersections. Using connected vehicles as sensors to detect non-connected vehicles, they found that 

delays would decrease as more vehicle-to-infrastructure (V2I) enabled vehicles entered the road. With 

100% connected vehicle penetration they found up to 16% reduction in vehicular delays at intersections. 

 Zloki and Themann (Zlocki and Themann, 2014) estimated the fuel reduction potential of 

different adaptive cruise control strategies. They defined fuel reduction potential as the maximum 

possible in the most optimal conditions for a particular control strategy when facing a specific situation. 

Among the 10 different strategies they tested they found potential fuel reductions of up to 85%. On 

controlled track testing they found reductions of up to 70%, for one specific and short (less than 1km) 

scenario. It is notable that they were not including driver comfort, acceptance, or average use 

conditions. Finally, several recent works have bounded the energy implications from automated vehicles 

(Anderson, J. et al., 2014; Brown et al., 2014; Daniel J. Fagnant, 2014; Fagnant and Kockelman, 2015; 

Feng et al., 2015; Folsom, 2012; Gonder et al., 2012; Greenblatt and Saxena, 2015; Iii et al., 2014; 

Shladover, S, 2012; Wadud Z et al., 2013)], but fuel economy modeling and implications remains a 

critical research need.  

1.4: Proposed Addition to Current Testing for Autonomous Vehicles 

 In order to account for computer agency in automated vehicles, we propose the addition of 

“Automated Drive Cycles” to the fuel economy testing regimen. These drive cycles would be specific to 

the individual ruleset that a particular AV will follow, and appropriate for near-term conditions when 

AVs are on the road with primarily conventionally-driven vehicles. We propose that the AV cycles be 

generated as simply as possible, with the following method and assumptions: 

 First the ruleset that the AV will follow will be abstracted to function in a one dimensional 

simulation, therefore lateral control can be ignored. 

 The road will be assumed to be straight, single lane, and level, with only two vehicles and no 

traffic control systems. 

 The vehicle will be assumed to start 5 meters behind another “lead vehicle”. 
 At time 0 the lead vehicle will start to obey the EPA drive cycle for either FTP or HWFET 

conditions. 

 The simulated AV will then make decisions about how to best follow the lead vehicle until the 

end of the test. 
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 The test will end at the completion of the EPA cycle, when the lead vehicle has stopped, 

regardless of whether or not the AV has stopped. 

  The velocity profiles for both the Urban and Freeway simulations will then be recorded. 

 The results can be audited and validated as necessary by physical experiments on a roadway.  

The next step is to use these drive cycles in dynamometer testing to estimate fuel consumption. 

These results can then be either weighted in the fuel consumption and emission ratings, or used 

separately for advertising purposes. This method was designed to conform to the existing standards as 

much as possible. For more advanced automation features, such as vehicle-to-vehicle and vehicle-to-

infrastructure communication, new simulations would need to be developed under future research. 

Should the EPA add on-road testing to emissions and fuel economy testing, on-road AV following could 

also be added. 

 One commonality that all vehicle-to-vehicle and vehicle-to-infrastructure control strategies have 

is enabling the connected vehicle to predict future constraints on its driving behavior. While specific 

simulation scenarios would be needed to capture these effects, the possible range of cumulative effects 

on fuel efficiency can be estimated by giving the following vehicle knowledge about the lead vehicle 

actions into the future for the above simulation. This would allow insight into the significance of these 

effects for expected future scenarios of predictive ability.  

 This approach relies upon manufacturers to simulate and abstract their own rulesets to derive 

their AV drive cycles. This however, is not significantly different than the status quo, where 

manufacturers perform their own fuel economy testing and are subject to auditing. Simulated drive 

cycles can be physically audited by having an AV follow a vehicle, driven to follow the EPA drive cycles 

on a test track. 

2. Methods: 

2.1: Autonomous Drive Cycle Simulation: 

The Autonomous Drive Cycle was derived from the EPA City (FTP) and Highway (HWFET) fuel economy 

testing cycles; and a set of rules describing how an autonomous vehicle would react to a leading car. The 

EPA drive cycles provided the velocity of the vehicle on a 10 hertz cycle (EPA, n.d.  C). The position and 

acceleration used the integral and derivative of each 1/5 second’s position pairs, respectively. This 

information was then entered into a program that would query the lead vehicle’s position and velocity, 
in meters and m/s every 1/10 second and calculate headway, placing the lead vehicle five meters ahead 

at time 0. At the end of each time step the simulation would query a set of rules to obtain the velocity 

and acceleration for the beginning of the next time step. At the end of each time step the autonomous 

vehicle’s position, velocity and acceleration were recorded. 

2.2: Autonomous Driving Behavior 

Car following behavior was divided into different sets of rules. These rules included basic ACC and CACC 

methodologies. The ACC method is meant to simulate basic ACC systems, similar to those already on the 

market. The CACC method is meant to simulate posited and in-development technology that would 

allow vehicles to communicate with each other and infrastructure to improve traffic flow. All specific 

methods used in this paper are basic and generalized to run on all vehicles. They are not necessarily the 
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most optimal for fuel efficiency. The primary contribution of this research is the process for testing the 

fuel economy of autonomous vehicles and deriving the autonomous drive cycles, rather than optimizing 

the control methods that lead to those cycles. 

 Two basic ACC methods were developed and tested. The first, termed HeadwayACC, follows a 

simple set of bounding rules and direct calculation of the exact acceleration needed to achieve 

minimum safe following distance or headway and the acceleration needed to achieve the desired 

headway. Both headway and distance measures are needed to correct for headway approaching ∞ as 

the velocity approaches 0. The goal of the strategy is to attempt to reach and maintain a target headway 

behind a lead vehicle. The rules are described in Equations 1-5 and the variables are defined in Table 2. 

 Equation 1 describes the acceleration necessary to reach the minimum safe following distance 

by the next time step. The first two terms determine the acceleration to close the distance to 0 m and 

the third term is to ensure a safe distance, either in terms of a minimum distance or headway. Equation 

2 is used to determine whether to use minimum headway or minimum space as the target in Equation 1. 

Equation 3 determines the acceleration necessary to reach the target headway behind the lead vehicle 

by the next time-step. The equation is derived from the general form equation of motion with constant 

acceleration, the relative velocities of the two vehicles, the current space between the two vehicles and 

the target headway. Equations 4 and 5 are used to compare the two previous determined accelerations 

to the acceleration bounds and choose an acceleration. The second part of the “and” conditional in 
Equation 5 is necessary to correct for when accelerating, 𝑎𝑠𝑎𝑓𝑒 will close the gap beyond the target 

headway. Here 𝑎𝑠𝑎𝑓𝑒 is only used for decelerations. 

Equation 1 𝑎𝑠𝑎𝑓𝑒 ≥ 𝑠𝑝𝑎𝑐𝑒𝑠𝑡𝑒𝑝2 + 𝑣𝑙𝑒𝑎𝑑 − 𝑣𝑠𝑒𝑙𝑓𝑠𝑡𝑒𝑝 − 𝑏𝑢𝑓𝑓𝑒𝑟𝑠𝑡𝑒𝑝2  

Equation 2: 𝑏𝑢𝑓𝑓𝑒𝑟 = max ( 1 𝑚𝑒𝑡𝑒𝑟, 𝑣𝑠𝑒𝑙𝑓ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑚𝑖𝑛) 

Equation 3 

𝑎𝑡𝑎𝑟𝑔𝑒𝑡 = 0.35 ∗ (𝑠𝑝𝑎𝑐𝑒 + (𝑣𝑙𝑒𝑎𝑑 − 𝑣𝑠𝑒𝑙𝑓) ∗ 𝑠𝑡𝑒𝑝) ∗ ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑣𝑠𝑒𝑙𝑓(1 + 𝑠𝑡𝑒𝑝2 ∗ ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑡𝑎𝑟𝑔𝑒𝑡)  

Equation 4 𝑏𝑜𝑢𝑛𝑑(𝑥, 𝑦, 𝑧) = max(min(𝑥, 𝑦) , 𝑧) 

Equation 5 𝑖𝑓 𝑎𝑠𝑎𝑓𝑒 ≤ 𝑎𝑡𝑎𝑟𝑔𝑒𝑡  𝑎𝑛𝑑 𝑎𝑠𝑎𝑓𝑒 ≤ 0: 𝑡ℎ𝑒𝑛 𝑎𝑛𝑒𝑤 = 𝑏𝑜𝑢𝑛𝑑(𝑎𝑠𝑎𝑓𝑒 , 𝑎𝑚𝑎𝑥, 𝑎𝑚𝑖𝑛) 𝑒𝑙𝑠𝑒: 𝑎𝑛𝑒𝑤 = 𝑏𝑜𝑢𝑛𝑑(𝑎𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑎𝑚𝑎𝑥, 𝑎𝑚𝑖𝑛) 



When citing this research, please use the final version of this paper that is published as: Mersky A.C., Samaras C. (2016). Fuel 

Economy Testing of Autonomous Vehicles, Transportation Research Part C: Emerging Technologies 65, 31-48. 

doi:10.1016/j.trc.2016.01.001 

 

10 

 

Table 2: Variable Definitions for Equations 1-10 

Variable Name Definition 𝑎𝑠𝑎𝑓𝑒 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑓𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑎𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑣𝑠𝑒𝑙𝑓 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑓𝑜𝑙𝑙𝑜𝑤𝑒𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑛𝑒𝑤 𝑑𝑒𝑐𝑖𝑑𝑒𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑚𝑎𝑥,𝑚𝑖𝑛 𝑚𝑖𝑛 & 𝑚𝑎𝑥 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛/𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑣𝑙𝑒𝑎𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑎𝑑𝑒𝑟 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑠 = 𝑠𝑝𝑎𝑐𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑚𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑓𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 = 3 𝑠 𝑇𝑑 = ℎ𝑒𝑎𝑑𝑤𝑎𝑦𝑡𝑎𝑟𝑔𝑒𝑡 𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 𝑏𝑢𝑓𝑓𝑒𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑠𝑎𝑓𝑒 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (m) 𝑠𝑡𝑒𝑝 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 0.1 𝑠 𝑣𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑒𝑒𝑑 𝑣𝑒 𝑠𝑝𝑒𝑒𝑑 𝑒𝑟𝑟𝑜𝑟, 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑖𝑒𝑠 𝑎𝑠𝑐 𝑎𝑐𝑐𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑠𝑝𝑒𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑑 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑠𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑝𝑙𝑒𝑎𝑑 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑝𝑠𝑒𝑙𝑓 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

 

 The 0.35 constant in Equation 3 is to smooth acceleration patterns and was derived through trial 

and error, as were the minimum safe headway and absolute spacing of 3 seconds and 1 meter, 

respectively. Additionally, the vehicle will not start moving if currently stopped and the lead vehicle is 

also stopped and less than 5 meters ahead. The vehicle will also adjust its acceleration to never exceed 

60 mph or go into reverse. This ruleset was tested with acceleration bounds of +/-2, 1.5 and 1 m/s2. 

 The second ACC method used, VelocityACC, is a modified form of that used in Shladover et al.’s 

(Shladover et al., 2012) CACC platoon simulation. VelocityACC’s rules are similar to those used by 

Shladover et al., but with additions to account for the more dynamic driving conditions of urban streets. 

The goal of this method is to attempt to reach a target speed and maintain that speed, if feasible. This is 

opposed to the HeadwayACC method where the goal is to reach a target headway. According to 

Shladover et al.’s original rules the vehicle can be in either speed control or gap control. If in speed 

control the new acceleration is described by Equations 6 and 7. 

 Equation 6 calculates the difference between the vehicle’s current speed and the predefined 

desired speed. Equation 7 then sets the control acceleration at 40% of the speed error, or the 

acceleration bounds. The 40% constant comes from Shladover et al.’s (2012) original control scheme 

and functions to smooth out acceleration changes. 

 



When citing this research, please use the final version of this paper that is published as: Mersky A.C., Samaras C. (2016). Fuel 

Economy Testing of Autonomous Vehicles, Transportation Research Part C: Emerging Technologies 65, 31-48. 

doi:10.1016/j.trc.2016.01.001 

 

11 

 

Equation 6 𝑣𝑒 = 𝑣𝑠𝑒𝑙𝑓 − 𝑣𝑑 

Equation 7 𝑎 = 𝑎𝑠𝑐 = 𝑏𝑜𝑢𝑛𝑑(−0.4 ∗ 𝑣𝑒 , 𝑎𝑚𝑎𝑥, 𝑎𝑚𝑖𝑛) 

 

In gap control Equations 8-10 also apply. Equation 8 defines the desired spacing gap as the 

product of the desired headway time and the current speed. Equation 9 defines the spacing error as the 

difference between the current gap and the desired spacing gap calculated in Equation 8. Finally, 

Equation 10 sets the acceleration with regard to the possible acceleration bounds and a desired 

acceleration of the sum of the current gap and a quarter of the spacing error. 

Equation 8 𝑠𝑑 = 𝑇𝑑 ∗ 𝑣𝑠𝑒𝑙𝑓 

Equation 9 𝑠𝑒 = 𝑠 − 𝑠𝑑 

Equation 10 𝑎 = 𝑏𝑜𝑢𝑛𝑑(𝑠 + 0.25 ∗ 𝑠𝑒 , 𝑎𝑠𝑐 , 𝑎𝑚𝑖𝑛) 

Further inclusions were that the vehicle will not start if the lead vehicle is close and stationary, 

as in the previous control scheme, and that the vehicle will check to see what is the acceleration needed 

for minimum safe following distance, as in the previous set, and follow that if the car chooses to 

decelerate inadequately, up to -2 m/s2. 

For this study the desired speed was set as 60 mph and the desired headway as 3 seconds. The 

vehicle will enter speed control when spacing is greater than a “speed space” and gap control when 

under a “gap space” and, when between, will use the last used control set, defaulting to gap control. 
These spaces are dependent on speed: above 40 mph, freeway speeds, the spaces are 120 and 100 

meters respectively: between 25 mph and 40 mph, urban speeds, the spaces are 80 and 65 meters; and 

under 25 mph, local speeds, the spaces are 50 and 42 meters. The spacing for highway speeds is that 

used by Shladover et al. (Shladover et al., 2012) and the others are based upon a 3.7 second headway at 

maximum speed cutoff, which is roughly what the freeway speed settings use. As with the previous 

ruleset these rules were tested with acceleration bounds of +/-2, 1.5 and 1 m/s2. 

Another control method tested was based upon connected-autonomous features. Greater 

improvements in acceleration and velocity stability, and therefore fuel economy, can be gained if 

vehicles communicate information about their current positions, velocities, and future plans with each 

other. The amount of information that will be shared is currently unknown and the gains from using this 

information will be influenced by the percentage of vehicles on the road and roadway infrastructure 

using the technology. A bounding case is a vehicle having perfect information on what conditions will be 

in front of it for a defined period of time into the future. This can be used as a proxy to estimate the 
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effects the near future of connected vehicle technology may bring to fuel economy of an individual 

vehicle. The following control method, PlannedACC, was developed to simulate a control strategy under 

such conditions. 

The rules for this PlannedACC cruise control strategy are as follows: 

Starting at time 0, the following vehicle will query the lead vehicle’s planned position, for the 
next 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛 and run Algorithm 1. 

Algorithm 1: PlannedACC Overview 

 𝑎𝑡𝑟𝑦 = 𝑎𝑚𝑎𝑥 

 𝑖𝑓 𝑣𝑆𝑒𝑙𝑓 = 0 𝑎𝑛𝑑 𝑣𝐿𝑒𝑎𝑑 = 0 𝑎𝑛𝑑 𝑠𝑝𝑎𝑐𝑒 <  10: 
  𝑡ℎ𝑒𝑛: 𝑎𝑛𝑒𝑤 = 0, 𝑏𝑟𝑒𝑎𝑘 ## 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 𝑠𝑡𝑜𝑝𝑝𝑒𝑑 

 𝑡 = 0 

 𝑓𝑜𝑟 𝑡 ≤ 𝑡ℎ𝑜𝑟𝑖𝑧𝑜𝑛{ 

  𝑖𝑓 𝑎𝑡𝑟𝑦 < 𝑎𝑚𝑖𝑛: 𝑏𝑟𝑒𝑎𝑘 ## 𝑑𝑒𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 

  𝑣𝑡𝑟𝑦 = 𝑣𝑠𝑒𝑙𝑓 + 𝑎𝑡𝑟𝑦 ∗ 𝑠𝑡𝑒𝑝 

  𝑝𝑡𝑟𝑦 = 𝑝𝑠𝑒𝑙𝑓 + 𝑣𝑡𝑟𝑦 ∗ 𝑠𝑡𝑒𝑝 

  𝑠𝑝𝑎𝑐𝑒𝑡𝑟𝑦 = 𝑝𝑙𝑒𝑎𝑑(𝑡) − 𝑝𝑡𝑟𝑦 

  ℎ𝑒𝑎𝑑𝑤𝑎𝑦 = 𝑠𝑝𝑎𝑐𝑒𝑡𝑟𝑦𝑣𝑡𝑟𝑦  

  𝑖𝑓 𝑠𝑝𝑎𝑐𝑒𝑡𝑟𝑦 < 5 𝑚𝑒𝑡𝑒𝑟𝑠 𝑜𝑟 ℎ𝑒𝑎𝑑𝑤𝑎𝑦 < ℎ𝑒𝑑𝑤𝑎𝑦𝑚𝑖𝑛: 
   𝑡ℎ𝑒𝑛:   𝑎𝑡𝑟𝑦 = 𝑎𝑡𝑟𝑦 − 0.1, 𝑡 = 0 

   𝑒𝑙𝑠𝑒: 𝑡 = 𝑡 + 𝑠𝑡𝑒𝑝} 

 𝑎𝑛𝑒𝑤 = 𝑎𝑡𝑟𝑦 

 This process is then repeated every 𝑡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 seconds. Additionally the vehicle will ensure that it 

does not exceed the speed limit or reverse. The 5-meter absolute space minimum was found through 

trial and error to be the point where gains in safety dropped off considerably. These rules are explained 

verbally below. 

 The following vehicle will query the lead vehicle’s position, in relationship to the following 

vehicle’s current position, every 1/10 second for the following X seconds. Various values of X 

are tested. 

 The following vehicle will then determine if it can accelerate at a user defined maximum 

acceleration for the following X seconds.  

o If the vehicle falls within a user specified minimum buffer of absolute space or time 

headway, then the vehicle will then try again at a lower acceleration, continuing 
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until it finds a solution or reaches and uses a user defined minimum 

(de)acceleration. 

 If the vehicle is ever assumed to exceed the speed limit or reverse, the 

software will replace the velocity for that time-step with either the speed 

limit or a stop, respectively. 

 The vehicle will then travel for the next Y seconds at the decided upon acceleration, after 

which it will start the process again. 

o With Y always being less than X 

 𝑋 − 𝑌 must be greater the minimum headway 

 In addition the vehicle will not start from a stop if the lead vehicle is also stopped and within 

a user defined buffer space. 

This method is designed to stabilize the acceleration curve, minimizing the number of times 

acceleration changes. This would be expected to reduce fuel consumption. This was tested 4 times, with 

acceleration bounds of +/-1 and 2 m/s2 and X-Y pairs of 3-2 and 5-3 seconds. This allows testing of what 

the possible gains from connected vehicle features may be as their predictive ability increases. This 

method is not appropriate to measure any specific connected vehicle control function. Rather it models 

how far into the future a vehicle following a similar control strategy would need to be able to 

confidently predict the state of the road, in order to deliver fuel efficiency gains. This then acts as an 

initial proxy for the near- and mid-term feasibility of such a method and technology. Noticeable gains in 

efficiency at a few seconds of predictive power could be meaningful, but if several minutes of predictive 

ability are necessary to see changes, one might conclude that it will not be feasible to implement. The 

parameters for each of the rulesets are summarized in Table 3, with a common maximum speed of 26.8 

m/s (60 mph). 

Table 3: Ruleset Parameters (“N/A“ indicates an unused parameter) 

Rule Set Normal 

Accelerati

on 

Bounds 

(m/s2) 

Maximum 

Deceleration 

for Safety 

(m/s2) 

Plan 

Ahead 

Time 

(s) 

Planning 

Interval 

(s) 

Target 

Headway 

(s) 

Minimum 

Headway 

(s) 

Minimum 

Safe 

Distance 

(m) 

HeadwayACC 1 +/- 2 -2 N/A N/A 3 N/A 1 

HeadwayACC 2 +1 / -1.5 -2 N/A N/A 3 N/A 1 

HeadwayACC 3 +/- 1 -2 N/A N/A 3 N/A 1 

VelocityACC 1 +/- 2 - 2 N/A N/A 3 N/A 1 

VelocityACC 2 +/- 1.5 - 2 N/A N/A 3 N/A 1 

VelocityACC 3 +/- 1 - 2 N/A N/A 3 N/A 1 

PlannedACC 1 +/- 2 N/A 3 2 N/A 1 5 

PlannedACC 2 +/- 2 N/A 5 3 N/A 1 5 

 

2.4: Fuel Economy Estimation 

Fuel Economy was estimated using the Virginia Tech Comprehensive Fuel Consumption Model 

(Edwardes and Rakha, 2014; Park et al., 2013; Rakha et al., 2011; Saerens et al., 2013). This model relies 

upon publicly available vehicle and engine characteristics, as well as the official EPA fuel economy 
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ratings for commercially available vehicles. This model has been validated in two separate papers. In a 

2011 paper (Rakha et al., 2011) three passenger vehicles, the Ford Explorer, Saturn SL and Honda Accord 

were put on a dynamometer and run for the Arterial Level of Service (LOS) A cycle, the LA92 cycle and 

the New York cycle. The instantaneous fuel consumption physically measured was then compared to the 

model’s estimated consumption. They were all highly correlated, with R-squared values exceeding 0.9 

and had slopes varying between 1 and 1.3, averaging at 1.1, suggesting slight overestimates in fuel 

consumption and good predicting power (Rakha et al., 2011). 

Park et al.’s 2013 follow-up paper (Park et al., 2013) validates the model against on-road driving, 

specifically on U.S. Interstate 81 between miles 118 and 132. Notably, unlike a dynamometer, this 

roadway section includes positive and negative grades. Six light duty vehicles, four passenger vehicles 

and two SUVs, were tested; a 2001 SAAB 95, a 2006 Mercedes R350, a 2008 Chevrolet Tahoe, a 2007 

Chevy Malibu, a 2008 Hybrid Chevy Malibu, and a 2011 Toyota Camry. A DashDAQ unit was used to 

record speed and fuel consumption and cruise control was both used and not used an equal number of 

iterations for each vehicle. Using the default model calibration settings, the averaged R-squared values 

for each vehicle’s instantaneous fuel consumption, measured and estimated, were found to be between 

0.90 and 0.98, while the slopes were between 0.97 and 1.02, showing consistent goodness of fit, in 

aggregate (Park et al., 2013). Individual tests were not as good, with R-squared values as low as 0.8 and 

slopes between 0.72 and 1.62, showing somewhat less goodness of fit (Park et al., 2013). For overall fuel 

economy this led to a difference of up to +/- 36% between measured and estimated values (Park et al., 

2013). However, what is most important is that the Virginia Tech Comprehensive Fuel Consumption 

Model correctly states whether a certain driving pattern is more or less efficient than another one. In 

terms of cruise control versus manual driving and driving northbound or southbound both the measured 

data and the modeled results showed the same trends in either direction (Park et al., 2013). 

The Virginia Tech Comprehensive Fuel Consumption Model, was therefore seen as appropriate 

for this research. We only used vehicles that at least one of the two validating papers had used. We used 

the 2010 Honda accord used in (Rakha et al., 2011) and the 2011 Toyota Camry, the 2007 Chevy Malibu 

and 2008 Chevy Malibu Hybrid, used in (Park et al., 2013). The vehicle parameters we used are identical 

to the ones used in these validating papers. This gives a comparison of three different manufacturers 

and a separate test for hybrid vs. conventional vehicles. 

The model requires certain vehicle characteristics as inputs and a 1 hertz velocity schedule. As 

the vehicle following simulation used 10 hertz, every 10th point of velocity was used. While the greater 

precision was necessary for the control function, it was determined that it would not considerably 

increase accuracy for fuel economy estimation. The vehicle characteristics used are listed in the 

Appendix. The program outputs a file containing the instantaneous consumption of fuel, in liters per 

second. This was summed to find the total fuel consumption for each control strategy and cycle 

combination. The total distance that the automated vehicle traveled was then computed and divided 

over the fuel consumption to find the fuel economy, which was then converted to miles per gallon 

(mpg). 
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3: Results 

3.1: Drive Cycles 

The purpose of developing the automated driving rules and cycles was to enable comparison of the 

plausible differences in fuel efficiencies for autonomous and human driving. One of the methods that an 

autonomous vehicle can use to improve fuel economy is to lower the magnitudes of its acceleration and 

deceleration and how quickly it changes acceleration and deceleration. It can be expected in most cases 

that a drive cycle where these are moderated would be more efficient than another, all else being equal. 

This study used the FTP and HWFET drive cycles as the basis for a representative human driver and 

assumes that an automated vehicle would be following a human-driven car. Therefore improvements 

will come from the vehicle deciding to lower the amplitudes of accelerations and decelerations, which is 

directly set by the rules, and the smoothness of changes in accelerations and decelerations. Appendix A 

shows the acceleration schedules for each of the simulated control strategies. 

 As shown in Figures A1-15, the HeadwayACC method performs similarly to the Velocity method. 

Both have higher acceleration bounds and similar rates of change in acceleration as compared to the 

EPA’s cycles. The PlannedACC ruleset keeps the vehicle’s acceleration bounds lower than the EPA’s, 
even when allowed more, and produces much slower changes in acceleration. Therefore it is expected 

that the HeadwayACC method would have a lower fuel economy, the VelocityACC method a similar or 

slightly lower fuel economy and the PlannedACC ruleset a higher fuel economy than the car following 

the EPA’s drive cycles. 

3.2: Fuel Economy 

Table 4 shows the fuel economies of a selected set of the drive cycles for the simulated 2010 Honda 

Accord and the percentage change from the modeled fuel economy for the EPA’s drive cycles. The 

Honda Accord is used as an illustrative example here, but the method is applicable across all vehicle 

makes and models. The results for all vehicles are shown in Appendix B. The trends seen for the Honda 

Accord are similar to those of all the other vehicles. The HeadwayACC control method was generally 

worse than the EPA’s cycles, with fuel economy degradations up to 3%. The best performing freeway 

cycle had a small decrease in fuel economy for all vehicles and the only urban cycle had a fuel economy 

increase of up to 2%, when the acceleration bounds were largest. Similarly the VelocityACC control 

strategy had mixed results. For the freeway cycle it mostly showed decreases of up to 3% in fuel 

economy. Some of the urban cycles showed slight gains and the 2007 Malibu was an outlier, with one of 

its city cycles showing an increase of fuel economy of 10%. The PlannedACC method always showed 

improvement in fuel economy, with the greatest gains found in the city cycles, between 2% and 6% 

gains in fuel economy, and lessor gains, between 1% and 3%, seen in the freeway cycles. This shows that 

gains in fuel economy can be achieved from just 3 seconds of predictive ability. These results are 

consistent with expectations, given the acceleration schedules of the simulated and EPA drive cycles. 

 

 

Table 4: Fuel Economy Results: 2010 Honda Accord 

2010 Honda Accord Simulated Fuel % Change from EPA 
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*Rated fuel economies are notably lower than simulated, due to usage of the extra 3 cycles for the rated fuel economies 

 All percentage changes were calculated from simulated fuel economies for both the EPA and 

Automated cycles, to ensure trends in simulated uncertainty are constant. Calibration research on the 

Virginia Tech Comprehensive fuel consumption model showed that directions and relative magnitudes 

in fuel consumption changes were accurate, even if absolute values were not perfect (Park et al., 2013) 

(Rakha et al., 2011) (Park et al., 2013), ensuring the relative integrity of the results. The occasional losses 

in fuel economy in HeadwayACC and VelocityACC appear to be due to temporary stability losses caused 

by an inability of these methods to predict the future and plan ahead. 

If the 2010 Accord were equipped with the necessary technology for the above automated 

control strategies, we can then use the results above to envision what the proposed process would look 

like. First the process can be simplified to only include the derived autonomous tests and original Urban 

and Freeway cycles, each weighted evenly with their counterpart, for the urban and freeway rating, 

respectively. The combined fuel economy rating would follow the current 55% urban 45% freeway split 

(EPA, 2014). Honda would abstract their vehicle control rules to run on a level straight road and work 

with complete knowledge of the location of the vehicle in front of it. Honda would then record the 

velocity schedules and run dynamometer testing, using 4 test cycles, the original 2 FTP and HWFET 

cycles and their 2 derived ones. The results of both freeway and both urban tests would then be 

averaged to find the new fuel economy sticker ratings, so for the HeadwayACC control method urban 

fuel economy would decrease 0.25 mpg, freeway 0.1 mpg and combined 0.18 mg, while with 

PlannedACC they would rise 1.25 mpg, 0.3 mpg, and 0.82 mpg, respectively. Possible blended fuel 

economies for other weighting methods are shown in Table 5. This shows a definite benefit for 

connected autonomous features, as a 1-mpg gain may well improve sales, help with compliance, and 

reduce emissions. The fully autonomous features could still help or hurt CAFE requirements for different 

manufacturers. This is especially important as automation is becoming much more common. A 1-3% 

gain or loss across a full fleet would be considerable. Additionally any fleet gains and losses in fuel 

economy directly limit or enable increased sales of larger, less fuel efficient, and more profitable 

vehicles. 

  

Economy (MPG) 

FTP Urban Cycle (22)* 25.1 N/A 

HWFET Freeway Cycle (31)* 43.3 N/A 

HeadwayACC City 1 25.6 2% 

HeadwayACC Freeway 1 43.1 0% 

VelocityACC City 2 25.3 1% 

VelocityACC Freeway 2 43 -1% 

PlannedACC City 2 26.6 6% 

PlannedACC Freeway 2 43.9 1% 
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Table 5: Blended Fuel Economies for 2010 Honda Accord 

ACC Ruleset Traditional Cycle 

Weight (%) 

Autonomous 

Cycle Weight (%) 

Simulated 

Weighted Fuel 

Economy (MPG) 

Weighted % 

change from 

EPA 

FTP Urban Cycle (22)* 100 0 25.1 N/A 

HWFET Freeway Cycle 

(31)* 

100 0 43.3 
N/A 

EPA Combined (25)* 100 (55% City / 

45% Highway) 

0 33.29 

N/A 

HeadwayACC City 1 80 20 25.20 0.40% 

HeadwayACC Freeway 1 80 20 43.26 -0.09% 

Headway ACC Combined 1 80 20 33.33 0.11% 

HeadwayACC City 1 60 40 25.30 0.80% 

HeadwayACC Freeway 1 60 40 43.22 -0.18% 

Headway ACC Combined 1 60 40 33.36 0.22% 

HeadwayACC City 1 40 60 25.40 1.20% 

HeadwayACC Freeway 1 40 60 43.18 -0.28% 

Headway ACC Combined 1 40 60 33.40 0.33% 

HeadwayACC City 1 20 80 25.50 1.59% 

HeadwayACC Freeway 1 20 80 43.14 -0.37% 

Headway ACC Combined 1 20 80 33.44 0.44% 

VelocityACC City 1 80 20 25.22 0.48% 

VelocityACC Freeway 1 80 20 43.24 -0.14% 

VelocityACC Combined 1 80 20 33.33 0.12% 

VelocityACC City 1 60 40 25.34 0.96% 

VelocityACC Freeway 1 60 40 43.18 -0.28% 

VelocityACC Combined 1 60 40 33.37 0.23% 

VelocityACC City 1 40 60 25.46 1.43% 

VelocityACC Freeway 1 40 60 43.12 -0.42% 

VelocityACC Combined 1 40 60 33.41 0.35% 

VelocityACC City 1 20 80 25.58 1.91% 

VelocityACC Freeway 1 20 80 43.06 -0.55% 

VelocityACC Combined 1 20 80 33.45 0.47% 

PlannedACC City 3 80 20 25.40 1.20% 

PlannedACC Freeway 3 80 20 43.42 0.28% 

PlannedACC Combined 1 80 20 33.51 0.66% 

PlannedACC City 3 60 40 25.70 2.39% 

PlannedACC Freeway 3 60 40 43.54 0.55% 

PlannedACC Combined 1 60 40 33.73 1.32% 

PlannedACC City 3 40 60 26.00 3.59% 

PlannedACC Freeway 3 40 60 43.66 0.83% 

PlannedACC Combined 1 40 60 33.95 1.97% 

PlannedACC City 3 20 80 26.30 4.78% 

PlannedACC Freeway 3 20 80 43.78 1.11% 

PlannedACC Combined 1 20 80 34.17 2.63% 



When citing this research, please use the final version of this paper that is published as: Mersky A.C., Samaras C. (2016). Fuel 

Economy Testing of Autonomous Vehicles, Transportation Research Part C: Emerging Technologies 65, 31-48. 

doi:10.1016/j.trc.2016.01.001 

 

18 

 

*Rated fuel economies are notably lower than simulated, due to usage of the extra 3 cycles for the rated fuel economies 

3.3: Parameter Sensitivity 
Both the HeadwayACC and VelocityACC based control methodologies are insensitive to the headway, in 

most circumstances. In both cases, when the acceleration bounds are held constant, and the headway 

varied from 2 to 6 seconds there was no variation in fuel economy. This is because any safe ruleset will 

normally attempt to keep the desired headway, making any differences temporary until the desired 

headway is reached. This suggests the acceleration bounds as the main factor in fuel economy, with 

bounds slightly higher than that of the leading car resulting in the lowest fuel consumption. 

 For the PlannedACC control strategy desired headway was not a parameter. Instead, the plan 

ahead and re-planning intervals were modified to vary between 1 and 6 seconds for each.  As expected, 

the longer the vehicle plans into the future, the greater the fuel economy benefits. The interval between 

changes in acceleration however, must be smaller than the time the vehicle plans for. Equal plan ahead 

and re-plan intervals almost always lead to decreased fuel efficiency and are always less efficient than if 

they were different, for a given planning interval. The buffer between these two intervals ensures the 

smoother acceleration pattern, which allows for the efficiency gains. Overall fuel economy gains were 

shown at all times where the time between restarting the planning algorithm was shorter than the time 

it could look ahead, suggesting fuel economy gains are possible with any level of predicative ability from 

connected features. 

 Decreasing the difference between the planning times, in addition to being less efficient, is also 

not always safe. For both 2 seconds and 6 seconds of planning time vehicles crash when the re-planning 

time is equal. This is due to the limited headway emphasis and simplifications that ignored rules that 

would be necessary for safety outside normal operation. Crashes can occur in this method when the 

speed at which the vehicle is traveling at the end of each re-planning interval is high enough to cover the 

distance between the vehicles in the time between the re-plan and planning intervals. As the minimum 

headway is 1 second, any difference less than that can lead to a crash. For example, if over the next 6 

seconds it is found safe to accelerate to 60 mph and the vehicle accelerates for the full 6 seconds while 

the lead vehicle is stopped, there will be at least 27 meters between the two vehicles before the next 

decision is made. The maximum 2 m/s2 will not allow the following vehicle to safely stop within this 

distance. In reality, all control methodologies would have contingency rules that would allow 

uncomfortably fast decelerations. This was ignored here, both for simplicity and because the test cycles 

are not meant to examine extreme situations. Additionally one of the main predicted advantages of 

connected-autonomous vehicles is the ability to safely reduce headway. Therefore modifying the control 

rules to increase headway, rather than maintain a difference between the two planning intervals would 

not represent ultimate likely conditions. 

4: Summary and Conclusions 
Autonomous vehicle driving behavior can have a considerable effect on fuel economy. Here we 

proposed a standardized method for testing the fuel economy effects of autonomous vehicle behavior 

when following another vehicle. The method consists of two steps, and is applicable in the near-term, 

when AVs will travel in traffic with primarily conventional vehicles. First the driverless vehicle’s control 
strategy is abstracted for simulation to a simple one lane and one-dimensional road, with only one 
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leading vehicle and perfect visibility; it is then run following a vehicle obeying the EPA’s FTP and HWFET 
drive cycles. These derived drive cycles are then to be tested with a dynamometer, similar to current 

testing. A series of simplified rulesets was then developed for ACC behavior and their car following 

behavior was simulated for the EPA’s drive cycles. Fuel economy was estimated using the Virginia Tech 
Comprehensive Fuel Consumption model. Results showed considerable variation in fuel economy, with 

the simplest ruleset showing decreases in performance, and a slightly more complicated and less-

aggressive ruleset showing both minor improvements and decreases in fuel economy. Another control 

algorithm, relying upon an assumption of predictive ability provided by connected autonomous vehicles 

was shown to consistently provide improvements in fuel economy. 

The results of this study have shown that following control algorithms designed without 

considering fuel economy performance can perform significantly worse, while more intelligently 

designed control schemes may equal or exceed the base driver performance assumed by the EPA fuel 

economy tests. At present, with no incentive to design more fuel efficient autonomous rulesets, 

manufacturers may not design for increased fuel economy. They may design a system to maximize 

speed and/or acceleration, by default or as an option. This would be similar to the poor performing 

HeadwayACC ruleset we tested, which generally had worse fuel economy than the EPA fuel cycle. In 

addition, this study found more advanced connected features can improve performance consistently 

and significantly, by improving the amount of time a vehicle can predict actions in the future. While the 

basic testing method outlined here would have to be expanded to meet U.S. regulatory requirements in 

order to test automated vehicles, it does show the need for a new testing procedure. Additionally, while 

this study did not attempt to find an optimal control function, it is seen that attempting to significantly 

improve fuel economy without any predictive or connected features is challenging and inconsistent. This 

is because the lead vehicle’s behavior in the EPA tests is fairly non-aggressive, and the rules tested did 

not account for the full range of behaviors exhibited by the EPA drive cycles. In particular, none of the 

rulesets explicitly distinguished between abrupt emergency stops and general city stop-and-go traffic. 

The inability to account for this caused poor performance on the urban cycles, where such actions are 

common, and may have caused poorer performance than could be expected of vehicles following more 

robust control sets designed for stop-and-go traffic. Additionally the fuel consumption model used 

precluded any testing of grade-based optimization or broader fuel economy benefits of automation such 

as platooning or reduced congestion. This study demonstrated that simulations of a car with 

autonomous features following another vehicle obeying the EPA drive cycle can be used as a 

standardized method to create a drive cycle to test fuel economy. 

The results suggest that this method can be used to demonstrate how AV behavior may affect 

fuel economy in vehicles following similar traffic patterns to those currently assumed by the EPA. These 

results are limited by: the simplification of control strategies; the accuracy of the fuel consumption 

model used; and the usage of the EPA Urban and Freeway drive cycles, which likely do not reflect the 

real conditions in which the initial AVs may be operating. With these factors noted, we found a range of 

possible automation outcomes from fuel economy losses of up to 3% to gains of up to 10%. 

 This study used the current EPA Urban and Freeway fuel economy drive cycles as the base for 

the automated following cycles. This may not be appropriate for the expected future of NHSTA Levels 2 

and 3 AVs (NHTSA, 2013). These vehicles are not expected to be able to drive themselves in all 

conditions. Instead they are to have a limited subset of conditions in which they may enter an 
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autonomous mode. Therefore, the leader drive cycle should be designed to account for these situations.  

In addition, the approach used here is for the near-term evaluation of AV technologies. As technology 

and adoption increases and the system becomes more efficient, the driving behavior of the lead vehicle 

as well as the entire system will change. Hence, car following algorithms will have less predictive power. 

What is clear is that rapid progress is being made in the development of autonomous and connected 

vehicles and that AV technology affects individual vehicle fuel economy. Given this, stakeholders can use 

the methods outlined here as a starting point in the discussions for the best path forward. 
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Appendix A: Control Strategy Drive Cycles and Discussion 

Figures A1-A15 show the simulated acceleration schedules for each ruleset. 

 

Figure A1: Acceleration Schedule for EPA’s Urban (FTP) Drive Cycle 

  

Figure A2: Acceleration Schedule for EPA’s Freeway (HWFET) Drive Cycle 
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Figure A3: Acceleration Schedule for HeadwayACC 1 Urban 

 

Figure A4: Acceleration Schedule for HeadwayACC 1 Freeway 
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Figure A5: Acceleration Schedule for HeadwayACC 2 Freeway 

  

Figure A6: Acceleration Schedule for HeadwayACC 3 Freeway 
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Figure A7: Acceleration Schedule for VelocityACC 1  

  

Figure A8: Acceleration Schedule for VelocityACC 1 Freeway 
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Figure A9: Acceleration Schedule for VelocityACC 2 Urban 

  

Figure A10: Acceleration Schedule for VelocityACC Freeway 
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Figure A11: Acceleration Schedule for VelocityACC 3 Freeway 

  

Figure A12: Acceleration Schedule for VelocityACC 3 Urban 
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Figure A13: Acceleration Schedule for PlannedACC 1 Freeway 

  

Figure A14: Acceleration Schedule for PlannedACC 2 Urban 
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Figure A15: Acceleration Schedule for PlannedACC 2 Freeway 

A note on vehicles not stopping at the conclusion drive cycles  

As can be seen not all derived drive cycles reached a steady state stop at the conclusion of their 

cycles, instead only still slowing down. This is because the time of the test was held constant and the 

control functions are trying to follow a lead vehicle that comes to a complete stop at the end of the test. 

If the simulated vehicle still has space it will slowly try to close the gap to its predetermined safe 

distance. These speeds are generally under 1 m/s, but go up to about 6 m/s at conclusion of some tests. 

This may not be ideal for a physical test. This could be alleviated by giving the simulation vehicles an 

extra few seconds to reach a complete stop. 

A note on HeadwayACC and VelocityACC and Crashing 

 Both the HeadwayACC and Velocity methods require assumptions about flow stability. The ACC 

method may cause instability in unstable traffic flow simulations. This can occur when the allowable 

deceleration bound is less than that of the lead car and when the lead car quickly decelerates. Neither 

the Headway nor Velocity method always guarantee enough time to slow down at the lower 

deceleration and will therefore crash. In reality there would be a safety feature to detect rapid 

slowdowns and respond with special rules, but those were not included here. This was only a problem 

for the urban cycle when the maximum deceleration was less than 1.5 m/s2. In these situations a crash 

would occur. This situation was therefore removed from the results.  
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Appendix B: Full Fuel Economy Simulation Results 

Tables B1-B4 show the simulated fuel economy results for each vehicle tested. 

Table B1: Simulated Fuel Economy Results for 2010 Honda Accord 

2010 Honda Accord 

Fuel Economy 

(mpg) 

Percent Change from 

EPA 

EPA Urban (FTP) 25.1 

 EPA Freeway (HWFET) 43.3 

 

   HeadwayACC Urban 1 25.6 2% 

HeadwayACC Freeway 1 43.1 0% 

HeadwayACC Freeway 2 42.2 -3% 

HeadwayACC Freeway 3 42.2 -3% 

   VelocityACC Urban 1 25.7 2% 

VelocityACC Freeway 1 43 -1% 

VelocityACC Urban 2 25.3 1% 

VelocityACC Freeway 2 43 -1% 

VelocityACC Freeway 3 42.4 -2% 

   PlannedACC Urban 1 26.4 5% 

PlannedACC Freeway 1 43.6 1% 

PlannedACC Urban 2 26.6 6% 

PlannedACC Freeway 2 43.9 1% 

 

Table B2: Simulated Fuel Economy Results for 2011 Toyota Camry 

2011 Toyota Camry 

Fuel Economy 

(mpg) 

Percent Change from 

EPA 

EPA Urban (FTP) 30.6 

 EPA Freeway (HWFET) 46.1 

 

   HeadwayACC Urban 1 30.2 -1% 

HeadwayACC Freeway 1 45.9 0% 

HeadwayACC Freeway 2 44.7 -3% 

HeadwayACC Freeway 3 44.7 -3% 

   VelocityACC Urban 1 30.3 -1% 

VelocityACC Freeway 1 45.8 -1% 

VelocityACC Urban 2 29.6 -3% 

VelocityACC Freeway 2 45.8 -1% 
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VelocityACC Freeway 3 44.9 -3% 

   PlannedACC Urban 1 31.4 3% 

PlannedACC Freeway 1 46.6 1% 

PlannedACC Urban 2 31.8 4% 

PlannedACC Freeway 2 46.9 2% 

 

Table B3: Simulated Fuel Economy Results 2007 Chevy Malibu Conventional 

2007 Chevy Malibu Fuel Economy 

(mpg) 

Percent Change from 

EPA 

EPA Urban (FTP) 23.1 

 EPA Freeway (HWFET) 33.7 

 

   HeadwayACC Urban 1 22.9 -1% 

HeadwayACC Freeway 1 33.6 0% 

HeadwayACC Freeway 2 32.8 -3% 

HeadwayACC Freeway 3 32.8 -3% 

   VelocityACC Urban 1 22.9 -1% 

VelocityACC Freeway 1 33.5 -1% 

VelocityACC Urban 2 25.5 10% 

VelocityACC Freeway 2 33.5 -1% 

VelocityACC Freeway 3 33 -2% 

   PlannedACC Urban 1 23.7 3% 

PlannedACC Freeway 1 34 1% 

PlannedACC Urban 2 23.9 3% 

PlannedACC Freeway 2 34.2 1% 

 

Table B4: Simulated Fuel Economy Results 2008 Chevy Malibu Hybrid 

2008 Chevy Malibu Fuel Economy 

(mpg) 

Percent Change from 

EPA 

EPA Urban (FTP) 26.9  

EPA Freeway (HWFET) 44.7  

 
  

HeadwayACC Urban 1 26.7 -1% 

HeadwayACC Freeway 1 44.5 0% 

HeadwayACC Freeway 2 43.5 -3% 

HeadwayACC Freeway 3 43.5 -3% 
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VelocityACC Urban 1 26.7 -1% 

VelocityACC Freeway 1 44.4 -1% 

VelocityACC Urban 2 26.3 -2% 

VelocityACC Freeway 2 44.4 -1% 

VelocityACC Freeway 3 43.7 -2% 

 

  

PlannedACC Urban 1 27.5 2% 

PlannedACC Freeway 1 45.1 1% 

PlannedACC Urban 2 27.7 3% 

PlannedACC Freeway 2 45.4 2% 
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Appendix C: Vehicle Characteristics for Virginia Tech Comprehensive Fuel Consumption Model (VTCFCM) 
(Edwardes and Rakha, 2014; Park et al., 2013; Rakha et al., 2011; Saerens et al., 2013) 

Description Accord Camry Malibu Malibu Hybrid 

Model Year 2010 2011 2007 2008 

Wheel Radius (m) 0.3322 0.3322 0.32375 0.3322 

Redline RPM 6800 6300 6000 6000 

Drag Coefficient 0.30 0.28 0.34 0.34 

Frontal Area (m2) 2.32 2.424 2.318 2.313 

Wheel Slippage 0.035 0.035 0.035 0.035 

Cylinders 4 4 4 4 

Engine Liters 2.354 2.5 2.2 2.4 

Gears 5 6 4 4 

1st Gear Ratio 2.652 3.54 2.96 2.96 

2nd Gear Ratio 1.517 2.05 1.62 1.62 

3rd Gear Ratio 1.037 1.38 1 1 

4th Gear Ratio 0.738 0.98 6.8 6.8 

5th Gear Ratio 0.566 0.74 0 0 

6th Gear Ratio 0 0.66 0 0 

Final Drive Ratio 4.44 3.82 3.63 3.63 

Mass (kg) 1453 1500 1440 1604 

Urban Rating 

(mpg) 

22 22 24 24 

Freeway Rating 

(mpg) 

31 33 34 32 

Rolling Coefficient 1.75 1.75 1.75 1.75 

C1 0.0328 0.0328 0.0328 0.0328 

C2 4.575 4.575 4.575 4.575 

Driveline 

Efficiency 

0.92 0.92 0.92 0.92 

Idling Speed (rpm) 700 660 680 660 

 


