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Background: Naïve lymphocytes circulate in the body in a resting state, but upon recognition of 
foreign antigen and receipt of proper costimulatory signals, these cells become activated, undergo 
a rapid burst in proliferation, and assume effector functions aimed at controlling or killing the 
invader. There is a growing appreciation that changes in peripheral T cell function are not only 
supported by but are dependent on metabolic reprogramming and that specifi c effector functions 
cannot proceed without adopting the correct metabolism. However, the reasons underlying why T 
cells adopt specifi c metabolic programs and the impact that these programs have on T cell function 
and, ultimately, immunological outcome remain unclear.

Advances: Research into the metabolism of tumor cells has provided valuable insight into the 
metabolic pathways important for cell proliferation and survival, as well as the infl uence of metabo-
lites themselves on signal transduction and epigenetic programming. Many of these concepts have 
shaped how we view metabolism in T cells. However, it is important to note that, unlike tumors, 
T cells rapidly transition between resting catabolic states (naïve and memory T cells) to one of growth 
and proliferation (effector T cells) as part of a normal developmental program. In addition, as 
T cells differentiate during an immune response, they also move from what are presumably nutrient-
replete lymphoid organs to sites of cancer or infection, where oxygen, nutrients, and growth factors 
may become limiting. Thus, T cells must metabolically adapt to these changing conditions in order 
to perform their necessary functions. In this Review, we highlight emerging areas in the metabolism 
of these dynamic cells and discuss the potential impact of metabolic control on T cell fate, plasticity, 
and effector function.

Outlook: It is becoming increasingly clear 
that T cell function is intimately linked to 
metabolic programs, and as such there 
is a considerable and growing interest in 
developing techniques that target metabo-
lism for immunotherapy. Studying metab-
olism has often been diffi cult for the non-
expert, because many of the experimental 
approaches require specialized instrumen-
tation that has not been widely available. 
Furthermore, acquiring suffi cient cellular 
material for ex vivo analyses, coupled with 
the inherent diffi culty of assessing cellu-
lar metabolism in vivo during an immune 
response, presents substantial challenges 
to scientists studying the metabolism of 
immune cells. Nevertheless, understand-
ing how environmental cues and cellular 
metabolism infl uence the outcome of T 
cell–mediated immune responses will be 
critical for learning how to exploit metab-
olism to alter disease outcome. Overall, we 
are just beginning to understand the path-
ways that regulate metabolism in lympho-
cytes and how T cells adapt to changes in 
their microenvironment, particularly in 
vivo; this area of immunology is poised for 
substantial advances in the years to come.
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T cell function and fate are dependent on meta-
bolic reprogramming. As T cells differentiate during 
an immune response, they move from what are pre-
sumably nutrient-replete lymphoid organs to sites of 
cancer or infection, where oxygen, nutrients, growth 
factors, and other signals may become limiting. These 
metabolically restrictive environments force T cells to 
metabolically adapt in order to survive and perform 
their necessary functions.

REVIEW SUMMARY

READ THE FULL ARTICLE ONLINE

http://dx.doi.org/10.1126/science.1242454

Cite this article as Pearce et al., 
Science 342, 1242454 (2013). 
DOI: 10.1126/science.1242454

The list of author affi liations is available in the full article online.
*Corresponding author. E-mail: erikapearce@path.wustl.edu (E.L.P.); russell.jones@mcgill.ca (R.G.J.)

11 OCTOBER 2013    VOL 342    SCIENCE    www.sciencemag.org 210

Published by AAAS

o
n
 M

a
y
 1

2
, 2

0
2
0

 
h
ttp

://s
c
ie

n
c
e
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://science.sciencemag.org/


Fueling Immunity: Insights into
Metabolism and Lymphocyte Function
Erika L. Pearce,1* Maya C. Poffenberger,2,3 Chih-Hao Chang,1 Russell G. Jones2,3*

Lymphocytes face major metabolic challenges upon activation. They must meet the bioenergetic
and biosynthetic demands of increased cell proliferation and also adapt to changing environmental
conditions, in which nutrients and oxygen may be limiting. An emerging theme in immunology
is that metabolic reprogramming and lymphocyte activation are intricately linked. However, why
T cells adopt specific metabolic programs and the impact that these programs have on T cell
function and, ultimately, immunological outcome remain unclear. Research on tumor cell
metabolism has provided valuable insight into metabolic pathways important for cell proliferation
and the influence of metabolites themselves on signal transduction and epigenetic programming.
In this Review, we highlight emerging concepts regarding metabolic reprogramming in
proliferating cells and discuss their potential impact on T cell fate and function.

T
he immune system is comprised of a series

of specialized cells conditioned to respond

rapidly to “danger” signals such as foreign

pathogens or inflammatory stimuli. T lymphocytes,

or T cells, are sentinels of the adaptive immune

system that respond to antigen-specific signals by

blasting, proliferating, and differentiating into ef-

fector subsets tailored to identify and eliminate

threats to the host. Integrated into this program of

activation is the regulation of cellular metabolism.

Upon activation, T cells dramatically alter their

metabolic activity to meet the increased meta-

bolic demands of cell growth, proliferation, and

effector function. Metabolism fundamentally un-

derpins Tcell function; thus, there is great interest

in understanding how metabolic pathways influ-

ence immune responses and ultimately affect

disease progression. It should be noted that “metab-

olism” refers to a complex network of biochemical

reactions involved in energy production and mac-

romolecular biosynthesis, and comprehensive

coverage of such a broad topic is difficult. Several

recent reviews have highlighted the molecular

mechanisms that govern metabolic reprogram-

ming in the immune system (1–3). This Review

will focus on emerging areas in intermediary me-

tabolism in lymphocytes and will discuss their

potential impact on T cell fate, plasticity, and

effector function.

Differential Regulation of T Cell Metabolism

Lymphocyte Metabolism Is
Dynamically Regulated

Maintenance of cellular bioenergetics is an essen-

tial function of all living cells, and lymphocytes

are no exception. In T lymphocytes, glucose is

a critical substrate for adenosine triphosphate

(ATP) production (4). During glycolysis, glucose

is broken down into two molecules of pyruvate.

This process, which does not require oxygen,

yields two reduced nicotinamide adenine di-

nucleotide (NADH) molecules and two net ATP

molecules per molecule of glucose. Pyruvate has

two alternate fates. Most terminally differentiated,

nonproliferating cells can fully oxidize pyruvate

in the tricarboxylic acid (TCA) cycle. This pro-

cess generates NADH and reduced flavin adenine

dinucleotide (FADH2), which the cell can use to

fuel OXPHOS, an oxygen-dependent process that

produces up to 36 molecules of ATP per glucose

molecule. Alternatively, pyruvate can be trans-

formed (or fermented) into lactate, regenerating

NAD+ for subsequent use in glycolysis (5). From

a bioenergetic perspective, engaging OXPHOS

maximizes the amount of ATP that can be de-

rived from glucose.

Bioenergetic profiling of T cells has revealed

that T cell metabolism changes dynamically with

activation state (Fig. 1). Upon antigen encounter,

T cells become activated, undergo extensive pro-

liferation, and differentiate into effector T cells

(TEFF); upon pathogen clearance, most TEFF cells

die, leaving behind a small population of long-lived

antigen-specific memory Tcells (TM). Consistent

with themetabolism of other nonproliferating cells,

resting naïve T cells (T cells that have not yet en-

countered antigen) maintain low rates of glycol-

ysis and predominantly oxidize glucose-derived

pyruvate via OXPHOS or engage fatty acid oxi-

dation (FAO) to make ATP. Upon activation, T

cells switch to a program of anabolic growth and

biomass accumulation to generate daughter cells,
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Fig. 1. T cell metabolism changes over the course of an immune response. T cells display distinct
metabolic profiles depending on their state of activation. Naïve T cells (TN, blue) are metabolically quiescent;
they adopt a basal level of nutrient uptake and use OXPHOS as their primary pathway of ATP production. Upon
immune challenge, TEFF (green) cells shift to a state of metabolic activation characterized by increased nutrient
uptake, elevated glycolytic and glutaminolytic metabolism, biomass accumulation, and reduced mitochondrial
SRC. TEFF cells preferentially use glycolysis over OXPHOS for ATP production. Transition to the TM (orange) stage
is characterized by a quiescent metabolism, with increased reliance on FAO to fuel OXPHOS. Mitochondrial
mass and SRC are elevated in TM cells, suggesting that these cells are metabolically primed to respond upon
reinfection.
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which by definition dictates increased demand

for ATP and metabolic resources. In this state,

T cells are considered to be metabolically acti-

vated (Fig. 1). T cell receptor (TCR) signaling

directs the metabolic reprogramming of naïve

T cells. TCR ligation promotes the coordinated

up-regulation of glucose and amino acid trans-

porters (6–8), facilitating nutrient uptake and Tcell

blastogenesis. TCR-mediated up-regulation of

the transcription factors c-Myc (9) and estrogen-

related receptor a (ERRa) (10) enhances the

expression of genes involved in intermediary

metabolism. In addition, catabolic pathways of

ATP generation such as fatty acid b-oxidation

are actively suppressed (9). The predominant

metabolic phenotype of activated Tcells is a shift

to aerobic glycolysis [reviewed in (11)]. BothCD4+

and CD8+ TEFF cells engage aerobic glycolysis,

which is marked by the conversion of glucose-

derived pyruvate to lactate despite the availability

of oxygen for complete glucose oxidation. This

process, also known as the Warburg effect from

earlier work in cancer biology, is a common trait

of actively proliferating cells (5). It is important

to note that OXPHOS is still engaged in TEFF

cells (9); however, the production of lactate from

pyruvate by aerobic glycolysis is the dominant

pathway of glucosemetabolism in TEFF cells. Reg-

ulating energy metabolism may provide a way

for T cells to reversibly switch between quiescent

and highly proliferative states (12).

As a quiescent T cell population, TM cells

adopt a metabolic profile similar to that of naïve

T cells—a catabolic metabolism characterized

by increased reliance on OXPHOS and lower

rates of nutrient uptake and biosynthesis rela-

tive to TEFF cells (Fig. 1). However, TM cells also

display a characteristic increase in mitochondrial

mass, which translates into greater mitochon-

drial spare respiratory capacity (SRC) relative

to naïve or TEFF populations (13). SRC can be

viewed as the maximal respiratory capacity avail-

able to a cell, much like the maximum speed that

can be achieved by a car engine. Under increased

workload, stress, or nutrient limitation, cells en-

gage this reserve capacity to generate more en-

ergy and promote cell viability (14, 15). We have

recently shown that increased mitochondrial mass

and SRC of TM cells allows for rapid mitochon-

drial ATP production upon TCR engagement, con-

ferring a bioenergetic advantage to TM cells upon

secondary exposure to antigen (16). From this

vantage, TM cells may be viewed as being meta-

bolically primed, with mitochondrial metabolism

fueling the rapid recall response to reinfection.

The memory T cell–promoting cytokine interleu-

kin (IL)–15 plays a key role in this catabolic switch

by promoting mitochondrial biogenesis (13).

The mechanisms governing the transition of

T cells from effector to memory states are still

poorly understood, but recent work hints that

changes inmetabolismmay influence this process.

We previously demonstrated that mitochondrial

FAO stimulated downstream of TNF (tumor ne-

crosis factor) receptor–associated factor 6 (TRAF6)

is required for memory CD8+ Tcell development

(17). Oxidation of free fatty acids (FFAs) gener-

ates acetyl–coenzyme A (CoA), which can be

metabolized further in the TCA cycle, as well as

FADH2 and NADH, which can be used directly

by the electron transport chain (ETC) to make

ATP. FFAs are energy-densemolecules, and FAO

may be a preferred fuel source for TM cells as

they rely on OXPHOS-dependent metabolic pro-

gram. Administration of metformin, a metabolic

stressor that activates the energy sensor adenosine

monophosphate–activated protein kinase (AMPK),

enhances the generation of CD8+ T cell memory

(17). One consequence of AMPK activation is the

suppression of mammalian target of rapamycin

complex 1 (mTORC1) activity in response to en-

ergetic stress (18). Consistent with this, the drug

rapamycin, which also inhibits mTORC1, enhances

the generation of CD8+TM cells (17, 19, 20). These

observations suggest that manipulating the me-

tabolism of antigen-specific cells during contrac-

tion can influence the development of TM cells.

Given these observations, TM formation may be

influenced by a number of enzymes and trans-

porters involved in fatty acid synthesis, desatu-

ration, and oxidation, as well as the availability of

FFAs to memory precursor cells. Some important

players to consider in this regard include acetyl-

CoA carboxylase (ACC2) (21), the mitochondrial

lipid transporter CPT1A (13, 22), and metabo-

lites such as acetyl-CoA and malonyl-CoA (23).

AMPK activation and mTOR inhibition are also

both potent activators of autophagy, a catabolic

process induced during starvation that promotes

the degradation and recycling of cellular compo-

nents [reviewed in detail in (24)]. Proper induction

of autophagy has been shown to be important for

the maintenance of cellular bioenergetics and

sustained T cell viability after activation (25, 26).

It will be interesting to determine whether autophagy,

by coupling catabolic fuel supply to mitochon-

drial metabolism, is important for TM formation

after infection.

Mitochondrial OXPHOS and T Cell Activation

Although much focus has been placed on the

shift toward glycolysis that accompanies T cell

activation, evidence suggests that mitochondrial

OXPHOS is also important for T cell activation.

Oligomycin, a specific inhibitor of mitochondrial

ATP synthase, can block the expression of early

activation markers after TCR ligation and blunts

subsequent T cell proliferation (27), suggesting

that the naïve-to-effector transition requires either

de novo production of ATP by mitochondria or

specific signals generated during mitochondrial

ATP production. Mitochondrial-derived reactive

oxygen species (ROS) may function as such a

“bioenergetic” second messenger. There has long

been evidence that ROS can play critical roles in

shaping Tcell responses (28–30). However, recent

work suggests that mitochondrial ROS produced

during OXPHOS is essential for T cell activation.

T cells deficient for ubiquinol-cytochrome c re-

ductase (Uqcrfs1), a component of complex III of

the ETC, display impaired TCR-dependent ROS

production and defects in antigen-specific prolif-

eration (31). Intracellular calcium (Ca2+) flux, an

early event in TCR signal transduction, may pro-

vide the functional link between TCR ligation,

mitochondrial OXPHOS, and cell prolifera-

tion. Uptake of Ca2+ by mitochondria stimulates

Ca2+-dependent dehydrogenases of the TCA cy-

cle, driving mitochondrial NADH production and

ATP production by OXPHOS during early T cell

activation (32). T cells lacking the apoptosis reg-

ulators Bax and Bak, which display defects in

intracellular Ca2+ homeostasis, exhibit reduced

Ca2+-dependent mitochondrial ROS production

and Tcell proliferation after TCR stimulation (33).

Restoring Ca2+ signals in Bax/Bak-null T cells

restores mitochondrial ROS production and T cell

proliferation (33). Thus, although toxic in many

biological settings, mitochondrial-dependent ROS

may prime Tcells and license full Tcell activation.

Metabolic Signatures Vary with
Differentiation State

Although the paradigm of T cell metabolism as

summarized in Fig. 1 holds true with respect to

activated versus quiescent states, the metabolic

signature of T cells can also vary depending on

differentiation state. This was first demonstrated

by Michalek et al. (34), who determined that

proinflammatory CD4+ T helper (TH) cells (TH1,

TH2, and TH17 lineages) displayed a strong bias

toward glycolysis over mitochondrial metabo-

lism, whereas induced CD4+ T regulatory (Treg)

lineage cells displayed a mixed metabolism in-

volving glycolysis, lipid oxidation, andOXPHOS.

In particular, TH17 cells display increased reliance

on glycolysis for their development and main-

tenance. TH17 cell development is promoted by

hypoxia inducible factor–1a (HIF-1a) (35, 36),

an oxygen-sensitive transcription factor that regu-

lates glycolytic gene expression in TH17 cells.

Blocking glycolysis during TH17 cell differen-

tiation reduced the development of TH17 cells

and favored the formation of Tregs (35). Added to

this are recent results indicating that extracellular

salt (NaCl) (37, 38) and short-chain fatty acids

(39) can influence TH17 and Treg homeostasis,

respectively. This raises the intriguing possibility

that the metabolic microenvironment (i.e., nutri-

ent and oxygen availability) can influence T cell

polarization (to be discussed later). Determining

whether the metabolic signature of differentiated

Tcells is simply a consequence of lineage-specific

cytokine signaling or is instructive for T cell func-

tion (i.e., essential for regulating T cell plasticity

and/or effector function) remains a question for

the field. Examining the influence of key meta-

bolic regulators such as HIF-1a, mTOR, and

AMPK on Tcell differentiation and plasticity will

help in resolving these issues.

Metabolism of Proliferating Cells:

Lessons from Tumor Metabolism

Research in cancer metabolism over the past

10 years has increased our understanding of the
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metabolic requirements of proliferating cells, as

well as the metabolic alterations that promote

tumor growth. One of the great innovations we

have learned from the cancer metabolism field is

that signaling pathways, or more specifically the

oncogenes and tumor suppressors that comprise

and regulate signal transduction pathways, can

influence cellular metabolism as part of their pro-

gram of action. The previous paradigm of meta-

bolic regulation argued that metabolic pathways

were exclusively controlled through allosteric

regulation of metabolic enzymes, either by ATP

levels or metabolites themselves (the reactive

model) (40). One example of this is the glycolytic

enzyme phosphofructokinase (PFK), which is

inhibited allosterically by ATP and citrate (indi-

cating a high energy state in the cell) and stimu-

lated by AMP (indicative of low energy). Although

allosteric regulation is important for regulating

local flux through metabolic pathways, we now

understand that activation of signal transduction

pathways (such as phosphatidylinositol 3-kinase

or Akt) by growth factor receptors stimulates

global changes in metabolic flux independent

of ATP levels. This allows a cell that receives a

proliferative signal, such as a T cell activated

through its TCR, to drive cellular metabolism

above the capacity normally maintained in the

quiescent state. Overall, metabolism in T cells

is likely regulated at several levels: (i) TCR-

mediated changes in the expression of metabolic

genes facilitate the reprogramming required to

matchmetabolic pathways to biological need; (ii)

signal transduction downstream of cell surface

receptors (i.e., costimulatory molecules and cyto-

kine receptors) serve to fine-tune flux through

these metabolic pathways; and (iii) feedback

inhibition and other forms of allosteric regula-

tion can regulate metabolic flux through local

nodes in the network. By directly influencing

metabolic reprogramming, oncogenes and tumor

suppressors gain control over the metabolic cur-

rency of the cell, namely, energetic intermedi-

ates (ATP, NAD+/NADH, FAD+/FADH2, and

NADP+/NADPH) and metabolites involved in

bioenergetic and biosynthetic reactions that in-

fluence cell growth and survival.

The implication of these findings for im-

munologists is that metabolic pathways are indi-

rectly connected to cell surface receptors of the

immune system via signal transduction pathways.

TCR/CD28 stimulation of T cells (6), the stimu-

lation of surface immunoglobulin on B cells (41),

and TLR stimulation of macrophages and den-

dritic cells (DCs) (42, 43) all promote changes in

aerobic glycolysis characteristic of the Warburg

effect. These results likely just scratch the surface

of the complex metabolic networks at work in

proliferating cells. The challenge going forward

will be to identify key pathways ofmetabolic flux

integral for lymphocyte function. In this regard,

research into tumor cell metabolism has provided

valuable insight into the metabolic pathways im-

portant for cell proliferation. Many of the meta-

bolic pathways abnormally activated in cancer,

such as aerobic glycolysis, have been shown to

play similar roles in normal lymphocyte phys-

iology. Here, we highlight recent advances in

intermediate metabolism observed in cancer that

are likely to be relevant to T cell biology.

The Warburg Effect: More than ATP Synthesis

Rapid glucose processing promoted by theWarburg

effect allows proliferating Tcells to generate ATP

quickly; glycolysis also generates metabolic in-

termediates important for cell growth and prolif-

eration (Fig. 2). Metabolism of glucose through

the oxidative or nonoxidative arms of the pen-

tose phosphate pathway (PPP) generates ribose-

5-phosphate (Rib-5P), a key intermediate in

nucleotide biosynthesis. The oxidative arm of the

PPP also produces NADPH, the key metabolic

currency for nucleotide and fatty acid biosyn-

thesis. T cell activation promotes a rapid increase

in glucose flux through the oxidative PPP (9).

Dihydroxyacetone-phosphate (DHAP) is used to

generate the glycerol backbone for glycerophos-

pholipids, and 3-phosphoglycerate (3PG) is a key

intermediate in both amino acid and nucleotide

biosynthesis (discussed below). Pyruvate that

is not converted to lactate can enter into the

mitochondria and be converted into acetyl-CoA

by the pyruvate dehydrogenase (PDH) complex.

In proliferating cells, mitochondria adopt an ad-

ditional role as a biosynthetic hub, converting

pyruvate and other metabolites into metabolic

intermediates involved in protein and fatty acid

biosynthesis (44).

One of the key metabolic intermediates for

biosynthesis is acetyl-CoA. Acetyl-CoA has a

central role in membrane biogenesis because it

provides two-carbon units for fatty acid and iso-

prenoid biosynthesis, as well as in other diverse

processes such as protein prenylation and N-

glycosylation (45). The flow of glucose to the

cytosolic acetyl-CoA pool is regulated by using

TCA cycle intermediates and a truncated TCA

cycle (46). In this model, mitochondrial citrate

is formed from condensation of oxaloacetate

and acetyl-CoA, after which citrate is exported

from the mitochondrion to the cytosol and con-

verted back to acetyl-CoA by ATP citrate lyase

(ACL) (47). Despite the availability of extra-

cellular lipids for membrane biosynthesis, FFAs

are generated de novo from glucose in prolifer-

ating cells using this pathway (46). CD8+ T cells

unable to engage acetyl-CoA–dependent lipid

biosynthetic pathways display defects in antigen-

driven blastogenesis and clonal expansion in re-

sponse to pathogens (48). Acetyl-CoA can also

influence metabolic flux through acetylation of

metabolic enzymes (49, 50), reinforcing meta-

bolic pathways such as glycolysis when carbon

availability is high. Glucose availability and acetyl-

CoA production can also influence epigenetics

by regulating the cytosolic acetyl-CoA pools avail-

able for histone acetylation reactions (51), raising

the prospect that glucose-dependent metabolic

fluxmay help drive or reinforce Tcell differentia-

tion programs.

One consequence of using glucose-derived

mitochondrial citrate for lipid biosynthesis is

the potential depletion of TCA cycle intermediates.

Oxaloacetate (OAA) is a rate-limiting substrate

for acetyl-CoA entry into the TCA cycle. OAA

generated from ACL-mediated cleavage of cyto-

solic citrate can potentially cycle back into the

mitochondria to maintain the TCA cycle. In-

efficient cycling of this pathway would lead to

cumulative depletion of mitochondrial OAA,

leading to collapse of the TCA cycle and disrup-

tion of mitochondrial function. One way tumor

cells counter this is by engaging glutaminol-

ysis, a metabolic shunt that converts gluta-

mine into a-ketoglutarate (a-KG, also known as

2-oxoglutarate) for use in the TCA cycle (Fig. 2).

Glutamine has long been known as a key metab-

olite for supporting T cell function (52). Recent

evidence suggests that glutamine metabolism

is as dynamically regulated in T cells as glucose

metabolism. Glutamine transporters (SNAT1

and SNAT2) as well as key glutaminolysis en-

zymes (GLS, GPT, GOT, and GLUD) are up-

regulated early after T cell activation similar to

glycolysis genes (7, 9); several groups have cor-

related these changes in gene expression to en-

hanced glutaminolytic flux in lymphocytes (9, 53).

Recently, it was found that engagement of the

TCR leads to the expression of Slc7a5, an amino

acid transporter that mediates the import of large

neutral amino acids, such as leucine (8). Amino

acid influx via this transporter is required for the

activation of mTOR and expression of c-Myc and

as such coordinates activation-induced metabolic

reprogramming and differentiation of T cells.

Thus, amino acids such as glutamine and leu-

cine appear to play additional roles in T cell func-

tion beyond protein biosynthesis and may directly

influence Tcell activation by regulating metabolic

reprogramming.

Control of Glycolytic Flux by Pyruvate
Kinase M2 (PKM2)

Pyruvate kinase (PK) is a key enzyme of the

glycolytic pathway. It catalyzes the terminal re-

action of glycolysis by promoting the conver-

sion of phosphoenolpyruvate (PEP) to pyruvate

(Fig. 2), and is one of two ATP-generating steps

of glycolysis (the second is mediated by phos-

phoglycerate kinase). The muscle version of PK

exists as one of two isoforms, M1 or M2, gener-

ated from differential splicing of thePKM primary

mRNA transcript, with the PKM2 splice variant

expressed in embryonic tissues, proliferating cells,

and tumor cells (54). Naïve T cells express both

M1 and M2 isoforms at rest; mitogen-dependent

activation promotes the rapid accumulation of

the M2 isoform, which becomes the dominant

isoform expressed in TEFF cells (55). PKM2 exists

as either an inactive dimer or an active tetra-

mer, and oscillation between these two states

influences the ability of cells to maintain anabolic

metabolism (56).

Multiple lines of evidence point to a role for

PKM2 in coordinating glycolytic flux and cell
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proliferation. Tumor cells engineered to exclusive-

ly express the M2 isoform display increased lac-

tate production characteristic of theWarburg effect

and gain a growth advantage in vivo over M1-

expressing tumors (57). Interestingly, the M2 iso-

form is actually less efficient at converting PEP to

pyruvate than the M1 isoform. Moreover, growth-

factor–stimulated tyrosine phosphorylation of

PKM2 further decreases its activity (58, 59). This

prompts the question: Why would proliferating

cells, including Tcells, promote the expression of

a pyruvate kinase isoform that is less efficient at

generating ATP? The answer to this question

may lie with the second function of Warburg

metabolism, namely, supporting anabolic growth.

Buildup of PEP because of reduced PKM2 ac-

tivity promotes the accumulation of glycolytic

intermediates, which can then be shunted into

upstream biosynthetic pathways to support amino

acid, triglyceride, and nucleotide biosynthesis.

Activating PKM2 by using small-molecule ago-

nists increases PEP-to-pyruvate conversion, re-

ducing the flux of glycolytic intermediates toward

anabolic pathways and slowing tumor cell growth

(56, 60). Thus, the ability of PKM2 to support cell

proliferation may have less to do with ATP pro-

duction and more with supporting biosynthetic

pathways required for tumor cell growth.

PKM2 may also exert some of its effects on

cell proliferation through nonmetabolic functions,

including transcriptional and epigenetic regu-

lation (61, 62). Of particular interest to immu-

nologists is that PKM2 can phosphorylate signal

transducer and activator of transcription 3 (STAT3)

at Tyr705, promoting increased STAT3-dependent

transcription (63). The phosphorylation of STAT3

by PKM2 demonstrates that PKM2 possesses

both protein and pyruvate kinase activities, the

former using PEP as a phosphate donor rather

than ATP. The protein kinase activity of PKM2

(and any subsequent effects on STAT3 activity)

would be predicted to be sensitive to metabolic

flux, favored under high-glycolysis PEP condi-

tions and antagonized by low-energy high-ADP

concentrations. The development of mouse mod-

els to study the impact of PKM2 activity in vivo

will be important for elucidating the role(s) of

PKM2 in immune function.

The Serine Biosynthesis Pathway

Another glycolytic intermediate that can double

as an anabolic precursor is 3PG. 3PG is the start-

ing point for the glucose-dependent biosynthesis

of serine and glycine via the serine biosynthesis

pathway (SBP) (Fig. 3A). Key enzymes of the SBP

are phosphoglycerate dehydrogenase (PHGDH),

the rate-limiting step for serine biosynthesis,

and serine hydroxymethyltransferase (SHMT),

which uses serine as a methyl donor to convert

tetrahydrofolate (THF) to methylene-THF, gen-

erating glycine in the process. Methylene-THF is

a key intermediate in folate-mediated one-carbon

metabolism that fuels nucleotide biosynthesis and

methylation reactions. Serine is also an allosteric

activator of PKM2 (64) and thus provides feed-

back to the glycolytic pathway to regulate 3PG

levels and serine biosynthesis.

In mammals, serine and glycine are non-

essential amino acids and are widely abundant

in serum (and tissue culture medium). However,

glucose-dependent serine biosynthesis is actively

engaged in some tumors regardless of serine

abundance. Amplification of PHGDH has been

observed in breast cancer and melanoma (65),

and increased PHGDH expression can promote

both enhanced serine biosynthesis and the pro-

liferation of cancer cells (65, 66). Enhanced flux

through the SBP may confer a growth advantage

to tumor cells beyond providing increased serine

and glycine for biosynthetic reactions. First,

PHGDH produces NADH, which can be used

to maintain cytosolic redox balance or fuel

mitochondrial OXPHOS to make ATP. The

second step of the pathway, the conversion of

3-phosphohydroxypyruvate to 3-phosphoserine

by phosphoserine aminotransferase (PSAT), re-

quires glutamate and produces a-KG (Fig. 3A)

(66). Thus, the SBP may promote an alternate

pathway of a-KG production for mitochondrial

metabolism or promote the activity of a-KG–

dependent enzymes (to be discussed later). Last,

serine and glycine are both intermediates in the

production of reduced glutathione (GSH), a key

cellular antioxidant. Recent evidence indicates

that cancer cells actively produce GSH from glu-

cose via the SBP as a buffer against oxidative

damage (67). The expression of SBP enzymes is
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Fig. 2. Metabolic pathways that support cell growth and proliferation. Glycolysis and the TCA cycle
are two separate yet connected biochemical pathways that function to generate ATP as well as metabolic
precursors for biosynthesis. Glucose is broken down to pyruvate by glycolysis (orange); pyruvate can be further
oxidized by the TCA cycle in the mitochondrion. Glycolytic intermediates can be used to generate other
metabolites required for growth and proliferation. Glucose 6-phosphate and 3PG produced from glycolysis are
metabolized in the PPP (green) and the SBP (blue), respectively, providing important precursors for nucleotide
biosynthesis. Similarly, acetyl-CoA, generated from glucose-derived citrate in the TCA cycle, can be used for
lipid biosynthesis. OAA, produced as part of the TCA cycle, can be used to generate aspartate, another precursor
for nucleotide synthesis. An alternate source of carbon for the TCA cycle occurs via glutaminolysis (purple); in
this pathway, glutamine is converted to glutamate and then to a-KG, which joins the TCA cycle. Glutamine is
also a precursor for amino acid and nucleotide biosynthesis. Key enzymes in these pathways are PHGDH; PKM2;
LDHA, lactate dehydrogenase; PDH; GLS, glutaminase; SDH, succinate dehydrogenase; and FH.
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up-regulated inMyc-driven lymphomas (68); thus,

we hypothesize that TEFF cells may actively en-

gage the SBP upon activation, even in the pres-

ence of exogenous serine. Future investigation

will be needed to determine how the SBP in-

fluences T cell biology.

Reductive Carboxylation of a-KG

As mentioned previously, it is now appreciated

that in proliferating cells the TCA cycle functions

as a source of biosynthetic precursors in addition

to its role in ATP production (46). Carbon enters

the TCA cycle primarily at one of two entry points:

(i) the condensation of glucose-derived acetyl-

CoA with OAA to generate citrate and (ii) con-

version of glutamine to a-KG via glutaminolysis

(Fig. 3B). Carbon-tracing experiments using pro-

liferating glioblastoma cells have established that

both glucose and glutamine contribute to mito-

chondrial citrate pools and subsequent lipid syn-

thesis (69). The oxidative decarboxylation of

isocitrate to a-KG by isocitrate dehydrogenase

(IDH) is highly favored thermodynamically, such

that this reaction is believed to be irreversible and

the reason for the “clockwise” flow of metabolic

intermediates through the TCA cycle.

Groundbreaking new work suggests that

metabolite flow through biochemical pathways

does not always conform to conventional dogma.

Although oxidation of glutamine-derived a-KG

in the TCA cycle serves as a minor source of

lipogenic acetyl-CoA under normal growth con-

ditions, a-KG can be converted to citrate through

reductive carboxylation under conditions of stress

such as hypoxia or mitochondrial

dysfunction (70–72). In this reac-

tion, glutamine-derived a-KG is

carboxylated, rather than decarbox-

ylated, by IDH1 (in the cytosol) or

IDH2 (in mitochondria) to generate

citrate (Fig. 3B). This switch to re-

ductive versus oxidative metabo-

lism of a-KG is regulated in part by

HIF-1a (71, 72), although the exact

mechanism by which HIF-1a does

so remains unclear. Engaging reduc-

tive carboxylation of a-KG in es-

sence bypasses the conventional TCA

cycle by using glutamine to gener-

ate the acetyl-CoA required for fatty

acid synthesis (Fig. 3B). Under such

metabolic reprogramming, cancer

cells continue to use glycolysis for

ATPproduction but switch fromglu-

cose to glutamine as the major li-

pogenic precursor.

One implication of this work is

that tumor cells display a high de-

gree of metabolic plasticity and can

adapt their metabolism to support

proliferation and viability under fluc-

tuating environmental conditions.

Whether Tcells display similar meta-

bolic flexibility in response to en-

vironmental cues requires further

investigation. Thework fromMetallo

and colleagues (71) suggests that

T cells can use reductive glutamine

metabolism for fatty acid biosyn-

thesis under hypoxic conditions.

Physiologic oxygen tension varies

significantly between tissues, and hy-

poxic regions can be detected in the

bone marrow, thymus, and spleen

(73). Moreover, T cells are likely to

experience hypoxia at sites of tissue

inflammation (74). Stabilization of

HIF-1a and metabolic reprogram-

ming to favor reductive carboxylation

may help T cells maintain prolif-

eration and/or effector function at

hypoxic inflammatory sites. HIF-1a

protein expression has also been observed early

after T cell activation (75), so it is unclear whether

reductive carboxylation may also be engaged as

part of the normal program of T cell expansion.

Asmentioned, HIF-1a has been implicated in the

differentiation of both proinflammatory TH17

cells (35, 36) and CD4+FoxP3+ Treg cells (76). It

is tempting to speculate that this alternate path-

way of glutamine metabolism may influence the

expansion or phenotypic stability of these T cell

subsets.

Metabolites As Signaling Molecules

Cancer genome sequencing efforts yielded an un-

expected discovery in 2008 with the identifica-

tion of somatic mutations in a metabolic enzyme,

the TCA cycle enzyme IDH1, in glioblastoma

Fig. 3. Serine biosynthesis and reductive carboxylation are anabolic pathways that support cell proliferation.
(A) The SBP converts glucose-derived 3PG into serine and glycine, which are precursors for lipid and nucleotide
biosynthesis. Serine is also involved in folate-mediated one carbon metabolism by acting as a methyl group donor for THF
tomethylene-THF conversion. Key enzymes in this pathway are PHGDH, PSAT, and SHMT. (B) Reductive carboxylation is an
alternate pathway of glutamine metabolism in which glutamine-derived a-KG is converted to citrate through reverse TCA
cycle flux. Under conditions of hypoxia or mitochondrial dysfunction (right), isocitrate dehydrogenase (IDH1 in cytosol,
IDH2 in mitochondria) uses CO2 and NADPH to convert a-KG into isocitrate. Citrate produced downstream of this reaction
is converted into cytosolic acetyl-CoA without passing through the conventional clockwise steps of the TCA cycle. Acetyl-
CoA generated by this pathway can function as a precursor for fatty acid synthesis. a-KGDH, a–KG dehydrogenase.
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multiforme (GBM) (77). Mutations in IDH1

presented at significant frequency (~12% of

GBM patients) with high frequency of missense

mutations targeting an arginine residue in the

active enzyme site (Arg132). This mutation alters

the enzymatic ability of IDH1, allowing it to con-

vert a-KG to 2-hydroxyglutarate (2-HG) rather

than promote normal isocitrate–to–a-KG inter-

conversion (78). In the cancer setting, 2-HG has

been shown to influence a number of biological

processes, including cell differentiation, DNA

methylation, and histone methylation (79–82),

leading to its classification as an oncometabo-

lite. These results have shifted thinking in cancer

biology to consider that specific metabolites may

also act as signaling molecules to influence cell

physiology. Given certain similarities between

metabolic programming in tumor cells and pro-

liferating T cells, it stands to reason that metab-

olites will participate in T cell signaling as well.

Some examples of how metabolites shape T cell

function and fate throughmetabolic pathways are

discussed in detail here.

Regulation of LKB1-AMPK Signaling
by Adenylates

ATP is the primary carrier of chemical energy

in the cell and essential for life. Thus, adenylates

[ATP, adeonsine diphosphate (ADP), and AMP]

are important units of cellular metabolic cur-

rency. In mammalian cells, fluctuations in cel-

lular energy are monitored by the heterotrimeric

AMPK complex [reviewed in (83)]. ATP, ADP,

andAMP compete for nucleotide-binding sites of

the g regulatory subunit of AMPK, with AMP

(low energy) promoting and ATP (high energy)

antagonizing AMPK activation. As such, AMPK

functions as a sensor of the cellular adenylate

energy charge (84, 85). Elevation of the cellular

AMP:ATP ratio leads to increased phosphoryl-

ation of AMPK at Thr172 of its activation loop by

the kinase LKB1 (Fig. 4A). AMPK can also be

activated by Ca2+ (via CamKKb) and the cyto-

kine transforming growth factor–b (TGF-b) (via

TAK1), although LKB1 appears to be the sole

kinase that couples adenylate binding to AMPK

activation.

Together LKB1 and AMPK function as part

of an evolutionarily conserved energy-sensing

pathway that maintains cellular energy balance

by promoting catabolic pathways of ATP pro-

duction and limiting processes that consume

ATP. Protein synthesis is one of the most energy-

consuming processes in the cell, accounting for

~20% of cellular ATP consumption (86). As men-

tioned, AMPK antagonizes mRNA translation

through negative regulation of mTORC1 (Fig. 4A)

(18). By regulating AMPK activity, adenylates di-

rectly influence pathways of energy usage in the

cell. AsATP levels drop,AMPbinds toAMPK, and

AMPK is switched on to promote ATP production

and block its consumption; once ATP homeostasis

has been reestablished, increased binding of ATP

to AMPK shuts off the kinase.

Recent work indicates that LKB1-AMPK sig-

naling can influence T cell metabolism and func-

tion. Lymphocytes exclusively express the a1

catalytic subunit of AMPK (87), and TCR stim-

ulation promotes LKB1-dependent AMPK acti-

vation in lymphocytes (87, 88). Glycolysis is

enhanced in resting AMPKa-deficient T cells

(88), consistent with observations that silencing

AMPK in tumor cells promotes the Warburg ef-

fect (89). Loss of LKB1-AMPK signaling pro-

motes increased mTORC1 activity in both naïve

and TEFF cells (88, 90), which in turn facilitates

production of the TH1 cytokine interferon-g (IFN-g)

by TEFF cells (88). Thus, LKB1 and AMPK act

in concert to limit the anabolic growth of T cells

by suppressing glycolysis and mTOR-dependent

biosynthesis. Perhaps not surprisingly, deletion

of either LKB1 or AMPKa1 disrupts normal lym-

phocyte homeostasis, resulting in an accumulation

of activated (CD44hi CD62Llo) CD8+ T cells in

animals (88). These results suggest that cellular

adenylate levels and AMPK may help regulate

lymphocyte pools in the whole organism.

Why would a signaling pathway that nor-

mally monitors cellular energy levels regulate

Tcell function? Similar to tumor cells (91), AMPK

may regulate a metabolic checkpoint in T cells,

acting as a brake on lymphocyte expansion when

energy conditions are poor. TEFF cells with de-

fective AMPK signaling would be freed from

these metabolic checkpoints and continue to

proliferate and produce cytokines as if cellu-

lar bioenergetics were suitable to support T cell

function. Additionally, AMPK may regulate the

metabolic plasticity of lymphocytes, coordinating

metabolic changes in response to nutrient fluc-

tuation and allowing Tcells to survive changes in

their environment. As evidence for this, theAMPK

agonist metformin, which promotes FAO in acti-

vated T cells, enhances the production of CD8+

memory T cells in vivo (17). Furthermore, it was

recently shown that AMPK-deficient T cells are

defective in their ability to generate CD8+ mem-

ory T cells during infection (92). There is also a

growing body of evidence implicating AMPK in

the control of inflammation (3). Future work will

focus on the role of AMPK in regulating the meta-

bolic fitness of lymphocytes, dissecting LKB1-

and AMPK-specific effects on immune function

and investigating the role(s) of LKB1 and AMPK

in regulating inflammation in vivo.

Regulation of a-Ketoglutarate-Dependent
Enzymes by TCA Cycle Metabolites

Although TCA cycle metabolites play central roles

in energy metabolism, many function as chemical

intermediates in other biological reactions. For

example, fumarate can be used to chemically

modify cysteine residues of proteins, resulting
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Fig. 4. Metabolites can influence signal transduction. (A) The AMPK path-
way is influenced by adenylate concentration. AMPKa is activated by phospho-
rylation on Thr172 of its activation loop by the kinases LKB1, TAK1, or CaMKKb.
LKB1 promotes enhanced AMPK phosphorylation under a high AMP:ATP ratio.
One biological output of AMPK activity is the inhibition of mRNA translation
under low-energy conditions through inhibition of mTORC1 activity. (B) a-KG–
dependent enzymes (in yellow) are a class of enzymes regulated by TCA cycle

intermediates that require molecular oxygen (O2) and a-KG for their enzymatic
activity. Oxygen,a-KG, ascorbate, and iron (green) are positive regulators of these
enzymes, whereas the TCA cycle intermediates fumarate and succinate (blue)
antagonize their reactions. PHDs destabilize HIF-1a protein, resulting in decreased
expression of HIF-1a targets and a reduction in glycolysis. TET2 hydroxylates
5-methylcytosine residues to promote DNA demethylation, whereas JmjC pro-
motes demethylation of trimethylated histones in chromatin.
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in the formation of S-(2-succinyl)cysteine or

succinylation of these residues (93). Cancer cells

harboring mutations in fumarate hydratase (FH),

the TCA cycle enzyme that converts fumarate to

malate, accumulate intracellular fumarate and

display increased amounts of succinylated proteins

(94). Increased protein succinylation has been as-

sociated with renal carcinoma andmechanistically

can influence signal transduction pathways similar

to protein phosphorylation or acetylation (95).

a-KG is another key metabolite involved in

non-TCA cycle biochemical reactions. a-KG is

essential for the activity of a class of enzymes

known as a-KG–dependent dioxygenases (Fig.

4B). These enzymes use a-KG along with mole-

cular O2, iron, and ascorbate to modify target

proteins (96). The most extensively characterized

enzymes of this family are the HIF prolyl hy-

droxylases (PHDs). PHDs use O2 to hydroxylate

HIF-1a on two conserved proline residues, facil-

itating their recognition by the E3 ubiquitin li-

gase VHL and promoting HIF-1a degradation

by the proteosome. When O2 availability is low,

HIF-1a protein is stabilized because of reduced

PHD activity, resulting in increased HIF-1a–

dependent transcription (97). This regulatory cir-

cuit allows HIF-1a to promote glycolytic ATP

production when O2 cannot support mitochon-

drial OXPHOS, an example of metabolic adap-

tation in response to environmental conditions.

Other a-KG–dependent enzymes using this chem-

istry are the TET family of DNA hydroxylases,

which hydroxylate 5-methylcytosine residues to

promote DNA demethylation, and the Jumonji C

(JmjC) class of histone demethylases (Fig. 4B). A

detailed summary of these processes has recently

been reviewed (98).

The activity of a-KG–dependent enzymes is

directly affected by the abundance of TCA cycle

intermediates. For example, 2-HG acts as a com-

petitive inhibitor of a-KG, and its production by

mutant IDH1 consumes a-KG (81, 99), leading

to reduced TET2 and JmjC activity in tumor cells

(79, 80). High levels of succinate and fumarate

can inhibit PHD2 activity through product-

mediated inhibition of PHD function, leading to

HIF-1a protein stabilization under normoxic

(20% O2) conditions (100, 101). Additionally,

total abundance of a-KG is low in most cell

types. The implication of these findings is that

metabolic flux through the TCA cycle can affect

gene transcription and/or epigenetic programs. It

was recently shown that succinate plays a central

role in production of the cytokine IL-1b by lipo-

polysaccharide (LPS)–stimulated macrophages

(102). LPS induces the de novo production of

succinate from glutamine, leading to PHD in-

hibition, stabilization of HIF-1a, and increased

HIF-1a–dependent IL-1b production. Mutant

IDH2 [Arg140→Gln140 (R140Q)],which promotes

a-KG depletion/2-HG production, promotes DNA

hypermethylation in hematopoietic cells and can

inhibit myeloid differentiationwhen overexpressed

in bonemarrow stem cells (79). Differentiation of

T cells to specific TH lineages is driven by spe-

cific transcription factors but reinforced by epi-

genetic modifications on histone tails (H3K4 and

H3K27 trimethylation) and DNA methylation of

CpG dinucleotides (103). Differential TCA cycle

flux or buildup of intermediates such as succinate

or fumarate may influence the activity of a-KG–

dependent enzymes that regulate Tcell epigenetics.

This may be one way in which the environment

(O2, nutrient levels) can influence the plasticity of

TH lineages at sites of infection or inflammation

in vivo. Thus, much like the role of oncometab-

olites in tumorigenesis, studying the metabolism

of T cell responses may reveal the existence of

“immunometabolites” that influence T cell re-

sponses and inflammation.

Connecting Metabolism and Gene Regulation

A transformative conceptual change in the way

we considermetabolismwithin cells is that changes

in metabolism can be linked to changes in gene

expression through posttranscriptional regulatory

networks involving RNA, metabolites, andmeta-

bolic enzymes “moonlighting” as RNA binding

proteins and regulating specific target mRNAs

(104) (Fig. 5). Many enzymes, including those

connected with the TCA cycle, glycolysis, PPP,

fatty acid metabolism, and other pathways, have

been shown to bind RNA in vitro and in cultured

cells (105, 106). In addition, the RNA binding

function of enzymes can be influenced by inter-

actions with their metabolites or cofactors, illus-

trating how the metabolic state of the cell can

control an enzyme’s RNA binding function.

The metabolic enzyme perhaps best char-

acterized for its physiological role as an RNA

binding protein is cytosolic aconitase (107, 108),

a key regulator of cellular iron metabolism (109).

In the early 1990s, it was shown that cytosolic

aconitase and the RNA binding protein IRP-1

represent the same polypeptide and that the avail-

ability of iron triggers insertion or removal of an

iron sulfur cluster—switching the protein’s func-

tion between RNA binding activity (iron low,

IRP-1) and metabolic enzyme activity (iron high,

aconitase) (110). Remarkably, IRP-1 binds to and

regulates mRNAs encoding proteins that func-

tion in iron homeostasis. Work from this group

and others has led to the idea that bifunctional

enzymes and RNA binding proteins may repre-

sent a general mechanism of how metabolism

and gene expression are coordinated through

RNA/enzyme/metabolite (REM) networks [pro-

posed by Hentze and Preiss in (104)].

Lending weight to the REM network hy-

pothesis is a recent study showing that the en-

zyme glyceraldehyde-3-phosphate dehydrogenase

(GAPDH), by engaging or disengaging the gly-

colysis pathway and through fluctuations in its

expression, regulates the posttranscriptional pro-

duction of IFN-g by T cells (27). GAPDH is a

multifunctional enzyme that can bind a range

of RNAs, including AU-rich regions in the 3′
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Fig. 5. Bifunctional metabolic enzymes connect metabolism and gene regulation. Metabolic
enzymes can moonlight as RNA binding proteins and regulate the translation of specific target mRNAs.
The RNA binding function of enzymes can be influenced by interactions with intermediary metabolites and
cofactors, leading to posttranscriptional regulation of protein expression. Posttranslational modification
of metabolic enzymes could influence their RNA binding function directly or by altering the enzyme’s
subcellular location. Changes in metabolic conditions, such as bioenergetic demand, hypoxia, stress, and
substrate availability, may affect the consequences of the REM interactions. The overall balance of the
network between RNA, enzymes, and metabolites can potentially influence T cell fate and function.
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untranslated region (UTR) of cytokine mRNAs,

including IFN-g and IL-2 (111). Activated T

cells can use either OXPHOS or glycolysis to

generate energy to support proliferation and sur-

vival. When T cells switch between these ATP-

generating programs, as can occur with changes

in nutrient availability, or costimulatory or growth

factor signals, GAPDH switches from its function

as a metabolic enzyme (glycolysis) to its function

as an RNAbinding protein controlling expression

of immunomodulatory factors. When GAPDH

is not engaged in glycolysis andOXPHOS is used

for ATP production, it binds the 3′UTR of cy-

tokine mRNAs, and translation of these mRNAs

is dampened. Thus although OXPHOS can sup-

port Tcell survival and proliferation, only aerobic

glycolysis can facilitate full effector status. This

regulatory mechanism provides a checkpoint to

allow for uncoupling of T cell proliferation and

survival from cytokine production. This is a de-

sirable control mechanism over effector func-

tion, because Tcells are required to undergo both

homeostatic proliferation, when IFN-g produc-

tion is neither required nor desirable, and antigen-

driven proliferation during an immune response,

when effector cytokine production is essential.

The activity of GAPDH is not only con-

trolled by pathway engagement as dictated by

substrate availability but is also heavily influenced

by redox balance within the cell. For example,

GAPDH requires NAD+ for its enzymatic func-

tion, but NAD+ also interferes with mRNA bind-

ing, at least in vitro (112). Thus, NAD+ controls

both enzyme activity and RNA binding in a mu-

tually exclusive fashion. Metabolic enzymes that

regulate NAD+/NADH balance, including LDHA

and PHGDH, may also influence this process.

Redox changes may also affect posttranslational

modifications of GAPDH, altering its binding to

mRNA, metabolites, as well as its localization

within the cell (113, 114). This level of regulation

between redox balance and RNA binding would

be expected to occur with other RNA binding

enzymes that share similar dinucleotide binding

motifs with GAPDH. Although much work needs

to be done to fully understand the biological im-

portance of the interactions between enzymes,

RNA, and metabolites, these observations clearly

demonstrate how cofactors and substrates gen-

erally considered for their direct effects on me-

tabolism may also coordinate metabolism with

gene expression.

Future Challenges and Other Considerations

Technical Challenges in Studying
Lymphocyte Metabolism

Although interest in studying lymphocyte metab-

olism and technological advances inmetabolomics

have increased over the past several years, the

field faces many challenges going forward. For

instance, although equipment for studying basic

metabolism (i.e., oxygen consumption and proton

production) is becoming more commonplace,

specialized equipment for metabolite measure-

ments [i.e., mass spectrometry (MS), nuclear

magnetic resonance (NMR) spectroscopy] and

analytical expertise is not routinely accessible

to investigators. Another limitation is that, un-

like microarray or sequencing technologies,

metabolomic analyses do not adhere to a single

global platform. For example, gas chromatography

coupled to MS (GC-MS) is effective at quantify-

ing organic acids such as TCA cycle inter-

mediates but not most glycolytic intermediates.

Thus, multiple platforms must be used to gen-

erate complete metabolite data sets. Current ex-

tractionmethods do not allow for the measurement

of subcellular metabolite pools, so information

on metabolite localization or channeling between

organelles is also lost. One caution of measuring

steady-state metabolite levels is that these data

provide no measurement of metabolite flux, that

is, the speed or direction ofmetabolite flow through

a given pathway (115). Metabolic flux analysis

using isotopically labeledmetabolites such as 13C-

glucose or 13C-glutamine will be essential for

delineating pathways of metabolite flow in Tcells.

Perhaps the most relevant challenge for im-

munologists is the amount of material required

for metabolomic analysis. Because of advances

in flow cytometry and the identification of new

biomarkers to define T cell subsets, immunology

has entered an era of cellular subspecialization,

where rare cell populations are readily character-

ized. In comparison, a typical metabolic flux ex-

periment requires millions of cells. This raises

the issue of having limited material to analyze

the metabolism of cells grown in vitro, let alone

in vivo. The development of instrumentation with

increased sensitivity will help reduce this gap, but

better sample preparation and techniques to am-

plify metabolite signals are badly needed. The

development of genetically encoded fluorescent

biosensors for metabolic activity, such as those

recently developed for NADH (116) and cellular

energy charge (117), will be particularly power-

ful for studying T cell metabolism at the single-

cell level.

Microenvironmental Effects on Metabolism:
Are Our Model Systems Correct?

One of the ongoing questions regarding current

experimentalmodels in immunology is howclose-

ly cell culture models recapitulate immune re-

sponses in vivo. From a metabolic perspective,

one can conclude that the two systems are worlds

apart. Activated T cells cultured in standard me-

dium (Iscove’s modified Dulbecco medium plus

10% serum) experience 25 mM glucose (five

times standard blood glucose of 5 mM), 4 mM

glutamine (eight times the standard concentration

of 0.5 mM in blood), and 20% O2 [two to four

times the oxygen tension in blood, which varies

depending on tissue type (73)]. Most in vitro as-

says to assess T cell function are performed at

nutrient and O2 levels much higher than seen in

normal physiology; these conditions model a hy-

perglycemic and hyperoxic environment never

seen in vivo.

As TEFF cells move from a nutrient-replete

environment in the lymph node or spleen to dis-

tant sites of infection, they are likely to experi-

ence more restrictive metabolic environments

(Fig. 6). Some tissue sites, such as the thymus,

bone marrow, and the gastrointestinal epithelium,

are naturally hypoxic, whereas inflammation can

promote local hypoxic regions in tissues (73).

Unlike O2, which can freely diffuse into tissues,

nutrients such as glucose move through space by

Brownian motion and require transport into cells,

and thus they are likely to have a much more

restricted distribution in tissues. Local metabolic

activity of immune cells at the site of infection

can rapidly consume available O2 and nutrients,

resulting in metabolic stress for infiltrating T cell

populations (Fig. 6). There is evidence that TEFF
cells in the tumor microenvironment compete

with tumor cells for available glucose, and this

competition model of nutrient restriction limits

the ability of TEFF cells to produce effector cy-

tokines such as IFN-g (27). Thus, metabolic

and environmental influences on T cell function

in vivo may elicit very different responses and

may account for experimental variance between

T cell responses in a petri dish versus what is

observed in animal models. Although these points

provide sobering food for thought, the develop-

ment of in vitro methods that control metabolic

parameters (e.g., hypoxia incubators, perfusion

systems for culture medium) may help to recon-

cile these differences. Studying metabolite flux

of T cells in vivo by using isotopomer labeling

techniques will further our understanding of meta-

bolic pathways relevant for Tcell function. These

techniques are currently being developed in the

cancer biology field (118, 119) and should be

readily transferable to immunology research.

If activated T cells frequently transition be-

tween nutrient-replete states (lymph nodes) and

nutrient-deficient states (sites of infection), then

management of metabolic resources is an impor-

tant consideration for lymphocytes in order to

ensure maintenance of proliferation and/or ef-

fector function. Metabolic insufficiency may be a

fundamental mechanism by which environmen-

tal context regulates T cell function, potentially

influencing Tcell tolerance and anergy. Metabolic

interference mechanisms, such as indoleamine

2,3-dioxygenase (IDO)–1–dependent degradation

of tryptophan by antigen presenting cells (APCs),

may represent key regulatory mechanisms at sites

of infection or inflammation (120). Tumors may

similarly restrict antitumor immunity by influ-

encing T cell metabolism. Competition between

tumor cells and tumor-infiltrating T cells for

available glucose can impose nutrient deprivation

on TEFF cells that limits their ability to produce

effector cytokines (27). Tumor-derived lactate can

also suppress CTL function directly by blocking

lactate export by T cells, thus disrupting their

ability to maintain glycolysis (121).

It remains to be determined whether T cells

deal with nutrient restriction by displaying meta-

bolic plasticity similar to tumor cells. In this con-
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text, AMPK and HIF-1a, which monitor cel-

lular energy and O2 levels, respectively, are

likely to have a profound effect on the adaptive

immune response. Loss of HIF-1a impairs TH17

expansion and induction of experimental auto-

immune encephalitis (35), consistent with a re-

quirement for HIF-1a in promoting TH17 function

in vivo. Overall, we know very little regarding

pathways that regulate metabolism and adapta-

tion to metabolic stress in lymphocytes, particu-

larly in vivo; this area of immunology is poised

for important discoveries in the years to come.

Concluding Thoughts

Recent findings in metabolism and cancer biol-

ogy have rapidly closed the gap between cell

signaling and biochemical pathways. One can

now consider all parameters of these fields as

being directly intertwined, comprising an inter-

connected network from gene expression to

metabolite production. T cells provide a unique

opportunity to understand how metabolism is

used in normal biology to achieve proliferation

versus abnormal biology, such as that observed

in cancer. Characterizing how these pathways

are integrated in T cells, how perturbations in the

system (i.e., nutrient availability, O2 tension, and

metabolite flux) influence T cell responses, and

how metabolic responses are regulated in vivo in

the context of infection will be some of the

challenges facing scientists in this field. Under-

standing how environmental cues and cellular

metabolism influence the outcome of T cell–

mediated immune responses will continue to be

an active area of research in the future. Interfering

with metabolic pathways by using agents such as

metformin and rapamycin has already revealed

substantial and unexpected effects on T cell–

mediated immunity. Understanding how meta-

bolic reprogramming influences T cell fate and

effector function has the potential to uncover new

ways of modulating T cell responses.
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suggest how parallels might be found in studying the metabolic changes seen in tumor cells, and propose challenges for 
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