
Fujisaki-Okamoto IND-CCA hybrid encryption revisited

David Galindo, Sebastià Mart́ın, Paz Morillo and Jorge L. Villar

Dep. Matemàtica Aplicada IV. Universitat Politècnica de Catalunya
Campus Nord, c/Jordi Girona, 1-3, 08034 Barcelona

e-mail: {dgalindo,sebasm,paz,jvillar}@mat.upc.es

Abstract

At Crypto’99, Fujisaki and Okamoto [10] presented a nice generic transfor-
mation from weak asymmetric and symmetric schemes into an IND-CCA hybrid
encryption scheme in the Random Oracle Model. From this transformation, two
specific candidates to standardization were designed: EPOC-2 [9] and PSEC-
2 [16], based on Okamoto-Uchiyama and El Gamal primitives, respectively. Since
then, several cryptanalysis of EPOC have been published, one in the Chosen Ci-
phertext Attack game and others making use of a poor implementation that is
vulnerable to reject timing attacks.

The aim of this work is to avoid these attacks from the generic transformation,
identifying the properties that an asymmetric scheme must hold to obtain a
secure hybrid scheme. To achieve this, some ambiguities in the proof of the
generic transformation [10] are described, which can lead to false claims. As a
result the original conversion is modified and the range of asymmetric primitives
that can be used is shortened.

In second place, the concept of Easy Verifiable Primitive is formalized, show-
ing its connection with the Gap problems. Making use of these ideas, a new
security proof for the modified transformation is given. The good news is that
the reduction is tight, improving the concrete security claimed in the original
work for the Easy Verifiable Primitives. For the rest of primitives the concrete
security is improved at the cost of stronger assumptions.

Finally, the resistance of the new conversion against reject timing attacks is
addressed.

Keywords: public-key cryptography, chosen-ciphertext security, tight reduction,
Random Oracle Model, Okamoto-Uchiyama scheme, reject timing attacks.

1 Introduction

When developing a new public key encryption scheme there are two basic criteria
that a designer wants to reach: security and efficiency. Security is obviously the
main concern, and it is expressed in terms of an attacker’s goal against the scheme
and the means it uses. The standard security notion for a general purpose cryptosys-
tem is indistinguishability against adaptive chosen ciphertext attacks, IND-CCA for
short. Although there are other security notions equivalent to the latter (cf. [1, 19]),
it is preferred for technical reasons. Proofs of security are accepted only if they are
in the provable security model, in which security is polynomially reduced to trusted

1

2

mathematical assumptions. Regarding efficiency, there are two main aspects to con-
sider. On one hand, the computational complexity of the algorithms involved in the
scheme and, on the other hand, the concrete security of the scheme, that is, how the
security of the scheme is related to the computational assumptions which it is based
on. There are other features of relevance, as the design simplicity or the length of
the messages that can be encrypted.

However, to develop a practical provably secure cryptosystem in the sense of IND-
CCA is a quite difficult task. In fact, few such schemes are known in the standard
model, being the exceptions the schemes designed in the Cramer-Shoup paradigm [7].
In the idealized Random Oracle Model [2], several powerful generic constructions have
been designed [10, 17, 14, 5], which provide practical IND-CCA schemes from weak
asymmetric and symmetric schemes.

Among these constructions, [14, 5] present a better security reduction than [10,
17]. This is mainly due to the use of the Plaintext Checking Oracle introduced in [13].
The cost of using this oracle is that the security of the encryption scheme is in general
based on (stronger) gap assumptions, when the asymmetric primitive is probabilistic.

In this paper we revisit the generic conversion by Fujisaki and Okamoto (FO)
presented at Crypto’99. The particular instantiation of this conversion with the
Okamoto-Uchiyama scheme [15], known as EPOC-2 [9], has found practical attacks
that lead to a total break [12, 8, 18]. The most serious flaw was found in [12], where
the secret key was recovered in the IND-CCA game itself. The authors of [12] pointed
out that such a surprising result was related to the vagueness of the IND-CCA model
when dealing with invalid ciphertexts. In the case of the original especification of
EPOC-2, an attacker could obtain vital information about the system from that
ciphertexts. The other attacks mentioned above ([8, 18]), take profit of extra infor-
mation available at the real world, as the running time of the decryption algorithm.
This enables to distinguish among the reasons to reject certain ciphertexts and it is
used to launch an attack recovering again the secret key.

Our results. We incorporate the comments made by EPOC’s authors in [12] about
FO conversion. Then we show that some ambiguities still remain in the proof of secu-
rity, with the outcome that the security result claimed in [10] cannot be guaranteed
in general. This forces to slightly modify the conversion and to shorten the range of
asymmetric primitives that can be used.

In second place, the concept of Easy Verifiable Primitive is formalized, and it is
used to give a new security proof for the modified transformation. We show that
the reduction is tight, improving the concrete security claimed in the original work
for the Easy Verifiable Primitives. For the rest of primitives the concrete security is
improved at the cost of a stronger assumption, that is, a gap assumption (see [13]).

Finally, the resistance of the new conversion against reject timing attacks is ad-
dressed. Since the vulnerability of a scheme against these attacks is closely related
to the design of the rejection rules in the decryption algorithm, we take care about
this when drawing the modification.

3

2 Preliminaries

In this section we recall some technical details and notations that are used in the rest
of the paper.
Algorithmic notation. Assigning a value a to a variable x will be in general
denoted by x ← a. Nevertheless, this notation can be extended to allow different
meanings. If A is a non-empty set, then x ← A denotes that x is uniformly chosen
in A. If D is a probability distribution over A, then x ← D means that x is chosen
in A by sampling the distribution D. Finally, if A is an (probabilistic) algorithm,
x← A means that A is executed on some specified input and its (random) output is
assigned to the variable x.
Negligible functions. The class of negligible functions on a parameter � ∈ Z

+, de-
noted as negl(�), is the set of the functions ε : Z

+ → R
+ such that for any polynomial

p ∈ R[�], there exist C ∈ R
+ such that ε(�) < C

p(�) , for all � ∈ Z
+. Let poly(�) the

class of functions p : Z
+ → R

+ upper bounded in Z
+ by some polynomial in R[�].

Set sequences. As usual, {0, 1}� and {0, 1}� will respectively denote the set of
all finite binary strings and the set of binary strings with length �. A string set
sequence, X = {X�}�∈Z+ , is a polynomial size set if there exist a integer valued
function pX(�) ∈ poly(�) such that X� ⊆ {0, 1}pX (�) for all � ∈ Z

+. A polynomial size
set, X, is samplable if there exists a probabilistic polynomial time algorithm (PPT)
that on input 1�, outputs an uniformly distributed random element in X�. Moreover,
X is recognizable if there exist a polynomial time algorithm (PT) that on input 1� and
a string s, with size polynomial in �, outputs 1 if and only if s ∈ X�. The cardinality
of a set sequence A (as a function of �) will be denoted by |A|.

These notions can be easily extended to non-strings sets by using polynomial size
injective encoding maps. In the sequel, the use of natural encodings (e.g. binary
representations of integers) is assumed when necessary.

Hereafter, the word ‘sequence’ in ‘set sequence’, ‘map sequence’ and ‘probability
distribution sequence’ will be omitted.
Keypair generators. Let PK and SK polynomial size sets such that the sets PK�

are all disjoint and there exists a PT algorithm that on input sk ∈ SK� outputs an
element pk ∈ PK�. Suppose that there also exists a PT algorithm that on input
pk ∈ PK� outputs �. Let I a polynomial time samplable probability distribution
over PK × SK. The triple (PK,SK, I) will be called a keypair generator.
Set and map families. Given a keypair generator, the family {Xpk}pk∈PK is re-
ferred as the set family X. In the same way, a map family f is defined as {fpk :
Xpk → Zpk}pk∈PK. Given a set family, X, the cardinality |X| as a function of � is
defined to be the minimal value of |Xpk|, where pk ∈ PK�.

A set family X is recognizable if there exist a PT algorithm that on input pk ∈ PK
and a string s, with size polynomial in �, outputs 1 if and only if s ∈ Xpk. A
conjectured counterexample is the set family Xpk = Qn of the quadratic residues
modulo n = pq (p, q different primes with length �). However, if sk = (p, q) is also
provided then there exist an efficient way to recognise the elements in Qn.

3 Easy verifiable functions

Firstly, recall the definition of a trapdoor one-way function family.

4

Definition 1 Let (PK,SK, I) a keypair generator. Let X and Z be polynomial size
set families. Let f : X → Z be a family of injective maps and g = {gsk : Zpk →
Xpk}sk∈SK the family of their inverses, i.e. gsk(fpk(x)) = x for all possible pairs
(pk, sk) generated by I and for all x ∈ Xpk. The map family, f , is called a Trapdoor
One-Way (TOW) function family (with respect to the probability distribution I) if
and only if

1. there exist a PT algorithm that on input (pk, x) outputs fpk(x) for all pk ∈ PK
and x ∈ Xpk.

2. there exist a PT algorithm that on input (sk, z) outputs gsk(z) for all sk ∈ SK
and z ∈ Zpk.

3. for any PPT algorithm AOW(f),

Pr
[
AOW(f)(pk, fpk(x)) = x | (pk, sk)← I�; x← Xpk

]
∈ negl(�)

The following definition, based on [17], is somewhat related to the notion of
probabilistic one-way encryption.

Definition 2 Let (PK,SK, I) a keypair generator. Let X, Y and Z be polynomial
size set families. Let f : X × Y → Z be a family of injective maps and g = {gsk :
Zpk → Xpk}sk∈SK the family of their partial inverses, i.e. gsk(fpk(x, y)) = x for
all possible pairs (pk, sk) generated by I and for all x ∈ Xpk and y ∈ Ypk. The
map family, f , is called a Trapdoor Partial One-Way (TPOW) function family (with
respect to the probability distribution I) if and only if

1. there exist a PT algorithm that on input (pk, x, y) outputs fpk(x, y) for all pk ∈
PK, x ∈ Xpk and y ∈ Ypk.

2. there exist a PT algorithm that on input (sk, z) outputs gsk(z) for all sk ∈ SK
and z ∈ Zpk.

3. for any PPT algorithm APOW(f),

Pr
[
APOW(f)(pk, fpk(x, y)) = x | (pk, sk)← I�; x← Xpk; y ← Ypk

]
∈ negl(�)

The last condition can be reformulated in terms of the game

Game POW()
1 (pk, sk)← I�

2 x← Xpk; y ← Ypk

3 x′ ← APOW(f)(pk, fpk(x, y))

and the probability Succ
[
APOW(f)

]
= Pr [x′ = x] ∈ negl(�).

Notice that the concept of TOW function family can be seen as a particular case
of TPOW, in which |Y | = 1.

Starting from f , a probabilistic one-way cryptosystem, (KeyGenf ,Encf ,Decf), is
obtained in the following way: the keys (pk, sk) = KeyGenf (1�) = I� are generated
by using the sampling algorithm for I, the ciphertext for a message x ∈ Xpk with

5

randomness y ← Ypk is c = Encf (pk, x) = fpk(x, y) and a valid ciphertext z ∈ Zpk

is decrypted by means of Decf (sk, c) = gsk(c). Note that we are implicitly assuming
that Y is samplable. In this context, there is no need to specify what happens when
an invalid ciphertext, i.e. a polynomial size string z �∈ Zpk, is submited to Decf .

A new kind of attacks and computational problems have been introduced and
found various applications in the context of probabilistic cryptosystems (cf [13, 14]).
In this new scenario, the attacker has access to a Plaintext-Checking Oracle that
checks if a given ciphertext z is an encryption of a given message x. This attack
is called Plaintext-Checking Attack (PCA), and it can be reformulated in terms of
trapdoor partial one-way functions.

Definition 3 A TPOW function family f : X × Y → Z is Partial One-Way against
Plaintext-Checking Attacks (POW-PCA) if it is a TPOW function even when access
to a plaintext checking oracle Cpk is given. For a query (x, z), where x ∈ Xpk and
z ∈ Zpk, Cpk answers 1 if there exists y ∈ Ypk such that fpk(x, y) = z, and 0 otherwise.
(It is assumed that if x or z are outside their domains, the oracle also answers 0.)

This notion is stronger than partial one-wayness, since now the adversary is pro-
vided with extra computational resources. Now we formalize the concept of easy
verifiability, informally described in [17], that captures the situation in which there
exists an efficient algorithm that verifies if a pair (x, z) is correct, that is, the algo-
rithm implements a plaintext checking oracle.

Definition 4 The TPOW map family f : X × Y → Z is easy verifiable if and only
if there exists a (deterministic) PT algorithm V, called plaintext checking algorithm,
such that given any pk ∈ PK, V(pk, x, z) = 1 if x ∈ Xpk, z ∈ Zpk and there exists
y ∈ Ypk such that fpk(x, y) = z, and 0 otherwise.

Obviously, if f is easy verifiable then the Plaintext-Checking Oracle for f can be
replaced by the algorithm V, without introducing any modification in the adversary’s
model of computation. These functions are very interesting, since

Lemma 5 If the map family f : X × Y → Z is easy verifiable then it is POW-PCA.

Note that the existence of the plaintext checking algorithm would imply that the
set X is recognizable. This is due to the fact that the polynomial time algorithm
that computes fpk(x, y) could work when x lies in a set X̄pk broader than Xpk. Then,
by definition, the output of V(pk, x, fpk(x, y)), for any choice of y ∈ Ypk, can be
used to efficiently recognise if x ∈ X̄pk is in Xpk. For instance, no easy verifiable
function exists if Xpk = Qn (i.e. the set of quadratic residues modulo n = pq) unless
the quadratic residuosity modulo n problem is solvable in deterministic polynomial
time. Nevertheless, such a function can achieve POW-PCA under a computational
gap assumption (e.g. the gap between the quadratic residuosity modulo n and the
factoring n assumptions).

It is straightforward to modify a TOW function family f ′ : X → Z ′ to obtain
a easy verifiable function family f . To do it, simply take Y = {0, 1}p(�), where
p(�) ∈ poly(�), and define fpk(x, y) = (f ′

pk(x), y), that is, leaving y “in the clear”.
For an arbitrary TPOW function a plaintext checking algorithm could not exist.

For instance, this is supposed to be the case for El Gamal and Okamoto-Uchiyama

6

functions. In this situation, we are forced to base POW-PCA on a gap problem, which
is a stronger assumption (cf [13, 14]).

A non-trivial example of easy verifiable function is the RSA-Paillier trapdoor
bijection defined in [4]. A generalization of that function is presented below.

3.1 Non-trivial families of easy verifiable functions

Let n = pq, where p and q are different primes with equal length �. Let e < n be an
integer such that gcd(e, (p−1)(q−1)) = 1. For any integer r > 1 with size polynomial
in �, consider the subset Ωn,r ⊂ Znr defined as Ωn,r = Z

�
n + nZr. Then, the function

fn,r,e : Z
�
n × Zr −→ Ωn,r

(x, y) −→ xe + ny modnr

is a trapdoor bijection family, for pk = (n, r, e) and sk = (p, q, r, d), where d is the
inverse of e modulo (p − 1)(q − 1).

Notice that this function is well defined since z ∈ Ωn,r iff z mod n ∈ Z
�
n. Let

see that fn,r,e is a bijection. Suppose that fn,r,e(x0, y0) = fn,r,e(x1, y1) for some x0,
y0, x1 and y1. Reducing the equality modulo n we get xe

0 = xe
1 mod n, and then

x0 = x1 mod n. This implies ny0 = ny1 modnr, so y0 = y1 mod r and the function
fn,r,e is injective. Finally, given (p, q, r, d), to invert fn,r,e on input z = fn,r,e(x, y),
it suffices to compute x = zd modn. Then, y is easily obtained from the equation
ny = z − xe modnr. This shows fn,r,e is exhaustive, and therefore it is a bijection.

The above implies there exist two PT algorithms that compute both fn,r,e and
its partial inverse.

Proposition 6 The partial one-wayness of the bijection family fn,r,e is tightly equiv-
alent to the one-wayness of RSA[n, e].

Proof :
⇒) Assume that for some � there exist a PPT algorithm, A, breaking the partial
one-wayness of fn,r,e in time T and probability ε, i.e.

Pr [A(n, r, e, xe + ny modnr) = x | x← Z
�
n; y ← Zr] = ε

The following PPT algorithm, B, can be used to invert the RSA[n, e] function (i.e.
RSA[n, e](x) = xe modn) in time T + O(�2) with probability at least ε:

B(n, e, z)
1 y ← Zr, z′ = z + ny mod nr
2 x← A(n, r, e, z′)
3 return x

Then, Pr [B(n, xe mod n) = x | x← Z
�
n] ≥ ε.

⇐) Trivial.

Proposition 7 The bijection family fn,r,e is easy verifiable.

Proof : Given (n, r, e), it is straightforward to design a plaintext checking algorithm.
Firstly, verify if x ∈ Z

�
n and z ∈ Ωn,r, that is, z < nr and z mod n ∈ Z

�
n. Then, check

if the equation xe ≡ z (mod n) holds.

7

4 Encryption security

Let us briefly recall some standard definitions about the security of both symmetric
and asymmetric encryption.

4.1 Symmetric encryption

Let K and M be two (samplable and recognisable) polynomial size sets that respec-
tively denote the key and message spaces. Consider a symmetric encryption scheme
Esym = (KeyGensym,Encsym,Decsym) over these sets with the following properties:

• KeyGensym is a PPT algorithm that on input 1� outputs an uniformly distrib-
uted element in K�.

• Encsym and Decsym are PT algorithms with inputs are in K�×M� and outputs
in M�. Denote Encsym

k (m) = Encsym(k,m) and Decsym
k (c) = Decsym(k, c). For

each k ∈ K�, Encsym
k is a bijection on M� and Decsym

k is its inverse.

• For each pair (m, c) ∈M� ×M� there are at most γ values of k ∈ K� such that
c = Encsym

k (m). (Most of the known symmetric cryptosystems have γ = 1.)

Such a cryptosystem has indistinguishability of encryptions (IND-SYM), also called
Find-Guess security in [10], if any couple of PPT algorithms AIND−SYM(Esym) =
(A1,A2) (called “finding” and “guessing” stages of the adversary) have negligible
advantage in the following game:

Game IND-SYM()
1 b← {0, 1}
2 (m0,m1, s)← A1(1�)
3 k ← K�; c� = Encsym

k (mb)
4 b′ ← A2(s, c�)

That is, Esym is IND-SYM if and only if for all (A1,A2),

Adv
[
AIND−SYM(Esym)

]
=

∣∣2Pr
[
b′ = b

]
− 1

∣∣ =
∣∣Pr

[
b′ = b

]
− Pr

[
b′ �= b

]∣∣ ∈ negl(�)

The messages m0 and m1 generated by A1 must be in M�.

4.2 Asymmetric encryption

Let (PK,SK, I) a keypair generator, defined as in section 2. Let M , R and C be
polynomial size set families. Consider an asymmetric encryption scheme Esym =
(KeyGen,Enc,Dec) over these sets with the following properties:

• KeyGen is a PPT sampling algorithm for I, that is, (pk, sk) = KeyGen(1�) is
distributed as I� on PK� × SK�.

• Enc : PK ×M ×R→ C and Dec : SK ×C →M are PT algorithms such that
for any pair (pk, sk) generated by KeyGen(1�), Dec(sk,Enc(pk,m, r)) = m for
any m ∈ Mpk and r ∈ Rpk. In fact, Enc can be seen as a PPT algorithm with
input in PK ×M and coins taken in R.

8

Such a cryptosystem has indistinguishability of encryptions under a chosen ci-
phertext attack (IND-CCA), if any couple of PPT algorithms AIND−CCA(E) = (A1,A2)
have negligible advantage in trying to distinguish the encryptions of two (conve-
niently selected) messages, with access to two decryption oracles Dsk and Dsk,c�.
When queried with a ciphertext c the first decription oracle answers Dec(sk, c). The
only difference between Dsk and Dsk,c� is that Dsk,c� rejects the query c�, answering
the special reject symbol ⊥.

More formally, consider the following game:

Game IND-CCA()
1 (pk, sk)← KeyGen(1�)
2 b← {0, 1}
3 (m0,m1, s)← ADsk

1 (pk)
4 c� ← Enc(pk,mb)
5 b′ ← AG,H,Dsk,c�

2 (s, c�)

Then, E is IND-CCA if and only if for all couples of PPT algorithms AIND−CCA(E) =
(A1,A2),

Adv
[
AIND−CCA(E)

]
=

∣∣2Pr
[
b′ = b

]
− 1

∣∣ =
∣∣Pr

[
b′ = b

]
− Pr

[
b′ �= b

]∣∣ ∈ negl(�)

The messages m0 and m1 generated by A1 must be in Mpk.
Notice that the decryption oracle formalizes the access to a decryption machine.

Thus, the adversary is free to submit any polynomially bounded string (except for
the target ciphertext, c�, in the guessing stage) to this oracle. This means that
IND-CCA security depends not only on the encryption algorithm but also on the
concrete implementation of the decryption algorithm, including its behaviour for
inputs outside the set of valid ciphertexts (i.e. ciphertexts of the form Enc(pk,m, r)
for m ∈ Mpk and r ∈ Rpk). This behaviour can give very useful information for an
adversary.

4.3 Random oracle model

There are some ways to define random functions or random oracles in the literature.
In the seminal work [2], random oracles act as random functions from {0, 1}� to
{0, 1}∞, while in the influential paper [3] the random functions are collections of
functions. Moreover, in the second definition for a given value of the complexity
parameter, �, the corresponding function goes from {0, 1}pI (�) to {0, 1}pO(�), where
pI(�), pO(�) ∈ poly(�). Furthermore, the security of some schemes (e.g. [11]) depends
on which definition of random function is used.

In this paper, a random oracle is viewed as a special type of random process or
random sequence. The random oracle is defined through its idealised functionality,
that is closely related to the random oracle simulations often used in the proofs of
security.

Let A be a samplable polynomial size set. A random function G over A is a
sequence of uniformly distributed independent random variables over A, indexed by
the elements of {0, 1}�. Notice that {0, 1}� is an ordered set. A random oracle over A
is an oracle that answers queries exactly as if the random function G was evaluated.

9

The main property of a random function is that the joint distribution of qG

variables G(s) for distinct values of s is the same regardless which values of s are
selected. Thus, an efficient probabilistic (interactive) algorithm can simulate this
random function by means of a table TG storing all previous queries along with their
answers. Any new (yet unanswered) query will be answered with a “fresh” random
value, that will be annotated in TG.

G(s)
1 if s ∈ TG; return TG(s); endif
2 g ← A
3 insert (s, g) in table TG
4 return g

Here, s ∈ TG will denote the fact that s has been queried to G by some party and
TG(s) will denote the answer given by G to that query.

Notice that the above algorithm runs in polynomial time and space if,

• A is a samplable polynomial size set

• during the game, in which the different parties have access to the random oracle,
no more than a polynomial quantity, qG(�) ∈ poly(�), of queries are made

• the size of each query is limited by a polynomial function in �

This last condition will be obviously fulfil if all parties are modeled by polynomial
time machines.

Finally, IND-CCA security in the Random Oracle Model (ROM) of an asymmetric
cryptosystem E is defined in the same way as above, but providing the adversary with
oracle access to one or more random functions. In order to formalize the random coins
of the random functions, a step G ← R(A) will be added at the beginning of the
IND-CCA game for each random function used.

Obviously, in the real world random functions have to be adequately replaced by
(hash) function families with a polynomial size description. This description will be
included in the public data available to all parties in a protocol (e.g. the public key
of an encryption scheme).

5 Revisiting Fujisaki-Okamoto hybrid scheme

In this section, the transformation introduced in [10] of weak symmetric and asym-
metric schemes into an IND-CCA hybrid encryption scheme is revisited.

5.1 The original construction

Let Ef = (KeyGenf ,Encf ,Decf) be a probabilistic asymmetric encryption scheme,
defined from a TPOW function family f over the sets X, Y and Z, and Esym =
(KeyGensym,Encsym,Decsym) be a symmetric encryption scheme over the sets K and
M . Let G be a random function over K and H an independent random function over
Y . The hybrid scheme, EFO = (KeyGenFO,EncFO,DecFO), proposed by Fujisaki and
Okamoto works as follows.

10

Key generation. The public and secret keys are generated as in KeyGenf .
Encryption. The ciphertext for a message m ∈M� is c = (fpk(x, y),Encsym

G(x)
(m)),

where y = H(x,m) and x is uniformly chosen in Xpk.
Decryption. To decrypt a ciphertext c = (c1, c2), firstly compute x = gsk(c1).

Then, compute m = Decsym
G(x)

(c2) and return m if c1 = fpk(x,H(x,m)). Otherwise,
return the reject symbol ⊥. If it is not possible to compute gsk(c1) or Decsym

G(x)
(c2),

return ⊥.
Let AIND−CCA(E)[T, ε, qG, qH , qD] denote an adversary against the IND-CCA secu-

rity of the above cryptosystem that runs in time T with advantage ε, doing no more
than qG, qH and qD queries respectively to the random oracles G, H and to the
decryption oracle, Dsk.

Theorem 8 If there exists for some values of � an adversary AIND−CCA(E)[T, ε, qG, qH ,
qD], then there exist an adversary APOW(f) against the POW of f in time T1 with
success probability ε1 and an adversary AIND−SYM(Esym) against the IND-SYM security
of Esym in time T2 with advantage ε2 such that

ε ≤ (2(qG + qH)ε1 + ε2 + 1)
(

1− 2ε1 − 2ε2 −
1
|Y | −

1
|M |

)−qD

− 1

and
T = min(T1, T2)−O((qG + qH) log(|X||M |))

The main drawback of this scheme is that the security reduction obtained in the
proof is not tight, due to the quantity qG + qH multiplying ε1. However, the same
authors improved in [11] this result for the particular case of the Okamoto-Uchiyama
scheme [15] (known as EPOC-2) and claimed, without proof, that a tight reduction
is obtained for trivial easy verifiable primitives, using our terminology.

5.2 Identifying dangerous ambiguities

However, as pointed out in the introduction, several attacks against EPOC-2 have
been found [12, 8, 18]. Despite the precisions introduced about FO conversion af-
ter [12], there are still some ambiguities in the scheme, as well as in the security
proof, that compromise the validity of the theorem above.

For instance, let us consider a TPOW function family f , and Xpk ⊂ X̄pk such
that fpk(x, y) is computable in polynomial time for any x ∈ X̄pk and y ∈ Ypk. Then,
some badly generated ciphertexts c = (fpk(x,H(x,m)),Encsym

G(x)
(m)) for x ∈ X̄pk \Xpk

may be accepted. This was the case for Okamoto-Uchiyama function in the original
EPOC-2, where X̄pk = Z2�+1 and Xpk = Z2� , for 2� < p < 2� + 1. This information
was used in [12] to obtain the secret value p.

As Fujisaki and Okamoto proposed later in [11], this attack is avoided if all
ciphertexts (c1, c2) such that gsk(c1) �∈ Xpk are rejected. However, when this change
is included in the general conversion a problem of different kind arises. If X is not a
recognizable set, the checking cannot be performed in polynomial time. In this case
the simulation of the Dsk in the proof is not correct.

Yet one could manage to use an additional oracle to solve this problem. In this
situation, an adversary can use the decryption oracle to solve a difficult decisional

11

problem. As a result, we only could guarantee that breaking security of the cryp-
tosystem is equivalent to solve a gap problem, that is, a stronger assumption than
claimed.

This is the case for the Blum-Williams one-way trapdoor bijection family (i.e.
squaring quadratic residues modulo n = pq), where Xpk = Qn and X̄pk = Zn.
Rejection of all ciphertexts (c1, c2) such that gsk(c1) �∈ Xpk means that the adversary
will know if an arbitary x ∈ Zn is a quadratic residue. Thus, the IND-CCA security of
the hybrid cryptosystem will be based on the gap between the quadratic residuosity
modulo n and factoring n assumptions.

5.3 The new proposal

From the above discussion we know that, although it is necessary to check if gsk(c1) ∈
Xpk, to avoid leaking vital information, this cannot be done in all cases. In this section
we restrict the asymmetric primitives to that which admit a correct and unambiguous
proof of security for the general transformation.

We also take into account the results in [8, 18] that use the ability to distinguish
among rejection rules in the hybrid scheme to launch a total break. Thus, we slightly
modify the specification of the decryption algorithm in the conversion.

Finally, the recent developments in [14, 5, 6] can be applied to this transformation,
and together with the concept of easy verifiable primitives, they are used to give a
new proof of security improving the concrete security result presented in the original
work.

As in the original transformation, let Ef = (KeyGenf ,Encf ,Decf) be a probabilis-
tic asymmetric encryption scheme, defined from a TPOW function family f over the
sets X, Y and Z, and Esym = (KeyGensym,Encsym,Decsym) be a symmetric encryp-
tion scheme over the sets K and M . Let G be a random function over K and H an
independent random function over Y .

The first change we introduce is that the random functions G and H are defined
with unrestricted inputs, as explained in subsection 4.3. We think it is not realistic
to restrict the inputs of the random functions, as suggested in [10], since in a practi-
cal implementation random functions are replaced by cryptographic hash functions.
Then, if a proof of security can be driven for unrestricted domains, this choice is
preferable.

The following modification to the original proposal shorten the range of asymmet-
ric primitives that can be used. Now, X and M must be recognizable sets. This not
an actual restriction for M , since almost always M� = {0, 1}p(�), for some polynomial
p. It is not demmanded Z to be a recognizable set. Instead of this, it is assumed that
there exists a recognizable set Z̄ such that Zpk ⊆ Z̄pk, and that the partial inverse of
fpk can also be computed (in polynomial time) on elements of the extended set Z̄pk.

The proposed hybrid cryptosystem, E = (KeyGen,Enc,Dec), is almost the same
as the original. The only but important change is that now two different reject
symbols are produced in the decryption algorithm Dec. Thus, when a ciphertext
is rejected, the adversary will know the reason, obtaining different reject symbols
without mounting a timing attack. Then, if the computing time of each step in the
algorithm is independent of the data, the scheme is closely to be robust against reject
timing attacks.

12

Dec(sk, c)
1 if c �∈ Z̄pk ×M�; return ⊥1; endif
2 (c1, c2) = c
3 x← gsk(c1)
4 m← Decsym

G(x)(c2)
5 y ← H(x,m)
6 if x �∈ Xpk or fpk(x, y) �= c1; return ⊥2; endif
7 return m

We point out that in the or operation in step 6 of the algorithm both predicates have
always to be evaluated, in order to prevent the adversary to detect an extra rejection
reason.

Now, the security results are stated. The first theorem is for the special case when
f is an easy verifiable function family, while the second theorem works for general
TPOW function families.

Theorem 9 If there exists for some values of � an adversary AIND−CCA(E)[T, ε, qG, qH ,
qD] against the IND-CCA security of the proposed cryptosystem, then there exist an
adversary APOW(f) that in time T1 breaks the POW of f with success probability ε1

and an adversary AIND−SYM(Esym) that in time T breaks IND-SYM security of Esym

with advantage ε2 such that

ε ≤ ε1 + 3ε2 +
2qDqHγ

|K| − qDqHγ
+

2qD

|Y | − qD

and
T1 ≤ (qG + qH + qD + qGqD)T [V] + qD

(
T [f] + T [Decsym]

)
+ T

where T [V] is the time complexity of the plaintext checking algoritm for f and T [f]
is the time complexity of f .

Proof : The proof is delayed to the appendix.

Notice that now the probabilities are tightly related.
In the general case, there could not exist the plaintext checking algorithm. Using

the access to a plaintext checking oracle instead, the following result is straightfor-
ward.

Corollary 10 If there exists for some values of � an adversary AIND−CCA(E)[T, ε, qG,
qH , qD] against the IND-CCA security of the proposed cryptosystem, then there exist
an adversary APOW−PCA(f) that in time T1 breaks the POW-PCA of f with success
probability ε1 and an adversary AIND−SYM(Esym) that in time T breaks IND-SYM se-
curity of Esym with advantage ε2 such that

ε ≤ ε1 + 3ε2 +
2qDqHγ

|K| − qDqHγ
+

2qD

|Y | − qD

and
T1 ≤ (qG + qH + qD + qGqD) + qD

(
T [f] + T [Decsym]

)
+ T

where T [f] is the time complexity of f .

Proof : It suffices to invoke the PCA oracle into the plaintext checking algorithm V
for f . Thus, by definition of oracle access, T [V] = 1.

13

5.4 Particular cases

Both in the case of the trivial construction of partial one-way bijection families and
in the non-trivial family defined in subsection 3.1, the simulation in the security proof
can be improved introducing only technical modifications.

In both cases, there exist a polynomial size set family Z ′ and two very efficiently
computable function families f ′ : X → Z ′ and π′ : Z̄ → Z ′ such that for all pk ∈ PK,
x ∈ Xpk and z ∈ Z̄pk, V(pk, x, z) = 1 if and only if f ′

pk(x) = π′
pk(z). Notice that this

property implies the injectivity of f ′. It is shown in the appendix that

T [APOW(f)] ≤ (qG + qH + qD)T [V] + qGT [f ′] +

+ qD

(
T [f] + T [π′] + T [Decsym]

)
+ T [AIND−CCA(E)]

then providing a very-tight security reduction.
If the trivial constructions are considered, fpk(x, y) = (f ′

pk(x), y) and π′
pk(z

′, y) =
z′. Then, T [π′] can be neglected and T [f] ≈ T [f ′] ≈ T [V]. So

T [APOW(f)] ≤ (2qG + qH + 2qD)T [f ′] + qDT [Decsym] + T [AIND−CCA(E)]

On the other hand, if the generalised RSA-Paillier function is used, f ′
n,r,e(x) =

xe modn and π′
n,r,e(z) = z mod n. Then,

T [APOW(f)] ≤ (2qG + qH + 2qD)O(�2 log e) + qDT [Decsym] + T [AIND−CCA(E)]

References

[1] M. Bellare, A. Desai, D. Pointcheval and P. Rogaway. Relations Among Notions of Security for
Public-Key Encryption Schemes. CRYPTO ’98, LNCS 1462 26–45 (1998).

[2] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing Efficient
Protocols. ACM CCS 93, ACM Press (1993)

[3] R. Canetti, O. Goldreich and S. Halevi. The random oracle methodology, revisited. In Proceed-
ings of the 32nd Annual ACM Symposium on Theory of Computing, 209–218 (1998).

[4] D. Catalano, R. Gennaro, N. Howgrave-Graham and P. Q. Nguyen. Paillier’s Cryptosystem
Revisited. ACM CCS ’2001 ACM Press (2001).

[5] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. and C. Tymen. GEM: a Generic Chosen-
Ciphertext Secure Encryption Method. CT-RSA’ 02, LNCS 2271 263–276 (2002).

[6] J. Coron, H. Handschuh, M. Joye, P. Paillier, D. Pointcheval and C. Tymen. Optimal Chosen-
Ciphertext Secure Encryption of Arbitrary-Length Messages. PKC 2002, LNCS 2274 17–33
(2002).

[7] R. Cramer and V. Shoup. Universal Hash Proofs and a Paradigm for Adaptive Chosen Cipher-
text Secure Public-Key Encryption. EUROCRYPT ’2002, LNCS 2332 45–64 (2002).

[8] A. W. Dent. An implementation attack against the EPOC-2 public-key cryptosystem. Electron-
ics Letters VOL. 38 NO. 9 412–413 (2002).

[9] EPOC, Efficient Probabilistic Public-Key Encryption. http://info.isl.ntt.co.jp/epoc/

[10] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and Symmetric Encryption
Schemes. CRYPTO ’99, LNCS 1666 537–554 (1999)

[11] E. Fujisaki and T. Okamoto. A Chosen-Cipher Secure Encryption Scheme Tightly as Secure as
Factoring. IEICE Trans. Fundamentals E84-A(1) 179–187 (2001).

[12] M. Joye, J. J. Quisquater and M. Yung. On the Power of Misbehaving Adversaries and Security
Analysis of the Original EPOC. CT-RSA’ 01, LNCS 2020 208–222 (2001).

14

[13] T. Okamoto and D. Pointcheval. The Gap-Problems: a New Class of Problems for the Security
of Cryptographic Schemes. PKC’ 01, LNCS 1992 104–118 (2001).

[14] T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem
Transform. CT-RSA’ 01, LNCS 2020 159–175 (2001).

[15] T. Okamoto and S. Uchiyama. A New Public-Key Cryptosystem as Secure as Factoring.
EUROCRYPT-98, LNCS 1403 308–318 (1998)

[16] PSEC, Provably Secure Encryption Scheme. http://info.isl.ntt.co.jp/psec/

[17] D. Pointcheval. Chosen-Ciphertext Security for any One-Way Cryptosystem. Proc. PKC ’2000
LNCS 1751 129–146 (2000).

[18] K. Sakurai and T. Takagi. A Reject Timing Attack on an IND-CCA2 Public-Key Cryptosystem.
ICISC ’02, LNCS 2587 359–373 (2002).

[19] Y. Watanabe, J. Shikata and H.Imai. Equivalence between Semantic Security and Indistin-
guishability against Chosen Ciphertext Attacks. PKC 2003, LNCS 2567 71–84 (2002).

A Proof of theorem 9

Let AIND−CCA(E)[T, ε, qG, qH , qD] = (A1,A2) be the adversary aiming to attack the
IND-CCA security of the hybrid encryption scheme, E = (KeyGen,Enc,Dec) described
in subsection 5.3.

In order to prove the theorem, some different games will be considered. In all
games, the adversary AIND−CCA(E) uses the same coins, but the events defined as
functions of the view of AIND−CCA(E) could occur with different probabilities in each
game. Starting from the IND-CCA game we will design several intermediate games
before designing the game for an adversary who tries to break the partial one-wayness
(POW) of f . Each game will be obtained by introducing slight modifications to the
previous game in such a way that the adversary success probabilities are easily related.
We denote by Pri[F] the probability of event F in game i.

Each game will be described as a main algorithm along with some auxiliar al-
gorithms used as oracles by AIND−CCA(E). The bulleted steps in the algorithms will
indicate the main changes introduced in each game.

The following trivial lemma will be very useful in this proof.

Lemma 11 Let E1, F1 be two events defined in a probability space X1, and E2,
F2 another two events defined in a probability space X2, such that p = PrX2 [F2] =
PrX1 [F1] and PrX2 [E2 ∧ ¬F2] = PrX1 [E1 ∧ ¬F1]. Then

|PrX2 [E2]− PrX1 [E1]| ≤ p

Game0. The IND-CCA attack. There are some minor differences between Game0
and the standard IND-CCA game, described in subsection 4.2, but they do not modify
any probability.

Game0()
1 (pk, sk)← KeyGen(1�); G← R(K�); H ← R(Ypk)
2 b← {0, 1}; x� ← Xpk

3 (m0,m1, s)← AG,H,Dsk
1 (pk)

4 y� ← H(x�,mb); c� ←
(
fpk(x�, y�),Encsym

G(x�)(mb)
)

5 b′ ← AG,H,Dsk,c�

2 (s, c�)

15

where the oracle answer Dsk(c) is exactly the same as the value returned by Dec(sk, c),
described in subsection 5.3.

Let Askx be the event that, during the game, either x� ∈ X is queried (by
AIND−CCA(E)) to G or (x�,m) is queried to H, for some m. Then,

Adv
[
AIND−CCA(E)

]
= |Pr0 [b′ = b]− Pr0 [b′ �= b]| ≤
≤ |Pr0 [b′ = b ∧ Askx]− Pr0 [b′ �= b ∧ Askx]|+

+ |Pr0 [b′ = b ∧ ¬Askx]− Pr0 [b′ �= b ∧ ¬Askx]| ≤
≤ Pr0 [Askx] + |Pr0 [b′ = b ∧ ¬Askx]− Pr0 [b′ �= b ∧ ¬Askx]|

In order to improve the readability of the rest of the proof, let define S1 = Askx,
S01 = ¬Askx∧ b′ = b and S00 = ¬Askx∧ b′ �= b. The above equation can be rewritten
as

Adv
[
AIND−CCA(E)

]
≤ Pr0 [S1] + |Pr0 [S01]− Pr0 [S00]|

Let TG be a table in which all the queries made by AIND−CCA(E) to the oracle G
are stored along with the corresponding answers. Notice that TG would not contain
ALL the queries made to G. In the sequel, x ∈ TG will denote the fact that x has
been queried to G by AIND−CCA(E) and TG(x) will denote the answer given by G.
Define (x,m) ∈ TH , TH(x,m) and c ∈ TD, TD(c) in a similar way respectively for the
oracle calls to H and Dsk. Notice that the contents of these tables will vary during
the game.

Game1. In this game, the queries made by AIND−CCA(E) to the two random oracles
are intercepted in order to immediately abort the execution of the game if Askx (i.e.
S1) occurs. The following functions will do this task:

G1(x)
1 if x = x�; exit Game; endif
2 return G(x)

H1(x,m)
1 if x = x�; exit Game; endif
2 return H(x,m)

and the new game is,

Game1()
1 (pk, sk)← KeyGen(1�); G← R(K�); H ← R(Ypk)
2 b← {0, 1}; b′ ← {0, 1}; x� ← Xpk

3 (m0,m1, s)← AG1,H1,Dsk
1 (pk)

4 y� ← H(x�,mb); c� ←
(
fpk(x�, y�),Encsym

G(x�)(mb)
)

5 b′ ← AG1,H1,Dsk,c�

2 (s, c�)

Since the games are identical while ¬S1, the events S1, S01 and S00 remain un-
changed in Game1. Then,

Adv
[
AIND−CCA(E)

]
≤ Pr1 [S1] + |Pr1 [S01]− Pr1 [S00]|

16

Game2. In this game, the decryption oracle is modified in such a way that it is
disallowed to do new queries to the random oracle G. To do this, all ciphertexts
(c1, c2) submitted to the decryption oracle such that gsk(c1) �∈ TG ∩Xpk are rejected
by returning ⊥2, even when some of them may be valid ciphertexts.

Game2()
1 (pk, sk)← KeyGen(1�); G← R(K�); H ← R(Ypk)
2 b← {0, 1}; x� ← Xpk

3 (m0,m1, s)← AG1,H1,D2sk
1 (pk)

4 y� ← H(x�,mb); c� ←
(
fpk(x�, y�),Encsym

G(x�)(mb)
)

5 b′ ← AG1,H1,D2sk,c�

2 (s, c�)

D2sk(c)
1 if c �∈ Z̄pk ×M�; return ⊥1; endif
2 (c1, c2) = c
3 x← gsk(c1)

• 4 if x �∈ Xpk or x �∈ TG; return ⊥2; endif
5 m← Decsym

G(x)(c2)
6 y ← H(x,m)
7 if fpk(x, y) �= c1; return ⊥2; endif
8 return m

Let F2 be the event that, in some query to the decryption oracle, the ciphertext
is accepted in Game1, but is rejected at step 4 of D2sk. Before F2, both games are
indentical. Then, by lemma 11,

|Pr2 [S1]− Pr1 [S1]| ≤ Pr [F2]
|Pr2 [S01]− Pr1 [S01]| ≤ Pr [F2]
|Pr2 [S00]− Pr1 [S00]| ≤ Pr [F2]

From these inequalities, it can be easily shown that

Adv
[
AIND−CCA(E)

]
≤ Pr2 [S1] + |Pr2 [S01]− Pr2 [S00]|+ 2Pr [F2]

The following lemma gives an upper bound for Pr [F2].

Lemma 12
Pr [F2] ≤

qDqHγ

|K| − qDqHγ
+

qD

|Y | − qD

Proof : Let Failk be the event that F2 occurs exactly at the k-th query to the decryp-
tion oracle. Let NoFailk = ∧k

j=1¬Failj denote the event that F2 does not occur during
the first k queries to the decryption oracle, for k = 1, . . . , qD. Let NoFail0 be the
certain event. Then,

Pr [F2] = 1− Pr [NoFailqD
] = 1− Pr

[
qD∧
k=1

¬Failk

]
= 1−

qD∏
k=1

Pr [¬Failk | NoFailk−1]

17

and, if we denote by pk = Pr [Failk | NoFailk−1], then

Pr [F2] = 1−
qD∏
k=1

(1− pk) ≤
qD∑
k=1

pk

In order to compute pk, let us suppose that Game1 and Game2 run identically
just until AIND−CCA(E) is going to submit the k-th query, c̄, to the decryption oracle.
This implies NoFailk−1 ∧ ¬Askx. Suppose for a while that AIND−CCA(E) is in the
‘finding’ stage. The only information available to the adversary, in order to generate
the cyphertext c̄ is the view of the game at this execution point, that is View =
(pk,TG,TH ,TD). To find an upper bound for pk, we will consider the best choice for
c̄, for each possible View compatible with NoFailk−1.

The event Failk occurs if and only if D2sk(c̄) �= Dsk(c̄), that is, D2sk rejects c̄
(returning ⊥2) while Dsk accepts it. This means that c̄ = (fpk(x̄, ȳ)), c̄2), where
x̄ ∈ Xpk \ TG, ȳ ∈ Ypk, c̄2 ∈M�, and the equation ȳ = H(x̄,Decsym

G(x̄)(c̄2)) holds.
If View and c̄ are fixed, then pk depends only on the joint probability distribution

of G(x̄) and H(x̄,Decsym
G(x̄)(c̄2)). But this distribution is conditioned by the answers

given by H to the queries (x̄,m) for some m, and the answers given by Dsk to
the queries (fpk(x̄, y), c2) for some y ∈ Ypk and c2 ∈ M�. Notice that any queried
ciphertext c �∈ Zpk ×M� is rejected by Dsk, independently of the values taken by the
random functions.

In the worst case, all queries in TH and TD are related to x̄, that is, hi = H(x̄,mi)
for i = 1, . . . , qH , and c(j) = (fpk(x̄, yj), c

(j)
2) for j = 1, . . . , k − 1. Since x̄ �∈ TG,

then Dsk(c(j)) = D2sk(c(j)) =⊥2 and then yj �= H(x̄,Decsym
G(x̄)(c

(j)
2)). These equations

could be incompatible for some values of G(x̄), namely those g ∈ K� such that
mi = Decsym

g (c(j)
2) and hi = yj for some (i, j). In the (unfeasible) worst case, all hi and

yj are equal and there can be up to qH(k− 1)γ forbidden values for G(x̄). Then, the
random variable G(x̄) is uniformly distributed over a set of at least |K�|− (k−1)qHγ
elements.

There are at most qHγ different values of g such that (x̄,Decsym
g (c̄2)) ∈ TH . For

these values, ȳ = H(x̄,Decsym
g (c̄2)) can be ensured if all hi are equal to ȳ. Thus,

Pr
[
Failk ∧ (x̄,Decsym

G(x̄)(c̄2)) ∈ TH | View
]
≤ qHγ

|K�| − (k − 1)qHγ

For any g such that (x̄,Decsym
g (c̄2)) �∈ TH , the variable H(x̄,Decsym

g (c̄2)) is uni-

formly distributed over a set of at least |Ypk| − (k− 1) elements, because if c̄2 = c
(j)
2 ,

then the value yj is forbidden. Consequently,

Pr
[
Failk ∧ (x̄,Decsym

G(x)(c2)) �∈ TH | View
]
≤ 1
|Ypk| − (k − 1)

and summing up, we obtain

pfind
k ≤ qHγ

|K�| − (k − 1)qHγ
+

1
|Ypk| − (k − 1)

If AIND−CCA(E) is in the ‘guessing’ stage, then c� holds valuable information. In
fact, View = (pk,TG,TH ,TD, c�), but c� depends only on G(x�) and H(x�,mb). Thus,

18

if x̄ �= x�, c� does not give any additional information about Failk and everithing goes
the same way as in the ‘finding’ stage.

If x̄ = x�, also the restriction c̄ �= c� must be considered. Moreover, there are no
queries in TH related to x�. Then, in the worst case, the joint distribution of G(x̄)
and H(x̄,Decsym

G(x̄)(c̄2)) is conditioned by the equations yj �= H(x�,Decsym
G(x�)(c

(j)
2)), for

j = 1 . . . , k − 1, y� = H(x�,mb) and mb = Decsym
G(x�)(c

�
2).

The equality y� = H(x�,mb) is useless since the only valid ciphertext related
to H(x�,mb) is c�. Nevertheless, from mb = Decsym

G(x�)(c
�
2), only a reduced number

of values of G(x�) remain possible, but, as above, H(x�,Decsym
G(x�)

(c̄2)) is uniformly

distributed over a set of at least |Ypk|− (k−1) elements, and pguess
k ≤ 1

|Ypk| − (k − 1)
.

Finally,

Pr [F2] ≤
qD∑
k=1

(
qHγ

|K�| − (k − 1)qHγ
+

1
|Ypk| − (k − 1)

)
≤ qDqHγ

|K| − qDqHγ
+

qD

|Y | − qD

Game2′. In this game, oracles G and H are simulated by using tables TG2′ and TH2′ ,
as described in subsection 4.3.

Also, the generation of the ciphertext differs from the one in Game2. Here, in
Game2′, some values of the random functions are redefined, namely G(x�) = g and
H(x�,mb) = y�. But these changes in the oracles do not affect the probability
distribution of the view of AIND−CCA(E), since in Game2 neither x� is queried to G
nor (x�,m) is queried to H, for any m. (Note that, at step 6 of D2sk, x �= x� since
x� �∈ TG.)

Game2′()
• 1 TG2′ ← empty ; TH2′ ← empty

2 (pk, sk)← KeyGen(1�)
3 b← {0, 1}; x� ← Xpk

4 (m0,m1, s)← A
G2′,H2′,D2′sk
1 (pk)

• 5 g ← K�; y� ← Ypk; c� ←
(
fpk(x�, y�),Encsym

g (mb)
)

6 b′ ← A
G2′,H2′,D2′

sk,c�

2 (s, c�)

D2′sk(c)
1 if c �∈ Z̄pk ×M�; return ⊥1; endif
2 (c1, c2) = c
3 x← gsk(c1)

• 4 if x �∈ Xpk or x �∈ TG2′ ; return ⊥2; endif
5 m← Decsym

G2′(x)(c2)
6 y ← H2′(x,m)
7 if fpk(x, y) �= c1; return ⊥2; endif
8 return m

G2′(x)

19

• 1 if x ∈ TG2′ ; return TG2′(x); endif
2 if x = x�; exit Game; endif

• 3 r ← K�

• 4 insert (x, r) in table TG2′

5 return r

H2′(x,m)
• 1 if (x,m) ∈ TH2′ ; return TH2′(x,m); endif

2 if x = x�; exit Game; endif
• 3 r ← Ypk

• 4 insert ((x,m), r) in table TH2′

5 return r

Game3. In this game, we introduce some modifications to avoid the use of mb in
the generation of the target ciphertext. In fact, the differences between using mb

and using a random message can be tapped by a new adversary AIND−SYM(Esym) =
(Asym

1 ,Asym
2) who tries to break the IND-SYM security of Esym (see 4.1).

Game3()
1 β ← {0, 1}
2 (µ0, µ1, σ)← Asym

1 (1�)
3 g ← K�; κ� = Encsym

g (µβ)
4 β′ ← Asym

2 (σ, κ�)

Asym
1 (1�)
1 TG3 ← empty ; TH3 ← empty
2 (pk, sk)← KeyGen(1�)
3 b← {0, 1}; x� ← Xpk

4 (m0,m1, s)← AG3,H3,D3sk
1 (pk)

5 m←M�

6 σ = (TG3,TH3, pk, sk, b, x�, s)
7 return (mb,m, σ)

Asym
2 (σ, κ�)
1 (TG3,TH3, pk, sk, b, x�, s) = σ
2 y� ← Ypk; c� ← (fpk(x�, y�), κ�)
3 b′ ← AG3,H3,D3sk,c�

2 (s, c�)
4 β′′ ← 0
5 if b′ = b
6 β′ ← 0
7 else
8 β′ ← 1
9 endif

D3sk(c)

20

1 if c �∈ Z̄pk ×M�; return ⊥1; endif
2 (c1, c2) = c
3 x← gsk(c1)

• 4 if x �∈ Xpk or x �∈ TG3; return ⊥2; endif
5 m← Decsym

G3(x)(c2)
6 y ← H3(x,m)
7 if fpk(x, y) �= c1; return ⊥2; endif
8 return m

G3(x)
1 if x ∈ TG3; return TG3(x); endif
2 if x = x�

• 3 β′ ← {0, 1}
• 4 β′′ ← 1

5 exit Game
6 endif
7 r ← K�

8 insert (x, r) in table TG3

9 return r

H3(x,m)
• 1 if (x,m) ∈ TH3; return TH3(x,m); endif

2 if x = x�

• 3 β′ ← {0, 1}
• 4 β′′ ← 1

5 exit Game
6 endif
7 r ← Ypk

8 insert ((x,m), r) in table TH3

9 return r

Actually, AIND−SYM(Esym) uses two different ways to guess the value of β: β′

indicates if AIND−CCA(E) guesses the correct value of b and β′′ indicates if S1 occurs.
Then, two different advantages can be taken into account: Adv

[
AIND−SYM(Esym)

]
=

|2Pr3 [β′ = β]− 1| and Adv
[
AIND−SYM(Esym)

]′ = |2Pr3 [β′′ = β]− 1|.
If β = 1, the value of mb is used nowhere in the game. So, the view of AIND−CCA(E)

is independent of b and Pr3 [β′ = 1 | β = 1 ∧ ¬S1] = Pr3 [b′ �= b | β = 1 ∧ ¬S1] = 1
2 .

Moreover, Pr3 [β′ = 1 | β = 1 ∧ S1] = 1
2 and then Pr3 [β′ = 1 | β = 1] = 1

2 .
If β = 0, Game3 and Game2′ are identical. Thus

Pr3
[
β′ = 0 ∧ ¬S1 | β = 0

]
= Pr3

[
b′ = b ∧ ¬S1 | β = 0

]
= Pr2 [S01]

and
Pr3

[
β′ = 0 ∧ S1 | β = 0

]
=

1
2
Pr3 [S1 | β = 0] =

1
2
Pr2 [S1]

Putting altogether,

21

Adv
[
AIND−SYM(Esym)

]
= |2Pr3 [β′ = 0 ∧ β = 0] + 2Pr3 [β′ = 1 ∧ β = 1]− 1| =
= |Pr3 [β′ = 0 | β = 0] + Pr3 [β′ = 1 | β = 1]− 1| =
=

∣∣Pr2 [S01] + 1
2Pr2 [S1]− 1

2

∣∣ = 1
2 |Pr2 [S01]− Pr2 [S00]|

If β′′ is used instead of β′, then

Adv
[
AIND−SYM(Esym)

]′ = |2Pr3 [S1 ∧ β′′ = β] + 2Pr3 [¬S1 ∧ β′′ = β]− 1| =
= |2Pr3 [S1 ∧ β = 1] + 2Pr3 [¬S1 ∧ β = 0]− 1| =
= |Pr3 [S1 | β = 1] + (Pr3 [¬S1 | β = 0]− 1)| =
= |Pr3 [S1 | β = 1]− Pr2 [S1]|

Finally,

Adv
[
AIND−CCA(E)

]
≤ Pr2 [S1] + |Pr2 [S01]− Pr2 [S00]|+ 2Pr [F2] =
= Pr2 [S1] + 2Adv

[
AIND−SYM(Esym)

]
+ 2Pr [F2] ≤

≤ Pr3 [S1 | β = 1] + 2Adv
[
AIND−SYM(Esym)

]
+

+ Adv
[
AIND−SYM(Esym)

]′ + 2Pr [F2]

Game4. Game3 (with β = 0) can be modified to obtain an implementation of an
adversary, APOW(f), that try to break the partial one-wayness of f . This adversary
will know neither sk nor x�. The use of sk in the decryption oracle simulator and
the use of x� in the random oracle simulators are avoided conveniently using the
deterministic plaintext checking algorithm V. The value of x� is guessed by APOW(f)

when possible (i.e. if S1 occurs).
These changes do not modify any probability. Moreover, the views of AIND−CCA(E)

in games 3 (with β = 0) and 4 are identically distributed.

Game4()
1 (pk, sk)← KeyGen(1�)
2 x� ← Xpk; y� ← Ypk; z ← fpk(x�, y�)
3 APOW(f)(pk, z�)

APOW(f)(pk, z)
1 b← {0, 1}
2 m←M�; g ← K�; c� ← (z,Encsym

g (m))
3 TG4 ← empty ; TH4 ← empty

4 (m0,m1, s)← A
G4,H4,D4pk

1 (pk)
5 b′ ← AG4,H4,D4pk,c�

2 (s, c�)
• 6 x′ ← Xpk

G4(x)
1 if x ∈ TG4; return TG4(x); endif

• 2 if x ∈ Xpk andV(pk, x, z) = 1
• 3 x′ ← x

4 exitGame
5 endif
6 r ← K�

22

7 insert (x, r) in table TG4

8 return r

H4(x,m)
1 if (x,m) ∈ TH4; return TH4(x,m); endif

• 2 if x ∈ Xpk andV(pk, x, z) = 1
• 3 x′ ← x

4 exitGame
5 endif
6 r ← Ypk

7 insert ((x,m), r) in table TH4

8 return r

D4pk(c)
1 if c �∈ Z̄pk ×M�; return ⊥1; endif
2 (c1, c2) = c

• 3 foreach x ∈ TG4

• 4 if x ∈ Xpk andV(pk, x, c1) = 1
5 m← Decsym

TG4(x)(c2)
6 y ← H4(x,m)
7 if fpk(x, y) �= c1; return ⊥2; endif
8 returnm
9 endif

• 10 endforeach
11 return ⊥2

Now,
Succ

[
APOW(f)

]
= Pr4

[
x′ = x�

]
≥ Pr4 [S1] = Pr3 [S1 | β = 1]

and, from the above results,

Adv
[
AIND−CCA(E)

]
≤ Succ

[
APOW(f)

]
+ 2Adv

[
AIND−SYM(Esym)

]
+

+ Adv
[
AIND−SYM(Esym)

]′ + 2qDqHγ

|K| − qDqHγ
+

2qD

|Y | − qD

In terms of time complexity of the algorithms, the overhead introduced by the
simulation of the random oracles, G and H, in games 3 and 4 can be reduced by using
standard hashing techniques for table insertion and searching. In fact, in almost all
security proofs in the Random Oracle Model in the literature, this time overhead is
neglected. It is also supposed that the times needed to check if c ∈ Z̄pk ×M� and
x ∈ Xpk are negligible.

Neglecting lower order terms, the running time of APOW(f) in Game4 is bounded
by

T [APOW(f)] ≤ (qG + qH + qD + qGqD)T [V] + qD

(
T [f] + T [Decsym]

)
+ T [AIND−CCA(E)]

where T [V] is the time complexity of the plaintext checking algoritm and T [f] is the
time complexity of f . Also, T [AIND−SYM(Esym)] = T [AIND−CCA(E)].

23

A.1 Particular cases

Both in the case of the trivial construction of easy verifiable functions and in the
non-trivial family in subsection 3.1, the algorithm D4pk can be improved, without
modifying the behavior of the game, to avoid exhaustive search in TG4. To do it,
(f ′(x), (x,G(x))) is stored in another table T ′

G4 for each query x ∈ Xpk to G.

G4′(x)
1 if x ∈ TG4; return TG4(x); endif

• 2 if x ∈ Xpk andV(pk, x, z) = 1
• 3 x′ ← x

4 exitGame
5 endif
6 r ← K�

7 insert (x, r) in table TG4

• 8 if x ∈ Xpk

• 9 insert (f ′(x), (x, r)) in table T ′
G4

• 10 endif
11 return r

D4′pk(c)

1 if c �∈ Z̄pk ×M�; return ⊥1; endif
2 (c1, c2) = c

• 3 z′ ← π′
pk(c1)

• 4 if z′ ∈ T ′
G4

• 5 (x, g)← T ′
G4(z

′)
6 m← Decsym

g
(c2)

7 y ← H4(x,m)
8 if fpk(x, y) �= c1; return ⊥2; endif
9 return m

10 endif
11 return ⊥2

The same standard hashing techniques used in the simulation of G and H can be
also used here to maintain T ′

G4, so the time overhead of step 4 in D4′pk and step 9 in
G4′ can be neglected.

Then,

T [APOW(f)] ≤ (qG + qH + qD)T [V] + qGT [f ′] +

+ qD

(
T [f] + T [π′] + T [Decsym]

)
+ T [AIND−CCA(E)]

