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FUEL PLATE STABILITY EXPERIMENTS AND ANALYSIS

FOR THE ADVANCED NEUTRON SOURCE

W. F. Swinson

R. L. Battiste

. C.R. Luttrell

G. T. Yahr

The planned reactor for the Advanced Neutron Source (ANS) will use closely spaced arrays

of involute-shaped fuel plates that will be cooled by water flowing through the channels between

the plates. There is concern that at certain coolant flow velocities, adjacent plates may deflect

and touch, with resulting failure of the plates. Experiments have been conducted at the Oak

Ridge National Laboratory to examine this potential phenomenon. Results of the experiments

and comparison with analytical predictions are reported. The tests were conducted using full-

scale epoxy plate models of the aluminum/uranium silicide ANS involute-shaped fuel plates. Use

of epoxy plates and model theory allowed lower flow velocities and pressures to explore the

potential failure mechanism. Plate deflections and channel pressures as functions of the flow

velocity are examined. Comparisons with mathematical models are noted.

1. INTRODUCTION

The planned Advanced Neutron Sourcel, 2 (ANS) and several existing reactors--including

• the High Flux Isotope Reactor (HFIR), the Engineering Test Reactor (ETR), and the Materials

Test Reactor (MTR)--use closely spaced arrays of fuel plates that are cooled by water flowing

.. through the channels between the plates. In tests at Oak Ridge 3 and in early ETR tests,4, 5 failures

have occurred when adjacent plates touched. The structural response, including the potential

collapse, of the ANS fuel plates to coolant flow is being examined by experiment and analyses.

Some of this work is reported in this paper.

Miller 6 developed a model for a collapse flow phenomenon, assuming constant mass flow

in each channel, which predicted plate collapse at a specific flow velocity. This collapse velocity

has come to be identified as the critical velocity. Groninger and Kane, 7 Smissaert, 8 and

Zabriskie 9 did some experimental work on flat plates to investigate the critical velocity model. In

most instances maximum deflection of the plates occurred at the entrance to the flow channel and

increased as the flow velocity increased. At flow velocities of approximately twice Miller's cal-

culated critical velocity, deflections became large, plates began to touch, and flutter type oscilla-
e

tions began to occur.

Because in general the Miller model did not con'elate well with flat plate experiments,

" because there are no data on involute plates, and because it is desirable for a designer to know

the plate deflection as a function of flow velocity, experiments with the proposed ANS involute

plates are being conducted.

1



2. EXPERIMENTAL ARRANGEMENT

The proposed ANS core is composed of two annular assemblies of involute plates as shown

in Fig. 1. The upper element has an inside radius of 175 mm, and the lower element has an inside

. radius of 102 mm. The individual plates are involute in shape and use aluminum claddings with a

uranium silicide/aluminum mixture core. Figure 2 shows the general plate arrangement in the

element. The plates are 1.27 mm thick, and the flow channels are 1.27 mm thick. This paper

reports on the test and analysis of the upper (outer) plates and the lower (inner) plates.

The plates were modeled full scale but with epoxy material. This modeling reduced the

required flow velocity [by almost a factor of 5 (see Appendix A)] and resulted in a reduction [by

approximately a factor of 16 (see Appendix B)] in pressure drop to get the required flow.

Through use of the model, flow tests could be can'ied out to failure of the epoxy plates, and at ,he

same time enough capacity would be available in a future test phase to test dummy aluminum

plates to 15% above the operating velocity of the proposed ANS reactor. Five active plates and

six flow channels were used in the test. The closed flow test loop is illustrated in Fig. 3. Flow

entered at the bottom of the test model and was straightened in a single involute channel (Fig. 4).

The flow straightner's involute cross-sectional dimensions for the upper plates were 13.97 mm in

width by 70.3-mm arc length. The dimensions of the flow straightener for the lower plates were

• 13.97 mm in width by 87.35-mm arc length. The longitudinal length of both flow straighteners

was 527 mm. The flow on leaving the straightener passed through the section of the test model

. containing the plates (Fig. 5) and then was directed into an exit chamber. Because of the bound-

ary conditions involved, the three central plates best modeled the plate response expected in the

ANS reactor as a function of coolant flow. Five strain gages were located on each of the three

central plates. The gages were located with respect to the plate length at the entrance, the quarter

point, the half point, the three-quarter point, and the exit. Prior to assembly of the test section, the

gages were calibrated to signal the maximum plate deflection of the five cross sections noted due

to a pressure difference across the plate. Figure 6 shows a plate being set up for calibration. The

longitudinal boundaries were clamped to the aluminum involute mandrel. The maximum plate

deflection was monitored with a dial indicator. The strain signals were recorded versus a pressure

load applied to the plate. The pressure was vacuum applied by first sealing the plate ends with a

pliable clay and pumping through the pressure tube:" shown in Fig. 6. The four flow channels
d

bounding the three central plates each contained five static pressure taps located in the same

cross-sectional plane as the strain gages. The static pressure taps, located in the outer fixed

" boundary, were 1.27-mm outside diameter and 1.07-mm inside diameter.

The modulus of elasticity was found by optically measuring the deflection of a cantilever

beam as load was applied. The average value for the material used in the upper plate model was



2937 MPa, and for the rnaterial used in the lower plate model, 2721 MPa. These were typical of

published values for epoxy. Poisson's ratio was taken as 0.35 from published values. The plates

were formed by pouring a metered amount of room temperature cming epoxy onto a level, flat

surface with rectangular boundaries. Before polymerization was complete, the epoxy was rolled

to the desired thickness and then formed on an involute mandrel to obtain the final shape.

Figure 7 shows an epoxy plate that was formed on the mandrel; the aluminum plate shown for

comparison is a HFIR plate. The plate thickness variation was found to bc +_0.()5mm. The edges

of the plate were trimmed with a router guided by templates. Two rectangular epoxy strips,

1.22 mm in thickness x 12.7 mm in width x 527 mm in length, were epoxied to each plate. The

1.22-mm dimension with the epoxy glue thickness held the plates apart at the desired 1.27-mm

spacing. The width dimension, 12.7 mm, matches the thickness of the inner and outer aluminum

rings shown in Fig. 5 and forms the inner and outer fixed boundaries for the flow channels. The

strain gage leads and pressure tubes were taken away from the plates and channels through the

spacer, that formed the fixed outer boundaries. Seven plates with spacers (five active plates and

two fixed boundary plates) were epoxied together as a unit and inserted into the test section. The

channel spacing was found to be 1.27 + 0,1)8 mm. The back filler shown in Figs. 4 and 5, which

also fixed the boundary plates, is room temperature curing, aluminum-filled epoxy. The three

parts of the test section x'/ere assembled by bolting them together with Teflon gaskets between

each part. The completed test model of the lower element being made ready to install in the test

loop is shown in Fig. 8.

The data collected, which were computer-controlled, included the flow volume fi'om a

vortex shedding meter, the 15 strain gages, the up and down stream pressures and pressure from

each of the 20 pressure taps in the flow channels, and the water temperature. The entrance strain

gage for the central plate was monitored with a strip chart recorder to detect plate response as a

function of time and flow. Generally data were recorded with the computer taking three sets of

zero data (that is, without flow), which took about 3() s; next, the flow was adjusted to the desired

value, and three sets of loaded data were recorded; and lastly, flow was stopped, and three more

zero data sets were recorded. This procedure allowed for inspection of the data Lodetect any

significant variation that might negate a test.

The flow in the closed test loop was supplied with a centrifugal pump capable of delivering

22 L/s at 2.413 MPa. The flow on leaving the pump flowed along two paths (Fig. 3), one to the ,j

test model and then returning to a storage tank, and another tlarough a bypass line to tlm storage

tank. Each of the lines had a gear-regulated, full-flow ball valve for flow control.
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3. PLATE EXPERIMENTAL DATA

" The maximum deflections of the three instrumented upper plates and the tbree instrumented

lower plates as a function of prototype flow velocity are shown in Figs. 9-18. To identify the

instrumented plates in the test sections, the central plate for the upper element is plate 6, to the

concave side of the central plate is plate _, and to the convex side is plate 5; the central plate for

the lower element is plate 55, to the concave side of this central plate is plate 66, and te the con-

vex side is plate 44. This identification is noted on Figs. 9-18. For comparative purposes the

positions of the three instrumented plates for the upper and lower models at the entrance, quarter,

half, three-quarter, and exit cross sections are shown in the graphs. The plates are spaced

1.27 mm apart at zero flow velocity, but the plate coordinates change with flow velocity. The

largest deflection for the three strain-gaged upper plates occurred at the entrance of plate 6

(central plate), but significant deflection was noted at the three-quarter cross section. For the

lower plates at maximum flow, plate 55 (the central plate) had its maximum deflection at the

three-quarter cross section, while plate 44 had its maximum deflection at the entrance.

Figures 19-24 show the maximum deflection for the upper and lower plates at cross sec-

tions designated as entrance, quarter point, half point, three-quarter point, and exit point for dif-

ferent prototype flow velocities. For an individual plate the maximum deflection could occur at

• the three-quarter point (as in upper element plate 5 and lower element plate 55). "_._the midpoint

(as in lower element plate 66), or at the entrance (as in upper element plates 4 and 6 and lower

. element plate 44). A longitudinal wave-type deflection is noted in all plates and takes different

forms.

Figures 25-34 again illustrate plate deflection versus prototype flow velocity, but this time

the scaled pressure differences across the plates have been superimposed to illustrate how pres-

sure difference and deflection are related. The pressure differences have been scaled by the con-

stant that related maximum plate deflection to pressure during plate calibration. This correlation

assumes that the static pressure as measured is uniform in this region of the plate. At a prototype

flow velocity of approximately 33.9 m/s (Fig. 9) the upper epoxy plates started a vibration with

small amplitude. The response of the entrance strain gage as a function of time and at a prototype

flow velocity of 36.1 m/s is shown in Fig. 35. The steady-state deflection is caused by an ave,.".gc

difference in pressure across the plate and can thus be evaluated through the strain gage reading

found during plate calibration. The strain variation due to vibration may be caused by local pres-

sure variation, so it cannot be directly related to plate displacement because the change in the

plate configuration is uncertain. The strain variation is smaller than the steady-state strain signal;

thus, the effect on the plate deflection is considered secondary. The somewhat random fi'equency

is about 17 Hz. Since the vibration is an inertial response, in that it depends on the density of the
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material and the acceleration of the plate in displacing, the same vibrational response would not

be expected in the aluminum prototype plates. As the flow velocity was increased, the strain

amplitude of vibration dampened out almost entirely. At a flow velocity of 48.5 m/s, the plate '

vibration returned. The strain variation was similar to that noted at 36.1 m/s flow velocity

(Fig. 35). In this case, the strain variation was a smaller proportion of the steady-state strain but

probably contributed to the fracture of one of the plates (plate 4) at the upper flow velocity limit

of 56.2 m/s. The fracture was a longitudinal crack about 25 mm in length near the outer boundary

which began at the entrance edge.

At a prototype flow velocity of approximately 29.19 m/s (Fig. 14) a small vibration began

to be evident in the central plate of the lower element. In this test, the vibration increased in

amplitude with increased flow velocity and did not diminish as in the upper element test. The

frequency was on the order of 12 Hz. At a prototype flow velocity of 53.73 m/s the entrance gage

of the central plate responded as shown in Fig. 36. The lower element test model began to leak at

the outer boundary near the three-quarter section, and testing was suspended.
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Fig. 19. Maximum deflection of upper element plate 4 vs axial position.
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Fig. 20. Maximum deflection of upper element plate 6 vs axial position.
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Fig. 21. Maximum deflection of upper element plate 5 vs axial position.
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22

ORNL-DWO _1-29t 7 ETD

b

FLOW V ELOCI TY

-'- 21,62 M/S --4-- 27.28 M/S _ 30,21 M/S

-.e.- 34.94 M/S _ 38.89 M/S -,4-- 41.62 M/S

D o_ iiiii:iillo__iiiiiiiii:iiiii............................................................................F
L

E 0.1 .................................................................
C
T O

0 -0.1
N

m -0,2 .............................................

r_ I-0,3
0 132 264 398

PLATE LOCATION FROM ENTRANCE, mm
DATA TAKEN APRIL 1992

Fig. 23. Ma×imum deflection of lower element plate 55 vs axial position.
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Fig. 25. Maximum deflection and differential pressure on upper element plates at entrance.
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Fig. 31. Maximum deflection and differential pressure on lower element plates at

quarter point.
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Fig. 33. Maximum deflection and differential pressure on lower element plates at

three-quarter point.
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Fig. 35. Entrance strain gage response vs time of upper element plate 6 at 36.1 m/s

flow velocity.
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4. DISCUSSION OF DATA

" This experimental program had two objectives: (1) to observe the potential for plate insta-

bility because of the closely spaced plates and high coolant velocities and (2) to determine the

. maximum plate deflection as a function of coolant velocity. The plate deflection curves shown in

Figs. 9-18 indicate that essentially the plate deflection increases as the flow velocity increases.

The curves for plate deflection and pressure difference across a plate versus flow velocity

(Figs. 25-34) suggest that the plate deflection and pressure difference are directly related. This

bounded structural response is not characteristic of an unstable response. Gwaltney and Luttrel110

extended the collapse theory as proposed by Miller 6 to involute plates. Sartory 11developed

Miller's theory further to include friction effects and inlet/outlet effects. The results of these

analyses are shown superimposed on the experimental data in Figs. 25-34. The data do not show

a sudden shift or rapid increase in the entrance deflection as predicted by the theory. Rather, the

data (Figs. 25-34) show a somewhat smooth response of the deflection to the pressure difference

across the plate. The maximum deflection point occurs at different cross sections, such as the

entrance, the half, and the three-quarter section (Figs. 19-24), while the theory always predicted

maximum deflection at the entrance. There was no experimental evidence indicating a plate col-

lapse. It can be observed that deflection is a nonlinear function of flow velocity (Figs. 9-18).

- This nonlinear behavior is predictable since the pressure difference is the driving mechanism and

is a nonlinear function of the flow velocity. Figure 25 illustrates that according to the pressure

• difference the plates should touch, but the strain gage data show that the plates do not touch. This

suggests that the fluid in the channel inhibits the plate deflection as the channel becomes small

by some means other than by changing its pressure. During an initial test of the upper plates, sig-

nificant plate deflections in the entrance region were observed at a flow velocity of 4(I m/s, and at

a 56-m/s flow velocity large plate deflections were observed such that adjacent plates probably

touched. The data for the entrance deflection versus flow velocity for this initial test are shown in

Fig. 37. This value was close to Sartory's collapse velocity. In continuing the test, the test section

was disassembled to repair a leak, and at this time 3-mm radii were made into the shoulders of

the entrance and exit channel of the flow straightener. The purpose of the radii was to alleviate

any misalignment of the flow straightener with the test plates. In subsequent tests with the

"smoothed" straightener, plate deflections (Fig. 9) were reduced by half when compared with
,,o

earlier tests (Fig. 37) and are considered more typical. This difl_rence in results between the ini-

tial test and the smoothed test gave an indication of how sensitive plate response is to flow

alignment. The data reported in this paper, except for those in Fig. 37, were obtained with the

smoothed flow straightener.
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Fig. 37. Maximum deflection of upper element plate 6 at entrance during the initial test

with unsmoothed transition from flow straightener.

A flow experiment was also performed on a single HFIR involute plate, which has dimen-

sions that are similar to the ANS plate. This test section also had very smooth flow entering the
u

plates. The results of this test (Fig. 38) were similar to the results of the ANS involute plates

shown in Fig. 9--i.e., continuous increase in plate deflection with increasing flow velocity. The

lack of a sudden or rapid change in plate deflection at the entrance and at a specific critical flow

velocity was evidence that conditions for plate collapse were not present.

Given the evidence of the experimental data, it appears that the classical assumptions used

in modeling the complicated hydraulic-structural response of the plates may not be valid in a real

system. For example, the Miller model assumes a constant mass flow in each channel that

remains constant even as a channel begins to close up; in a real system this may not occur. An

interesting alternative tc)the constant mass flow assumption is to assume parallel flow with dif-

ferent mass flow. As this alternative demonstrates, the results are very dependent on the assumed

model. In a consideration of parallel flow, the flow channels are modeled as pipes with the same

hydraulic diameter so that friction data of pipes can be used. In this analysis one channel height

is assumed smaller and an adjacent channel height is assumed larger than the nominal dimension, °

as might occur from tolerances in assembly. The solution notes that the larger channel has more

mass flow and a higher flow velocity than the smaller channel. In addition, the model predicts a
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stable flow in contrast to the unstable flow with a constant mass flow assumption. The pressure

. difference in this parallel llow model across the plate separating tile large (I) channel from the

small (s) channel is

ii,

Al'= VI2- V2 Pi" (41)
2

This difference tends to make tlm small channel larger and tile larger channel smaller, which is a

stable response. While the magnitude of the pressure diffc,'ence was similar to experimental val-

ues, there are assumptions that make drawing numerical values from this analysis questionable, lt

does, however, offer a mechanism for the stable flow observed in the experiments.

The second purpose for conducting tile experiments was to determine the maximum plate

deflection as a function of coolant velocity. The results, scaled to the prototype deflections

through model theory, have been illustrated in Figs. 9-18. Attention is called to the ANS operat-

ing coolant velocity (27.4 m/s),* where the deflections are small.

Finally, it was proposed by Swinson and Yahr 12to use tlm dynamic (stagnation) pressure

as the plate-loading mechanism for design purposes to obtain quantitative values for the plate

" deflection versus flow velocity. Sample results of this comparison are shown in Figs. 39-42.

*The operating flow velocity for the ANS has been revised to 25 mis.
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It can be observed that the result is an upper bound and that the trend of plate deflection versus

flow velocity is similar. Note that the initial test on the upper plate model, which had some mis-

alignment with the flow straightener, had deflection magnitudes similar to and bounded by the

dynamic pressure deflections (Fig. 37). Unbounded deflection is typical of unstable systems. The

fact that ali deflections in these experiments are bounded by the dynamic pressure deflection

suggests that instabilities are not present in the plates for the velocity range examined. Use of this

dynamic pressure technique to get an upper-bound estimate of the plate response would be help-

ful to a designer in setting limits on plate deformations. This technique would also be helpful in

estimating thermal hydraulic effects, since heat transfer depends on the channel dimensions.
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5. CONCLUSIONS

" Tests on five-epoxy-plate models of the ANS fuel elements demonstrate that the instability

predicted by Miller's theory does not occur. Plate deflections were very small at the prototypic

- ANS conditions. Plate deflections were observed at high-flow velocities beyond the velocities

expected in the ANS. The observed velocities were bounded by predictions based on the

dynamic pressure, lt is recommended that the dynamic pressure method be used as a conserva-

tive estimate of flow-induced plate deflection.

These tests showed that any disturbance of uniform flow entering the channels surrounding

the fuel plates has a pronounced effect on observed plate deflections. Future tests are planned on

complete dummy fuel elements under prototype conditions to ensure proper performance in the

ANS.

Vibrations were observed at certain flow velocities. Tests on aluminum plates must be per-

formed to determine whether such vibrations will occur in the fuel plates within the operating

range of the ANS.

Additional tests on epoxy plate models of both the upper and lower fuel elements will be

done to corroborate these results.
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Appendix A

MODEL THEORY

The theory from dimensional analysis used in going from model steady state deflection to

. prototype steady state deflection considered the plate variables to be

_i deflection

E modulus of elasticity

Poisson's ratio

L dimension parameter

and the fluid (water) variables to be

V velocity

laf viscosity

Pf density.

The necessary dimensionless terms were

_:1= 8/L

/Z2=/.t

_3 = V2pf/E

x4 = _fV/EL.

The dimensionless term )t4, with fluid viscosit:, is related to the friction force in the direc-

tion of flow velocity; thus, its effect on the plate dellection in a direction perpendicular to the

flow velocity is considered small. The dimensionless term 7z2is Poisson's ratio. In this case the

prototype has a Poisson's ratio of 0.33, while the model material has a ratio of 0.35. From plate

theory Poisson's ratio shows up as (1 - kt2), and the difference between using 0.33 and 0.35 is

small. The dimensionless tenn _1 for a full-scale model requires that

(prototype detlection) = 8m (model deflection) .

The dimensionless term n3 requires that

= V,,,_p/E m (A.I)vp

. and was used to scale the prototype velocity from the model velocity.
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Appendix B

PRESSURE DROP

Operating reports from HFIR give the pressure drop (APL) through the plate length as

758.4 kPa (110 psi) at 15.5 m/s (51 ft/s) flow velocity. The friction factor for one channel is

estimated by relating it to an equivalent circular pipe so that available data can be utilized. Let

DH = 4AlP w = 4(1.27)(75.874575) = 2.498 mm (0.0984 in.) , (B.1)
2(1.27 + 75.874575)

where

DH = an equivalent pipe diameter,

A = cross-sectional flow area,

Pw = the wetted perimeter.

Reynolds number for this equivalent diameter and velocity is

Re - 9fVDII - 39,810 , (B.2)
gcl.tf

where I.tf= dynamic viscosity for water.

The flow is turbulent, and the friction factor for smooth walls is

f = (0.316)/R_/4 = 0.02237 . (B.3)

With this, the pressure drop along the length, L, is

L "_V2 0.158g0.75O1.25L_0.25p10.75V1.75APL = f-_pf = . • = 658.4 kPa(95.5 psi) . (B.4)

This value is a reasonable approximation of the pressure loss reported during operation of

the HFIR reactor. Using Eq. (B.4) the pressure loss in the proposed ANS lower plates at an

operating velocity of 27.4 m/s is estimated at AP L = 1.534 MPa (222.5 psi). The pressure loss for

the epoxy plate model at the model operating velocity of 5.66 m/s (scaled from the prototype

velocity) is estimated as APL = 0.097 MPa (14.1 psi).
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