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Abstract. We present a Fukushima type decomposition in the setting of general quasi-
regular semi-Dirichlet forms. The decomposition is then employed to give a transformation
formula for martingale additive functionals. Applications of the results to some concrete exam-
ples of semi-Dirichlet forms are given at the end of the paper. We discuss also the uniqueness
question about the Doob-Meyer decomposition on optional sets of interval type.

Introduction. The celebrated Fukushima’s decomposition and related transformation
rules play the roles of the Doob-Meyer decomposition and Itô’s formula in the framework of
Dirichlet forms. They have been used to investigate the properties of a large class of stochas-
tic processes that are not semi-martingales such as additive functionals of Brownian motion
which are not necessarily of bounded variation (cf. e.g. [25], [5] and references therein).
Fukushima’s decomposition was originally established for regular symmetric Dirichlet forms
(cf. [7] and [8, Theorem 5.2.2]) and then extended to the non-symmetric and quasi-regular
cases (cf. [20, Theorem 5.1.3] and [18, Theorem VI.2.5]). Suppose that (E,D(E)) is a quasi-
regular Dirichlet form on L2(E; m) with associated Markov process ((Xt )t≥0, (Px)x∈E∆) (we
refer the reader to [8, 18, 17] for notations and terminologies of this paper). If u ∈ D(E), then
Fukushima’s decomposition tells us that there exist a unique martingale additive functional
(MAF in short) M [u] of finite energy and a unique continuous additive functional N [u] of zero
energy such that

(1) ũ(Xt ) − ũ(X0) = M
[u]
t + N

[u]
t .

Hereafter ũ denotes an E-quasi-continuous m-version of u.
Compared with Dirichlet form, semi-Dirichlet form is a more general framework arising

from various applications. In the viewpoint of applications, and also by the interests of the
theory its own, it is natural to ask if we can extend Fukushima’s decomposition from the set-
ting of Dirichlet forms to that of semi-Dirichlet forms. For example, do we have Fukushima’s
decomposition for the following simple local semi-Dirichlet form?

E(u, v) =
∫ 1

0
u′v′dx +

∫ 1

0

√
xu′vdx , u, v ∈ D(E) := H

1,2
0 (0, 1) .
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Note that the assumption of the existence of dual Markov process plays a crucial role in
Fukushima’s decomposition for Dirichlet forms. In fact, without that assumption, the usual
definition of energy of AFs is questionable. Here we would like to point out that although
Fukushima’s decomposition was even considered for generalized Dirichlet forms (cf. [26]
and [24]), which is a more general framework than semi-Dirichlet forms (see [23]), up to now
Fukushima’s decomposition for generalized Dirichlet forms has only been given under the
additional assumption that their dual forms are also sub-Markovian. For a quasi-regular semi-
Dirichlet form (E,D(E)), we may use the semi-h transform method to associate (E,D(E))

with a sub-Markovian dual form (cf. [10]). However, without imposing further assumptions,
we cannot expect to obtain Fukushima’s decomposition for general u ∈ D(E); we can only
expect to obtain the decomposition (1) for functions u in the domain of the generator of
(E,D(E)), which is just the classical Doob-Meyer decomposition.

To our knowledge, the paper [16] appears to be the first publication on the Fukushima
type decomposition in the setting of semi-Dirichlet forms without assuming that the dual form
is sub-Markovian. In that paper the authors introduced a condition of local control (cf. Con-
dition 1.5 below) and under the condition they obtained the Fukushima type decomposition
for u ∈ D(E)loc where (E,D(E)) is a local semi-Dirichlet form. The main method employed
in [16] is the localization and pasting technique. For a non-local semi-Dirichlet form, the
jump part of M [u] is in general not locally consistent, which causes some extra difficulty
in implementing the localization and pasting technique. Afterwards, one of the authors of
the present paper investigated further in [28] the Fukushima type decomposition for general
quasi-regular semi-Dirichlet forms. Motivated by some idea of Kuwae [15] and employing
also the localization and pasting technique, he obtained the Fukushima type decomposition
for u ∈ D(E)loc under a suitable condition (S) (see Theorem 1.4 below). Meanwhile Pro-
fessor Oshima sent us a manuscript of his new book [21], in which he proved Fukushima’s
decomposition for u ∈ D(E)b in the setting of regular semi-Dirichlet forms satisfying his
condition (E .5). The main techniques employed by Oshima in developing Fukushima’s de-
composition are the weak sense energy and his ingenious auxiliary bilinear form, different
from the localization and pasting technique employed in [16] and [28].

In this paper we shall report and develop further the Fukushima type decomposition
based on [28], and discuss some related topics. Let (E,D(E)) be a quasi-regular semi-
Dirichlet form which is not necessarily local. We show that under a suitable assumption
(i.e. Assumption 1.3 below), a function u ∈ D(E)loc admits a Fukushima type decomposition
if and only if it satisfies Condition (S), and the decomposition is unique. Roughly speaking,
here u admits a Fukushima type decomposition means that

ũ(Xt ) − ũ(X0) = M
[u]
t + N

[u]
t ,

where M [u] is a locally square integrable MAF on the set I (ζ ) := [[0, ζ [[∪[[ζi]], with ζ being
the lifetime of X and ζi the totally inaccessible part of ζ ; and N [u] is a local AF which is
continuous and has zero quadratic variation on I (ζ ). For details see Theorem 1.4 below. It
is worth to point out that Assumption 1.3 mentioned above is weaker than the condition of
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local control in [16] and the condition (E .5) in [21]. We are very grateful to Professor Oshima
for sending us his new book [21]. The condition (E .5) in [21] stimulated us to formulate
Assumption 1.3.

The reader might notice that in the above description we used I (ζ ) instead of [[0, ζ [[, the
latter is customarily used in the literature. The reason of this variation is that we discovered
that the decomposition on I (ζ ) is unique, but it may fail to be unique on [[0, ζ [[. This differ-
ence is essentially due to the fact that I (ζ ) is a predictable set of interval type while [[0, ζ [[
is not necessarily predictable. This discovery exposes not only an oversight in the previous
paper [16], but also similar oversights in the literature e.g. [15] and [2] (however, see Remark
2.5 below). The oversight may be traced back even to Theorem 8.26 of the book [11], which
exposes a question about the uniqueness of the Doob-Meyer decomposition on optional sets
of interval type. We shall discuss this question in detail in Section 2 below.

The rest of the paper is organized as follows. In Section 1, we present a general Fuku-
shima type decomposition for semi-Dirichlet forms. We divide it into three subsections. In
Subsection 1.1, we present basic settings and statement of the theorem, and provide some dis-
cussions and remarks about the theorem. In Subsection 1.2, we give the proof of the theorem.
In Subsection 1.3, we study the local energies of M [u] and N [u]. In Section 2, we discuss
in detail the question about the uniqueness of the Doob-Meyer decomposition on optional
sets of interval type. In Section 3, we give a transformation formula for MAFs based on the
Fukushima type decomposition. In Section 4, we apply our results to two concrete examples
of semi-Dirichlet forms appearing in recent papers.

1. Fukushima type decomposition.

1.1. Statement of the theorem and discussions. The basic setting of this paper is
the same as that in [16] with some necessary modifications, e.g., (E,D(E)) in this paper is
not assumed to be local. To fix the notations and also for the convenience of the reader, below
we restate our setting of which some contents are taken from [16]. Let E be a metrizable
Lusin space and m a σ -finite positive measure on its Borel σ -algebra B(E). We consider a
quasi-regular semi-Dirichlet form (E,D(E)) on L2(E; m). Hereafter for notations and termi-
nologies related to quasi-regular semi-Dirichlet forms we refer to [17]. Denote by (Tt )t≥0 and
(Gα)α≥0 (resp. (T̂t )t≥0 and (Ĝα)α≥0) the semigroup and resolvent (resp. co-semigroup and
co-resolvent) associated with (E,D(E)). Let M = (Ω,F , (Ft)t≥0, (Xt )t≥0, (Px)x∈E∆) be an
m-tight special standard process which is properly associated with (E,D(E)) in the sense that
Ptf is an E-quasi-continuous m-version of Ttf for all f ∈ Bb(E) ∩ L2(E; m) and all t > 0,
where (Pt )t≥0 denotes the semigroup associated with M (cf. [17, Theorem 3.8]).

Similar to the symmetric case, in the setting of semi-Dirichlet forms there is also a one-
to-one correspondence between the family of all equivalent classes of positive continuous
additive functionals and the family S of smooth measures. The contents below concern-
ing positive continuous additive functionals and S are taken from [16]. We remark that the
reader can now find more detailed descriptions and discussions in [21] on the potential theory
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of semi-Dirichlet forms including the correspondence between positive continuous additive
functionals and smooth measures.

Recall that a positive measure μ on (E,B(E)) is called smooth (w.r.t. (E,D(E))), de-
noted by μ ∈ S, if μ(N) = 0 for each E-exceptional set N ∈ B(E) and there exists an E-nest
{Fk} of compact subsets of E such that

μ(Fk) < ∞ for all k ∈ N .

A family (At )t≥0 of functions on Ω is called an additive functional (AF in short) of M if:
(i) At is Ft -measurable for all t ≥ 0.
(ii) There exists a defining set Λ ∈ F and an exceptional set N ⊂ E which is E-

exceptional such that Px [Λ] = 1 for all x ∈ E\N , θt (Λ) ⊂ Λ for all t > 0 and for each
ω ∈ Λ, t 
→ At (ω) is right continuous on (0,∞) and has left limits on (0, ζ(ω)), A0(ω) = 0,
|At (ω)| < ∞ for t < ζ(ω), At (ω) = Aζ (ω) for t ≥ ζ(ω), and

At+s(ω) = At (ω) + As(θtω) , ∀ s, t ≥ 0 .(2)

Hereafter ζ denotes the lifetime of X := (Xt )t≥0.
Two AFs A = (At )t≥0 and B = (Bt )t≥0 are said to be equivalent, denoted by A = B, if

they have a common defining set Λ and a common exceptional set N such that At (ω) = Bt (ω)

for all ω ∈ Λ and t ≥ 0. An AF A = (At )t≥0 is called a continuous AF (CAF in short) if
t 
→ At (ω) is continuous on (0,∞). It is called a positive CAF (PCAF in short) if At (ω) ≥ 0
for all t ≥ 0, ω ∈ Λ.

LEMMA 1.1 (cf. [16, Theorem A.8], see also [21, Section 4.1]). Let A be a PCAF.

Then there exists a unique μ ∈ S, which is referred to as the Revuz measure of A and is

denoted by μA, such that:
For any γ -co-excessive function g (γ ≥ 0) in D(E) and f ∈ B+(E),

lim
t↓0

1

t
Eg ·m((f A)t ) = 〈f · μ, g̃〉 .

Conversely, let μ ∈ S, then there exists a unique (up to the equivalence) PCAF A such that

μ = μA.

Throughout this paper, we fix a function φ ∈ L1(E; m) with 0 < φ ≤ 1 m-a.e. and
set h = G1φ, ĥ = Ĝ1φ. Denote τB := inf{t > 0 | Xt /∈ B} for B ⊂ E. Let V be a
quasi-open subset of E. We denote by XV = (XV

t )t≥0 the part process of X on V and
denote by (EV ,D(E)V ) the part form of (E,D(E)) on L2(V ; m). It is known that XV is a
standard process and (EV ,D(E)V ) is a quasi-regular semi-Dirichlet form (cf. [14]). Denote
by (T V

t )t≥0, (T̂ V
t )t≥0, (GV

α )α≥0 and (ĜV
α )α≥0 the semigroup, co-semigroup, resolvent and

co-resolvent associated with (EV ,D(E)V ), respectively. Define

(3) h̄V := ĜV
1 φ .

Then h̄V ∈ D(E)V and h̄V is 1-co-excessive. Denote D(E)V,b := Bb(E) ∩ D(E)V .



FUKUSHIMA TYPE DECOMPOSITION FOR SEMI-DIRICHLET FORMS 5

For an AF A = (At )t≥0 of XV , we define

eV (A) := lim
t↓0

1

2t
Eh̄V ·m(A2

t )

whenever the limit exists in [0,∞]. Define

ṀV := {M | M is an AF of XV , Ex(M
2
t ) < ∞, Ex(Mt ) = 0

for all t ≥ 0 and E-q.e. x ∈ V, eV (M) < ∞} ,

N V
c := {N | N is a CAF of XV , Ex(|Nt |) < ∞ for all t ≥ 0

and E-q.e. x ∈ V, eV (N) = 0} ,

Θ :=
{
{Vn} | Vn is E-quasi-open, Vn ⊂ Vn+1 E-q.e.

∀ n ∈ N, and E =
∞⋃

n=1

Vn E-q.e.

}
,

and

D(E)loc := {u | ∃ {Vn} ∈ Θ and {un} ⊂ D(E)

such that u = un m-a.e. on Vn, ∀ n ∈ N} .

In what follows we shall employ the notion of local AFs introduced in [8] as follows.

DEFINITION 1.2 (cf. [8, page 271]). A family A = (At )t≥0 of functions on Ω is
called a local AF of M, if A satisfies all the requirements for an AF as stated in above (i)
and (ii), except that the additivity property (2) is required only for s, t ≥ 0 with t + s < ζ(ω).

Two local AFs A(1), A(2) are said to be equivalent if for E-q.e. x ∈ E, it holds that

Px(A
(1)
t = A

(2)
t ; t < ζ ) = Px(t < ζ ) , ∀ t ≥ 0 .

We now define

Ṁloc := {M | M is a local AF of M, ∃ {Vn}, {En} ∈ Θ and {Mn | Mn ∈ ṀVn}
such that En ⊂ Vn, Mt∧τEn

= Mn
t∧τEn

, t ≥ 0, n ∈ N}
and

Lc := {N | N is a local AF of M , ∃ {En} ∈ Θ such that t 
→ Nt∧τEn

is continuous and of zero quadratic variation, n ∈ N} .

In the above definition, {Nt∧τEn
} is said to be of zero quadratic variation if its quadratic vari-

ation vanishes in Pm-measure, more precisely, if it satisfies

[T/εl]∑

k=0

(N{(k+1)εl}∧τEn
− N{kεl }∧τEn

)2 → 0 as l → ∞ in Pm-measure ,

for any T > 0 and any sequence {εl}l∈N converging to 0.
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We use ζi to denote the totally inaccessible part of ζ , by which we mean that ζi is an
{Ft }-stopping time and is the totally inaccessible part of ζ w.r.t. Px for E-q.e. x ∈ E. In
Section 2 below we shall give a proof for the existence and uniqueness of such ζi , where the
uniqueness is in the sense of Px -a.s. for E-q.e. x ∈ E. Write I (ζ ) := [[0, ζ [[∪[[ζi]]. We can
show that there exists a {Vn} ∈ Θ such that for any {Un} ∈ Θ , I (ζ ) =

⋃
n[[0, τVn∩Un]] Px -a.s.

for E-q.e. x ∈ E (see Proposition 2.4 below). Therefore I (ζ ) is a predictable set of interval
type (cf. [11, Theorem 8.18]). In this paper a local AF M is called a locally square integrable

MAF on I (ζ ), denoted by M ∈ M
I (ζ )
loc , if M ∈ (M2

loc)
I (ζ ) in the sense of [11, Definition

8.19].
Denote by J (dx, dy) and K(dx) the jumping and killing measures of (E,D(E)), respec-

tively (cf. [12]). Let (N(x, dy),Hs) be a Lévy system of X and μH the Revuz measure of the
PCAF H . Then we have J (dy, dx) = 1

2N(x, dy)μH (dx) and K(dx) = N(x,∆)μH (dx).
We put the following assumption:

ASSUMPTION 1.3. There exist {Vn} ∈ Θ and locally bounded functions {Cn} on R

such that for each n ∈ N, if u, v ∈ D(E)Vn,b then uv ∈ D(E) and

E(uv, uv) ≤ Cn(‖u‖∞ + ‖v‖∞)(E1(u, u) + E1(v, v)) .

Now we can state the main theorem of this section.

THEOREM 1.4. Suppose that (E,D(E)) is a quasi-regular semi-Dirichlet form on

L2(E; m) satisfying Assumption 1.3. Then for u ∈ D(E)loc the following two assertions

are equivalent to each other.

(i) u admits a Fukushima type decomposition. That is, there exist M [u] ∈ M
I (ζ )
loc and

N [u] ∈ Lc such that

ũ(Xt ) − ũ(X0) = M
[u]
t + N

[u]
t , t ≥ 0 , Px -a.s. f or E-q.e. x ∈ E.(4)

(ii) u satisfies Condition (S) specified below.

(S) : μu(dx) :=
∫

E

(ũ(x) − ũ(y))2J (dy, dx) is a smooth measure.

Moreover, if u satisfies Condition (S), then the decomposition (4) is unique up to the equiva-

lence of local AFs, and the continuous part of M [u] belongs to Ṁloc.

The proof of Theorem 1.4 will be given in the next subsection. In the remainder of this
subsection we provide some remarks and discussions about the theorem.

In [16], the authors obtained a Fukushima type decomposition for u ∈ D(E)loc where
(E,D(E)) is a local quasi-regular Dirichlet form satisfying the condition of local control as
stated below.

CONDITION 1.5. There exists {Vn} ∈ Θ such that for each n ∈ N there exist a Dirich-

let form (η(n),D(η(n))) on L2(Vn; m) and a constant Cn > 1 satisfying D(η(n)) = D(E)Vn

and for any u ∈ D(E)Vn ,

1

Cn

η
(n)
1 (u, u) ≤ E1(u, u) ≤ Cnη

(n)
1 (u, u) .
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It is clear that Assumption 1.3 is more general than Condition 1.5. Hence we have the follow-
ing remark.

REMARK 1.6. Theorem 1.4 extends the corresponding result of [16].

In [21], Oshima discussed various topics of regular semi-Dirichlet forms under his con-
dition (E .5). In particular, he proved in Theorem 5.1.5 a weak sense of Fukushima’s decom-
position for u ∈ D(E)b. Below is the condition (E .5) of [21] stated in our context.

Condition (E .5). If u, v ∈ D(E) and w ∈ L2(E; m) satisfy |w(x) −w(y)| ≤ |u(x)−
u(y)| + |v(x) − v(y)| and |w(x)| ≤ |u(x)| + |v(x)| for any x, y ∈ E, then w ∈ D(E) and
|E(w,w)| ≤ K(E1(u, u) + E1(v, v)) for some K depending on ‖u‖∞ and ‖v‖∞.

It is easy to see that Condition (E .5) implies the following condition.

CONDITION 1.7. There exists a locally bounded function C on R such that if u, v ∈
D(E)b, then uv ∈ D(E) and

E(uv, uv) ≤ C(‖u‖∞ + ‖v‖∞)(E1(u, u) + E1(v, v)).(5)

PROPOSITION 1.8. Suppose that (E,D(E)) satisfies Condition 1.7, then any u ∈
D(E)b satisfies Condition (S), and hence admits a Fukushima type decomposition.

PROOF. Since Condition 1.7 is a special case of Assumption 1.3, hence by Theorem 1.4
we need only to check that any u ∈ D(E)b satisfies Condition (S). By the quasi-homeomor-
phism method (cf. [6] or [12, Theorem 3.8]), without loss of generality below we assume
that (E,D(E)) is a regular semi-Dirichlet form. Let {En} be a sequence of relatively compact
open sets such that E =

⋃
n En and {vn} ⊂ D(E) ∩ C0(E) satisfying vn = 1 on En for each

n ∈ N. We choose a sequence of relatively compact open sets Gl ↑ E and a sequence of
numbers δl ↓ 0 such that the set Ŵl := {(x, y) ∈ Gl × Gl | |ρ(x, y) ≥ δl} is a continuous set
w.r.t. J for every l ∈ N, where ρ is the metric of E. For β > 0, let σβ be the unique positive
Radon measures on E × E satisfying

(βGβf, g) =
∫

E×E

f (x)g(y)σβ(dx, dy) , ∀f, g ∈ D(E) ∩ C0(E) .

Let u ∈ D(E) ∩ C0(E). Then, for each n ∈ N,

1

2

∫

En

∫

E

(u(x) − u(y))2N(x, dy)μH (dx)

≤ 1

2

∫

E

∫

E

vn(x)(u(x) − u(y))2N(x, dy)μH (dx)

≤ lim
l→∞

∫ ∫

Ŵl

(u(x) − u(y))2vn(y)J (dx, dy)

= lim
l→∞

lim
β→∞

β

2

∫ ∫

Ŵl

(u(x) − u(y))2vn(y)σβ(dx, dy)

≤ lim
β→∞

β

2

∫

E

∫

E

(u(x) − u(y))2vn(y)σβ(dx, dy)
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≤ lim
β→∞

β

2
{(βGβ1E, u2vn) − 2(βGβu, uvn) + (βGβu2, vn)}

≤ lim
β→∞

{β(u − βGβu, uvn) − β

2
(u2 − βGβu2, vn)}

= E(u, uvn) − 1

2
E(u2, vn) ,(6)

which implies that u satisfies Condition (S).
For general u ∈ D(E)b , we may select a sequence of functions {uk} ⊂ D(E) ∩ C0(E)

such that uk → u w.r.t. the Ẽ
1/2
1 -norm as k → ∞ and ‖uk‖∞ ≤ ‖u‖∞ for k ∈ N. Then by

(5), (6) and Fatou’s lemma, we can show that
∫
En

∫
E
(ũ(x) − ũ(y))2N(x, dy)μH (dx) < ∞.

Hence u satisfies Condition (S), which completes the proof. ✷

REMARK 1.9. Proposition 1.8 shows that Theorem 1.4 is an extension of [21, Theo-
rem 5.1.5].

We would like to point out that the methods of [21] in developing Fukushima’s decompo-
sition are different from ours. In the next subsection we shall see that Theorem 1.4 is proved
by the localization and pasting technique. The main techniques employed by Oshima in de-
veloping his Theorem 5.1.5 are the weak sense energy and the ingenious auxiliary bilinear
form invented in [21]. We take this opportunity to thank Professor Oshima for sending us his
manuscript [21]. The condition (E .5) in [21] stimulated us to formulate Assumption 1.3.

REMARK 1.10. Theorem 1.4 extends the corresponding results of [8, Theorem 5.5.1]
and [15, Theorem 4.2] from the symmetric case to the semi-Dirichlet form case.

Note that for a symmetric Dirichlet form (E,D(E)), Assumption 1.3 is satisfied auto-
matically. Also, u ∈ D(E)loc satisfies Condition (S) trivially if (E,D(E)) is local. When
(E,D(E)) is non-local, Condition (S) is necessary even in the symmetric case. In developing
stochastic analysis with Nakao’s integral, Kuwae obtained in [15] a generalized Fukushima
decomposition in the symmetric case for a subclass of D(E)loc, which is equivalent to impose
Condition (S) for u ∈ D(E)loc. In this paper when dealing with purely discontinuous part of
M [u], we adopted some idea from [15] without making use of Nakao’s integral. One of the
authors of this paper has joint work with others extending Nakao’s integral to non-symmetric
Dirichlet forms (cf. [1]). We feel that Nakao’s integral can also be extended to semi-Dirichlet
forms.

REMARK 1.11. In Theorem 1.4 if we use M
[[0,ζ [[
loc instead of MI (ζ )

loc , then the unique-
ness of the decomposition may fail to be true.

We shall discuss the above remark and related topics in detail in Section 2 below.

1.2. Proof of the theorem. Before proving Theorem 1.4, we prepare some lemmas.
We fix a {Vn} ∈ Θ satisfying Assumption 1.3. Without loss of generality, we assume

that ˜̂
h is bounded on each Vn, otherwise we may replace Vn by Vn ∩ {̃ĥ < n}. Since h̄Vn =
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Ĝ
Vn

1 φ ≤ Ĝ1φ = ĥ, h̄Vn is bounded on Vn. To simplify notations, we write

h̄n := h̄Vn .

LEMMA 1.12 ([16, Lemma 2.6]). Let u ∈ D(E)Vn,b. Then there exist unique Mn,[u] ∈
ṀVn and Nn,[u] ∈ N

Vn
c such that for E-q.e. x ∈ Vn,

ũ(X
Vn
t ) − ũ(X

Vn

0 ) = M
n,[u]
t + N

n,[u]
t , t ≥ 0 , Px -a.s.

Lemma 1.12 has been given in [16] under Assumption 1.5 and the additional assumption
that (E,D(E)) is local; however, it can be easily extended to general semi-Dirichlet forms
under Assumption 1.3 with the similar proof.

We now fix a u ∈ D(E)loc satisfying Condition (S). Then there exist {V 1
n } ∈ Θ and

{un} ⊂ D(E) such that u = un m-a.e. on V 1
n . By [17, Proposition 3.6], we may assume

without loss of generality that each un is E-quasi-continuous. By [17, Proposition 2.16], there
exists an E-nest {F 2

n } of compact subsets of E such that {un} ⊂ C{F 2
n }. Denote by V 2

n the
fine interior of F 2

n . Then {V 2
n } ∈ Θ . Since u satisfies Condition (S), there exists an E-nest

{F 3
n } of compact subsets of E such that μu(F

3
n ) < ∞. Denote by V 3

n the fine interior of
F 3

n . Since the killing measure K(dx) is a smooth measure, there exists an E-nest {F 4
n } of

compact subsets of E such that K(F 4
n ) < ∞. Denote by V 4

n the fine interior of F 4
n . Define

V ′
n = Vn ∩ V 1

n ∩ V 2
n ∩ V 3

n ∩ V 4
n . Then {V ′

n} ∈ Θ , each un is bounded on V ′
n, and

∫

V ′
n

∫

E∆

(ũ(x) − ũ(y))2N(x, dy)μH (dx)

=
∫

V ′
n

∫

E

(ũ(x) − ũ(y))2J (dy, dx) +
∫

V ′
n

ũ2(x)K(dx)

< ∞ .

For n ∈ N, we define En = {x ∈ E | h̃n(x) > 1
n
}, where hn := G

Vn

1 φ. Then {En} ∈ Θ

satisfying E
E

n ⊂ En+1 E-q.e. and En ⊂ Vn E-q.e. for each n ∈ N (cf. [14, Lemma 3.8]).

Here E
E

n denotes the E-quasi-closure of En. Define fn = nh̃n ∧ 1. Then fn = 1 on En and
fn = 0 on V c

n . Since fn is a 1-excessive function of (EVn ,D(E)Vn) and fn ≤ nh̃n ∈ D(E)Vn ,
hence fn ∈ D(E)Vn by [19, Remark 3.4(ii)]. Denote by Qn the bound of |un| on V ′

n. By [14,
(2.1)] and Assumption 1.3, we find that [(−Qnfn)∨un ∧(Qnfn)]fn ∈ D(E)Vn,b. To simplify
notation, below we use still un to denote [(−Qnfn)∨un ∧ (Qnfn)] and use still En to denote
En ∩ V ′

n. Then we have {En} ∈ Θ , En ⊂ Vn, un, unfn ∈ D(E)Vn,b, and u = un = unfn

on En for n ∈ N. Denote by {Fn
t } the minimum completed admissible filtration of XVn . For

n < l, we have Fn
t ⊂ F l

t ⊂ Ft . Since En ⊂ Vn, τEn is an {Fn
t }-stopping time.

LEMMA 1.13 ([13, Lemma 25.3]). For any optional time T and predictable process

Y, the random variable YT 1(T <∞) ∈ FT −.

Hereafter for a martingale M , we denote by Mc and Md its continuous part and purely
discontinuous part, respectively.
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LEMMA 1.14. For n < l, we have M
n,[unfn],c
t∧τEn

= M
l,[ulfl],c
t∧τEn

, t ≥ 0, Px-a.s. for E-q.e.

x ∈ Vn.

PROOF. Let n < l. Since Mn,[unfn] ∈ ṀVn , Mn,[unfn] is an {Fn
t }-martingale by the

Markov property. Since τEn is an {Fn
t }-stopping time, {Mn,[unfn]

t∧τEn
} is an {Fn

t∧τEn
}-martingale.

Denote ϒn
t = σ {XVn

s∧τEn
| 0 ≤ s ≤ t}. Then {Mn,[unfn],c

t∧τEn
} is a {ϒn

t }-martingale. Denote

ϒ
n,l
t = σ {XVl

s∧τEn
| 0 ≤ s ≤ t}. Similarly, we can show that {M l,[unfn],c

t∧τEn
} is a {ϒn,l

t }-
martingale. Since

(7) XVl
s = Xs = XVn

s , s < τEn , Px -a.s. for E-q.e. x ∈ Vn ,

we find that ϒn
(t∧τEn )− = ϒ

n,l
(t∧τEn )−. Hence {M l,[unfn],c

t∧τEn
} ∈ ϒ

n,l
(t∧τEn )− by Lemma 1.13 and

therefore {M l,[unfn],c
t∧τEn

} is a {ϒn
t }-martingale. Moreover, N l,[unfn]

t∧τEn
∈ ϒ

n,l
(t∧τEn )− = ϒn

(t∧τEn )− ⊂
Fn

t∧τEn
.

Let N ∈ N
Vj
c for some j ∈ N. Then, for any T > 0,

[rT ]∑

k=1

Eh̄j ·m
[
(N k+1

r
− N k

r
)2] ≤

[rT ]∑

k=1

eT
(
E·(N

2
1
r

), e− k
r T̂

Vj

k
r

h̄j

)

≤
[rT ]∑

k=1

eT
(
E·(N2

1
r

), h̄j

)

≤ rT eT Eh̄j ·m(N2
1
r

) → 0 as r → ∞ .(8)

Hence
[rT ]∑

k=1

(N k+1
r

− N k
r
)2 → 0 as r → ∞ in Ph̄j ·m-measure .

Therefore, the quadratic variations of {N l,[unfn]
t∧τEn

} and {Nn,[unfn]
t∧τEn

} vanish in Ph̄l ·m-measure and
Ph̄n·m-measure, respectively.

By (7), we find that for E-q.e. x ∈ Vn,

M
n,[unfn],c
t∧τEn

+ M
n,[unfn],d
t∧τEn

+ N
n,[unfn]
t∧τEn

= ũnfn(X
Vn
t∧τEn

) − ũnfn(X
Vn

0 )

= ũnfn(X
Vl
t∧τEn

) − ũnfn(X
Vl

0 )

= M
l,[unfn],c
t∧τEn

+ M
l,[unfn],d
t∧τEn

+ N
l,[unfn]
t∧τEn

, Px-a.s.

Then {Mn,[unfn],d
t∧τEn

} ∈ ϒn
t , and {Mn,[unfn]

t∧τEn
} and {M l,[unfn]

t∧τEn
} are {ϒn

t }-martingales. Hence

M
n,[unfn],c
t∧τEn

= M
l,[unfn],c
t∧τEn

and N
n,[unfn]
t∧τEn

= N
l,[unfn]
t∧τEn

, Px -a.s. for m-a.e. x ∈ Vn. This

implies that Em(〈Mn,[unfn],c
·∧τEn

− M
l,[unfn],c
·∧τEn

〉t ) = 0, ∀t ≥ 0. By Lemma 1.1, we find that

M
n,[unfn],c
t∧τEn

= M
l,[unfn],c
t∧τEn

, ∀t ≥ 0, Px -a.s. for E-q.e. x ∈ Vn.
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Since unfn =ulfl =u on En, similar to [15, Lemma 2.4], we can show that M
l,[unfn],c
t =

M
l,[ulfl],c
t when t < τEn , Px -a.s. for E-q.e. x ∈ Vl . Then M

l,[unfn],c
t∧τEn

= M
l,[ulfl ],c
t∧τEn

, t ≥ 0,

Px -a.s. for E-q.e. x ∈ Vl . Therefore M
n,[unfn],c
t∧τEn

= M
l,[ulfl ],c
t∧τEn

, t ≥ 0, Px -a.s. for E-q.e.
x ∈ Vn. ✷

PROOF OF THEOREM 1.4. (a) Suppose that u satisfies Condition (S). We shall show
that u admits the Fukushima type decomposition (4).

We define M
[u],c
t∧τEn

:= liml→∞ M
l,[ulfl],c
t∧τEn

and M
[u],c
t := 0 for t > ζ if there exists some

n such that τEn = ζ and ζ < ∞; or M
[u],c
t := 0 for t ≥ ζ , otherwise. By Lemma 1.14, M [u],c

is well defined and M
[u],c
t∧τEn

= M
n,[unfn],c
t∧τEn

for t ≥ 0 and n ∈ N. Hence M [u],c ∈ Ṁloc. Define

Mn
t := M

n+1,[un+1fn+1],c
t∧τEn

for t ≥ 0 and n ∈ N. Then M
[u],c
t∧τEn

= Mn
t∧τEn

Px -a.s. for E-q.e.

x ∈ Vn+1 by Lemma 1.14. Since E
E

n ⊂ En+1 ⊂ Vn+1 E-q.e. implies that Px(τEn = 0) = 1

for x /∈ Vn+1, M
[u],c
t∧τEn

= Mn
t∧τEn

Px-a.s. for E-q.e. x ∈ E.

Next we show that Mn is an {Ft }-martingale. In fact, by the fact that τEn is an {Fn+1
t }-

stopping time, we find that 1{τEn≤s} is Fn+1
s∧τEn

-measurable for any s ≥ 0. Let 0 ≤ s1 < · · · <

sk ≤ s < t and g ∈ Bb(R
k). Then, we obtain by the fact Mn+1,[un+1fn+1],c ∈ ṀVn+1 that

for E-q.e. x ∈ Vn+1,
∫

Ω

Mn
t g(Xs1 , . . . , Xsk )dPx

=
∫

{τEn≤s}
Mn

t g(Xs1 , . . . , Xsk )dPx +
∫

{τEn>s}
Mn

t g(Xs1, . . . , Xsk )dPx

=
∫

{τEn≤s}
Mn

s g(Xs1 , . . . , Xsk )dPx

+
∫

Ω

M
n+1,[un+1fn+1],c
t∧τEn

g(X
Vn+1
s1∧τEn

, . . . , X
Vn+1
sk∧τEn

)1{τEn>s}dPx

=
∫

{τEn≤s}
Mn

s g(Xs1 , . . . , Xsk )dPx

+
∫

Ω

M
n+1,[un+1fn+1],c
s∧τEn

g(X
Vn+1
s1∧τEn

, . . . , X
Vn+1
sk∧τEn

)1{τEn>s}dPx

=
∫

{τEn≤s}
Mn

s g(Xs1 , . . . , Xsk )dPx +
∫

{τEn>s}
Mn

s g(Xs1, . . . , Xsk )dPx

=
∫

Ω

Mn
s g(Xs1 , . . . , Xsk )dPx .

Obviously, the equality holds for x /∈ Vn+1. Hence Mn is an {Ft }-martingale. By Proposition

2.4 below,
⋃

n[[0, τEn ]] ⊇ I (ζ ) Px -a.s. for E-q.e. x ∈ E. Therefore M [u],c ∈ M
I (ζ )
loc .

We define φ(x, y) = ũ(y) − ũ(x), φl(x, y) = (ũ(y) − ũ(x))1{|ũ(x)−ũ(y)|> 1
l
}, and

M l
t :=

∑

0<s≤t

φl(Xs−,Xs) −
∫ t

0

∫

E∆

φl(Xs , y)N(Xs , dy)dHs
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for l ∈ N. Denote T l
r := inf{t > 0 | |M l

t | ≥ r} for r ∈ N. Then, {T l
r } is an {Ft }-stopping time

and

|M l
t∧T l

r ∧τEn
| ≤ |M l

t∧T l
r ∧τEn−| + |φ(Xt∧T l

r ∧τEn−,Xt∧T l
r ∧τEn

)|
≤ r + |φ(Xt∧T l

r ∧τEn−,Xt∧T l
r ∧τEn

)| .

We define (cf. [16, Theorem A.3])

(9) Ŝ∗
00 := {μ ∈ S0 | Û1μ ≤ cĜ1φ for some constant c > 0}.

Let ν ∈ S∗
00 satisfying ν(E) < ∞. Then, by [16, Lemma A.9], we get

Eν

[
(M l

t∧T l
r ∧τEn

)2] ≤ 2r2ν(E) + 2Eν

[ ∑

0<s≤t∧τEn

φ2(Xs−,Xs)

]

= 2r2ν(E) + 2Eν

[ ∫ t∧τEn

0

∫

E∆

φ2(Xs, y)N(Xs , dy)dHs

]

≤ 2r2ν(E) + 2Cν(1 + t)

∫

En

˜̂
h

∫

E∆

φ2(x, y)N(x, dy)μH (dx)

< ∞ ,

where Cν is a positive constant. Hence, for fixed n and r , {M l
t∧T l

r ∧τEn
} is a square integrable

purely discontinuous Pν-martingale. By [8, Corollary A.3.1], we find that

(M l
t∧T l

r ∧τEn
)2 −

∑

s≤t

(∆M l
s∧T l

r ∧τEn
)2 = (M l

t∧T l
r ∧τEn

)2 −
∑

s≤t∧T l
r ∧τEn

φ2
l (Xs−,Xs)

is a Pν-martingale, which implies that

Eν

[
(M l

t∧τEn
)2] ≤ lim inf

r→∞
Eν

[
(M l

t∧T l
r ∧τEn

)2]

= lim inf
r→∞

Eν

[ ∑

0<s≤t∧T l
r ∧τEn

φ2
l (Xs−,Xs)

]

= Eν

[ ∑

s≤t∧τEn

φ2
l (Xs−,Xs)

]

≤ Eν

[∫ t∧τEn

0

∫

E∆

φ2(Xs , y)N(Xs , dy)dHs

]

≤ Cν(1 + t)

∫

En

˜̂
h(x)

∫

E∆

φ2(x, y)N(x, dy)μH (dx)

< ∞ .

Thus {M l
t∧τEn

} is a Pν-square-integrable martingale. Since {M l
t∧T l

r ∧τEn
}∞r=1 is L2(Pν)-

bounded, by virtue of Banach-Saks theorem, we obtain that

Eν

[
(M l

t∧τEn
)2] = Eν

[∫ t∧τEn

0

∫

E∆

φ2
l (Xs, y)N(Xs , dy)dHs

]
.
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By Doob’s maximum inequality, we obtain that for any α > 0 and l, k,

Pν

(
sup

0≤s≤T

|M l
s∧τEn

− Mk
s∧τEn

| > α

)

≤ 4Cν(1 + T )

α2

∫

En

˜̂
h(x)

∫

E∆

(φl − φk)
2(x, y)N(x, dy)μH (dx) .

By the diagonal method, we may select a subsequence lk → ∞ such that for each n when
k ≥ n,

∫

En

˜̂
h(x)

∫

E∆

(φlk+1 − φlk )
2(x, y)N(x, dy)μH (dx) ≤ 1

23k
.

Then

Pν

(
sup

0≤s≤T

|M lk+1
s∧τEn

− M
lk
s∧τEn

| >
1

2k

)
≤ Cν(1 + T )

2k
.

Define Λn
0 = {ω ∈ Ω | M lk

s∧τEn
converges uniformly in s on each finite interval}. Then,

Λ
n1
0 ⊃ Λ

n2
0 for n1 ≤ n2. By the Borel-Cantelli lemma, we get

Pν((Λ
n
0)

c) = 0 for ν ∈ Ŝ∗
00 with ν(E) < ∞ .

Therefore Px((Λn
0)c) = 0 for E-q.e. x ∈ E (cf. [16, Theorem A.3]). Let Ŵk be the defining

set of the MAF M lk , denote Ŵ = ∩kŴk and Λn = Λn
0 ∩ Ŵ. Then we have Px((Λn)c) = 0 for

E-q.e. x ∈ E. For each ω ∈ Λn, M
lk
t∧τEn

converges uniformly in t on each finite interval and
for each k,

M
lk
(t+s)∧τEn

= M
lk
t∧τEn

+ M
lk
s∧τEn

◦ θt∧τEn
, if 0 ≤ t , s < ∞ .

Thus, Ln, the limit of {M lk
s∧τEn

}∞k=1, is a Px -square integrable purely discontinuous martingale
for E-q.e. x ∈ E and satisfies:

Ln
(t+s)∧τEn

= Ln
t∧τEn

+ Ln
s∧τEn

◦ θt∧τEn
, if 0 ≤ t , s < ∞ .

By the above construction, we find that L
n1
t∧τEn1

= L
n2
t∧τEn1

for n1 ≤ n2. We define M
[u],d
t =

Ln
t , t ≤ τEn , and M

[u],d
t = Ln

t , t ≥ ζ , if for some n, τEn = ζ < ∞; M
[u],d
t = 0, t ≥ ζ ,

otherwise. Then M [u],d ∈ M
I (ζ )
loc , which gives all the jumps of ũ(Xt )− ũ(X0) on I (ζ ). Since

{M l
t } is an MAF for each l, we find that {M [u],d

t } is a local MAF by the uniform convergence
on I (ζ ).

We define N
[u]
t∧τEn

:= ũ(Xt∧τEn
) − ũ(X0) − M

[u],c
t∧τEn

− M
[u],d
t∧τEn

for each n ∈ N. Then

N [u] is a local AF of M and t 
→ N
[u]
t∧τEn

is continuous. Now we show that {N [u]
t∧τEn

} has zero

quadratic variation and hence N [u] ∈ Lc. By Fukushima’s decomposition for part processes,
we have that for k ≥ n,

ũkfk(Xt∧τEn
) − ũkfk(X0) = ũkfk(X

Vk
t∧τEn

) − ũkfk(X
Vk

0 )

= M
k,[ukfk]
t∧τEn

+ N
k,[ukfk]
t∧τEn
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= M
k,[ukfk],c
t∧τEn

+ M
k,[ukfk ],d
t∧τEn

+ N
k,[ukfk]
t∧τEn

and

ũ(Xt∧τEn
) − ũ(X0) = M

[u],c
t∧τEn

+ M
[u],d
t∧τEn

+ N
[u]
t∧τEn

.

Then

N
[u]
t∧τEn

= N
k,[ukfk]
t∧τEn

+ M
k,[ukfk],d
t∧τEn

− M
[u],d
t∧τEn

+ ũ(Xt∧τEn
) − ũkfk(Xt∧τEn

)

= N
k,[ukfk]
t∧τEn

+ M
k,[ukfk],d
t∧τEn

− M
[u],d
t∧τEn

+ [ũ(XτEn
) − ũkfk(XτEn

)]1{τEn≤t} .

We define At =[ũ(XτEn
)−ũkfk(XτEn

)]1{τEn≤t} and ̺(x, y)=(ũ(y)−ũ(x))1{y∈(Ec
n∪{∆})}.

Let ν ∈ S∗
00 satisfying ν(E) < ∞. Then, by [16, Lemma A.9], we get

Eν[(ũ(XτEn
) − ũ(XτEn−))21{τEn≤t}] = Eν

[ ∑

0<s≤t∧τEn

̺2(Xs−,Xs)

]

= Eν

[∫ t∧τEn

0

∫

E∆

̺2(Xs , y)N(Xs , dy)dHs

]

≤ Cν(1 + t)

∫

En

˜̂
h

∫

E∆

̺2(x, y)N(x, dy)μH (dx)

≤ Cν(1 + t)

∫

En

˜̂
h

∫

E∆

(ũ(x) − ũ(y))2N(x, dy)μH (dx)

< ∞ ,

where Cν is a positive constant. Thus Eν[A2
t ] < ∞. Note that τEn is an {Ft∧τEn

}-stopping
time and {At} is an adapted quasi-left continuous bounded variation processes. We denote by
{Ap

t } the dual predictable projection of {At }. Then {Ap
t } is an adapted continuous bounded

variation process (cf. [8, Theorem A.3.5]). Moreover, (A−Ap) is an {Ft∧τEn
}-purely discon-

tinuous Pν-square-integrable martingale. Since both {Mk,[ukfk],d
t∧τEn

} and {M [u],d
t∧τEn

} are {Ft∧τEn
}-

purely discontinuous martingales and

N
[u]
t∧τEn

= N
k,[ukfk]
t∧τEn

+ (M
k,[ukfk],d
t∧τEn

− M
[u],d
t∧τEn

+ At − A
p
t ) + A

p
t ,

we find that {Mk,[ukfk],d
t∧τEn

−M
[u],d
t∧τEn

+At −A
p
t } is a purely discontinuous martingale with zero

jump, which must be equal to zero. Hence

N
[u]
t∧τEn

= N
k,[ukfk]
t∧τEn

+ A
p
t .(10)

Since m(En) < ∞ and the quadratic variations of N
k,[ukfk]
t∧τEn

and A
p
t vanish in Ph̄n·m-measure

and Pφ·m-measure, respectively, we conclude that the quadratic variation of {N [u]
t∧τEn

} vanishes

in Pm-measure, i.e., {N [u]
t∧τEn

} has zero quadratic variation.

Finally, we prove the uniqueness of decomposition (4). Suppose that M1 ∈ M
I (ζ )
loc and

N1 ∈ Lc such that

ũ(Xt ) − ũ(X0) = M1
t + N1

t , t ≥ 0 , Px -a.s. for E-q.e. x ∈ E .
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By Proposition 2.4 below, we can choose an {En} ∈ Θ such that I (ζ ) =
⋃

n[[0, τEn ]] Px -a.s.
for E-q.e. x ∈ E. Then, for each n ∈ N, {(M [u] − M1)τEn } is a locally square integrable
martingale and a zero quadratic variation process. This implies that Pm(〈(M [u] −M1)τEn 〉t �=
0, ∃ t ∈ [0,∞)) = 0. Consequently by the analog of [8, Lemma 5.1.10] in the setting of
semi-Dirichlet forms, Px(〈(M [u] − M1)τEn 〉t �= 0, ∃ t ∈ [0,∞)) = 0 for E-q.e. x ∈ E.
Therefore M

[u]
t = M1

t , 0 ≤ t ≤ τEn , Px -a.s. for E-q.e. x ∈ E. Since n is arbitrary, we obtain
the uniqueness of decomposition (4) up to the equivalence of local AFs.

(b) Let u ∈ D(E)loc and suppose that the decomposition (4) holds. We shall show that

u satisfies Condition (S). First, M [u],d ∈ M
d,I (ζ )
loc implies that there exist a sequence of in-

creasing stopping times {Tn} such that
⋃

n[[0, Tn]] = I (ζ ) and a sequence of L2-martingales
{Mn} such that (M [u],d1I (ζ ))

Tn = (Mn1I (ζ ))
Tn . Hence (M [u],d)Tn is an L2-martingale and its

square bracket equals
∑

0<s≤t∧Tn
(u(Xs) − u(Xs−))2 and is an integrable increasing

process. We use [M [u],d](t, ω) to denote (
∑

0<s≤t(u(Xs(w)) − u(Xs−(w)))2)1I (ζ )(t, w).

Then, [M [u],d ] ∈ (Aloc,0)
I (ζ ) (cf. [11, §8.3]) and is a local AF. Therefore 〈M [u],d 〉t =

(
∫ t

0

∫
E∆

(ũ(Xs) − ũ(y))2N(Xs , dy)dHs)1I (ζ ) is a PCAF on I (ζ ) and can be extended to

a PCAF by [2, Remark 2.2]. By Lemma 1.1, its Revuz measure μ
′
u(dx) =

∫
E∆

(ũ(x) −
ũ(y))2N(x, dy)μH (dx) is a smooth measure. Thus μu(dx) =

∫
E(ũ(x) − ũ(y))2J (dy, dx),

which is controlled by μ
′
u(dx), is also a smooth measure. This implies that u satisfies Condi-

tion (S). ✷

1.3. Local energies of M [u] and N [u]. Let (E,D(E)) be a quasi-regular semi-
Dirichlet form on L2(E; m) satisfying Assumption 1.3. Suppose u ∈ D(E)loc and u satis-
fies Condition (S). Then, by Theorem 1.4, u admits the Fukushima type decomposition (4).
In this subsection, we study the local energies of M [u] and N [u]. Our result shows that N [u]

is locally of zero energy in the weak* sense (cf. Theorem 1.15 (ii)) below. We are grateful to
the referee whose comments stimulated us to study this subject.

We continue with the above setting for Subsections 1.1 and 1.2. Let B = (Bt )t≥0 be a
local AF of X and V a quasi-open set of E. Define

h̄V,∗ := e−2T̂ V
1 (ĜV

2 φ) ,

and

eV,∗(B) := lim
t↓0

1

2t
Eh̄V,∗·m(B2

t∧τV
)

whenever the limit exists in [0,∞]. In this paper eV,∗(B) is called the local energy of B on V

in the weak* sense.
One can check that h̄V,∗ ∈ D(E)V and h̄V,∗ ≤ h̄V (cf. (3)).

THEOREM 1.15. Let (E,D(E)) be a quasi-regular semi-Dirichlet form on L2(E; m)

satisfying Assumption 1.3. Suppose u ∈ D(E)loc and u satisfies Condition (S). Let M [u]

and N [u] be the martingale and the zero quadratic variation parts of the Fukushima type

decomposition (4), respectively. Then, there exists an {En} ∈ Θ such that for n ∈ N,
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(i) {M [u]
t∧τEn

} is a Px-square-integrable martingale for E-q.e. x ∈ E and eEn,∗(M [u]) <

∞.

(ii) Ex [(N [u]
t∧τEn

)2] < ∞ for t ≥ 0, E-q.e. x ∈ E, and eEn,∗(N [u]) = 0.

PROOF. Let {Vn}, {En}, {fn} and {un}, etc. be defined the same as in Subsection 1.2.
We first prove Assertion (i). From the above proof of Theorem 1.4, we find that {M [u]

t∧τEn
}

is a Px-square-integrable martingale for E-q.e. x ∈ E and n ∈ N. Denote by μc
〈unfn〉 the

Revuz measure of 〈M [unfn],c〉 w.r.t. XVn ; and denote by μ
n,c
〈u〉 and μ

n,d
〈u〉 the Revuz measures

of 〈M [u],c
·∧τEn

〉 and 〈M [u],d
·∧τEn

〉 w.r.t. XEn , respectively. By the proof of Theorem 1.4 and [5,
Proposition 4.1.10] (note that the assertion of the latter holds true also in the setting of semi-
Dirichlet forms), we get

μ
n,c
〈u〉(dx) = 1En(x) · μc

〈unfn〉(dx) ,(11)

and

μ
n,d
〈u〉 (dx) = 1En(x) ·

(
2

∫

E

(ũ(x) − ũ(y))2J (dy, dx) + ũ2(x)K(dx)

)
.(12)

Then, we obtain by Lemma 1.1, (11), (12) and Lemma 3.2 below that

eEn,∗(M [u]) = lim
t↓0

1

2t

{
Eh̄En,∗·m

[
〈M [u],c

·∧τEn
〉
]
+ Eh̄En,∗·m

[
〈M [u],d

·∧τEn
〉
]}

= 1

2

∫

En

˜̄hEn,∗(x)μc
〈unfn〉(dx) +

∫

En

˜̄hEn,∗(x)

∫

E

(ũ(x) − ũ(y))2J (dy, dx)

+1

2

∫

En

˜̄hEn,∗(x)ũ2(x)K(dx)

≤ E(unfn, unfnĜ
En

2 φ) − 1

2
E((unfn)

2, Ĝ
En

2 φ) + ‖ ˜̂
h|En‖∞μu(En)

+1

2
‖ ˜̂
h|En‖∞‖ũnfn‖2

∞K(En)

< ∞ ,

which verifies Assertion (i).
We now prove Assertion (ii). By (10), we get

(13) N
[u]
t∧τEn

= N
n,[unfn]
t∧τEn

+ A
p
t ,

where At = [ũ(XτEn
) − ũnfn(XτEn

)]1{τEn≤t}. From the proof of Theorem 1.4, we find that

Eν[A2
t ] < ∞ for t ≥ 0 and ν ∈ S∗

00 satisfying ν(E) < ∞. Then, we obtain by [16, Theorem

A.3] that Ex [(N [u]
t∧τEn

)2] < ∞ for t ≥ 0 and E-q.e. x ∈ E.

Note that (Ĝ
En

2 φ) · m ∈ Ŝ∗
00 (cf. (9)) and

∫
E

Ĝ
En

2 φdm < ∞. Hence E
(Ĝ

En
2 φ)·m[(Ap)2

t ] <

∞ for t ≥ 0, which implies that the quadratic variation of Ap vanishes in L1(P
(Ĝ

En
2 φ)·m). By

(8) and the boundedness of unfn, we find that the quadratic variation of N
n,[unfn]
·∧τEn

vanishes in

L1(Ph̄n·m) and hence in L1(P
(Ĝ

En
2 φ)·m). Thus, we obtain by (13) that the quadratic variation
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of N
[u]
·∧τEn

vanishes in L1(P
(Ĝ

En
2 φ)·m), i.e.,

(14) E
(Ĝ

En
2 φ)·m

{ [T/εl]∑

k=0

(N
[u]
{(k+1)εl}∧τEn

− N
[u]
{kεl}∧τEn

)2
}

→ 0 as l → ∞ ,

for any T > 0 and any sequence {εl}l∈N converging to 0.
Note that A

p
t = A

p
t∧τEn

for t ≥ 0 and n ∈ N. By (14), we get

0 = lim
s↓0

[1/s]∑

k=0

E
(Ĝ

En
2 φ)·m

[
(N

[u]
{(k+1)s}∧τEn

− N
[u]
{ks}∧τEn

)2]

= lim
s↓0

[1/s]∑

k=0

∫

En

T̂
En

ks Ĝ
En

2 φ(x)Ex

[
(N

[u]
s∧τEn

)2]m(dx)

≥ lim
s↓0

[1/s]∑

k=0

∫

En

h̄En,∗(x)Ex

[
(N

[u]
s∧τEn

)2]m(dx)

= 2eEn,∗(N [u]) .

The proof is complete. ✷

REMARK 1.16. Let g ∈ D(E)En be a γ -co-excessive function (γ ≥ 0) of XEn . By
Lemma 1.1, (11) and (12) (cf. the above proof of Theorem 1.15), we obtain that

lim
t↓0

1

t
Eg ·m[(ũ(Xt∧τEn

) − ũ(X0))
2]

=
∫

En

g̃(x)μc
〈u〉(dx) + 2

∫

En

g̃(x)

∫

E

(ũ(x) − ũ(y))2J (dy, dx)

+
∫

En

g̃(x)ũ2(x)K(dx) ,(15)

where μc
〈u〉 is the Revuz measure of 〈M [u],c〉. (15) seems to be a new localization formula,

which can be compared with the localization formula for symmetric Markov processes ob-
tained by Chen and Fukushima recently (see [4, Theorem 1.1]).

2. Remarks on stochastic sets of interval type. For the convenience of the reader,
we recall first some concepts and results concerning sets of interval type given in [11, §8.3].
Let (Ω,F , P ) be a complete probability space with a filtration {Ft } satisfying the usual con-
dition. A subset B ⊂ Ω×[0,∞) is said to be a set of interval type if there exists a nonnegative
random variable T such that for each ω ∈ Ω , the section Bω is either [0, T (ω)[ or [0, T (ω)]
and Bω �= ∅. B is called an optional (resp. predictable) set of interval type, if it is an optional
(resp. predictable) set and is of interval type.

Let B be an optional set of interval type. A stochastic process Y defined on B is called a
special semi-martingale on B, denoted by (Sp)B , if there exist a sequence of increasing stop-
ping times {Tn} with Tn ↑ T (T is the debut of Bc), and a sequence of special semi-martingales



18 Z.-M. MA, W. SUN AND L.-F. WANG

{Y n} such that,
⋃

n[[0, Tn]] ⊃ B and for each n and t > 0, (Y1B)t∧Tn = (Y n1B)t∧Tn . In the
same manner one can define local martingale on B (denoted by (Mloc)

B ), adapted process
with locally integrable variation on B (denoted by (Aloc)

B), and others (cf. [11, Definition
8.19]).

The assertion below, which is referred as the Doob-Meyer decomposition on sets of
interval type, was stated in [11, Theorem 8.26].

Assertion. Let B be an optional set of interval type and Y ∈ (Sp)B . Then Y can
be uniquely decomposed as: Y = M + A, where M ∈ (Mloc)

B and A ∈ (Aloc,0)
B is a

predictable process (i.e., A is the restriction of a predictable process on B.).

Although the above assertion has been employed by several papers (including our previ-
ous paper [16]), during the course of our research we observed the following remark.

REMARK 2.1. In the above assertion if B is not a predictable set of interval type, then
the uniqueness of the decomposition Y = M + A may fail to be true.

PROOF. We take just the counterexample stated in [11, Remark 8.24] to illustrate our
remark. Let T > 0 be a totally inaccessible time with P(T < ∞) > 0, e.g., the first jump
time of a Poisson process. We consider the stochastic interval B = [[0, T [[. Then B is an
optional set of interval type but not a predictable set. Let At := 1[[T ,∞[[(t) and Ãt be its
dual predictable projection. Let {Yt , 0 ≤ t < T } be the restriction of Ã on B. Then we have
decomposition Y = M + 0 where M ∈ (Mloc)

B is the restriction of Ã − A on B. But we
have also another decomposition Y = 0 + Y where Y ∈ (Aloc,0)

B is the restriction of Ã on
B. Therefore the decomposition stated in the above assertion is not unique. ✷

The above remark reveals that the Doob-Meyer decomposition may fail to be unique on
an optional set of interval type. In the same manner, we observe that the Fukushima type
decomposition may fail to be unique on an optional set of interval type. Note that with the
notation of Theorem 1.4, [[0, ζ [[ is an optional set of interval type but is not necessarily a
predictable set.

REMARK 2.2. In Theorem 1.4 if we use M
[[0,ζ [[
loc instead of MI (ζ )

loc , then the unique-
ness of the decomposition may fail to be true.

PROOF. We provide below a counterexample to illustrate the remark. Suppose that we
have a decomposition

ũ(Xt ) − ũ(X0) = M
[u]
t + N

[u]
t , t ≥ 0 , Px -a.s. for E-q.e. x ∈ E ,

with M [u] ∈ M
[[0,ζ [[
loc and N [u] ∈ Lc, and suppose that ζi = ζ with Px(ζ < ∞) > 0 Px -

a.s. for E-q.e. x ∈ E. We write At := 1{ζ≤t} (i.e., At = I∆(Xt )) and denote by Ãt the dual

predictable projection of At . Then it is clear that Ã ∈ Lc. But we have also Ã ∈ (Mloc)
[[0,ζ [[,

because {Ã1[[0,ζ [[}ζ = {(Ã − A)1[[0,ζ [[}ζ . Therefore, we have another decomposition:

ũ(Xt ) − ũ(X0) = (M
[u]
t − Ãt ) + (N

[u]
t + Ãt ) , t ≥ 0 , Px -a.s. for E-q.e. x ∈ E ,
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which violates the uniqueness. ✷

With the above discussion, we see that the existence of a suitable predictable set of in-
terval type is important for the uniqueness of the Fukushima type decomposition. Fortunately
in Theorem 1.4 we find such a suitable set I (ζ ) = [[0, ζ [[∪[[ζi]]. In Proposition 2.4 below we
shall provide a proof for the existence and uniqueness of such ζi . We shall need the following
characterizations for a set of interval type to be predictable. For their proofs we refer to [11].

LEMMA 2.3 ([11, Theorems 8.18]). The following statements are equivalent:

(i) B is a predictable set of interval type.

(ii) 1B = 1F 1[[0,T [[ + 1F c1[[0,T ]], where T is a stopping time, F ∈ FT − and TF > 0 is a

predictable time.

(iii) B =
⋃

n[[0, Tn]], where {Tn} is an increasing sequence of stopping times.

Below we consider a quasi-regular semi-Dirichlet form (E,D(E)) on L2(E; m). Let
M = (Ω,F , (Ft )t≥0, (Xt )t≥0, (Px)x∈E∆) with lifetime ζ be the associated m-tight special
standard process.

PROPOSITION 2.4. (i) There exists an {Ft }-stopping time ζi (may be identically equal

to ∞) which is the totally inaccessible part of ζ w.r.t. Px for E-q.e. x ∈ E. Such a ζi is unique

in the sense of Px -a.s. for E-q.e. x ∈ E.

(ii) Denote by I (ζ ) := [[0, ζ [[∪[[ζi]]. Then I (ζ ) is a predictable set of interval type,

and there exists a sequence {Vn} ∈ Θ such that for any {Un} ∈ Θ , I (ζ ) =
⋃

n[[0, τVn∩Un]]
Px -a.s. f or E-q.e. x ∈ E.

PROOF. The uniqueness of ζi follows from [11, Theorem 4.20]. Below we show the
existence of ζi and the assertion (ii). By the local compactification method (cf. [12, Theorem
3.5], see also [18, Theorem VI.1.6]) in the setting of semi-Dirichlet forms, we may assume
without loss of generality that (Xt )t≥0 is a Hunt process and E is a locally compact separable
metric space.

We take a fixed sequence {Vn} ∈ Θ such that each Vn is a relatively compact open set
and E =

⋃
n Vn. Denote by B :=

⋃
n[[0, τVn]] and T := limn→∞ τVn . Set F = {ω | T (ω) <

∞, (ω, T (ω)) ∈ Bc}. By Lemma 2.3, for each Px , it holds that B is a predictable set of
interval type, T is an {Ft}-stopping time, F ∈ FT −, TF := T IF + (+∞)IF c is a predictable
time, and 1B = 1F 1[[0,T [[ + 1F c1[[0,T ]] = 1[[0,T [[ + 1[[TFc ]]. Let ζ be the lifetime of (Xt )t≥0, we
define

ζi = ζF c := ζ IF c + (+∞)IF .

Note that for E-q.e. x ∈ E, we have τVn ↑ ζ = T Px -a.s., therefore I (ζ ) = [[0, ζ [[∪[[ζi]] =
[[0, T [[∪[[TF c ]] = B is a predictable set of interval type. Moreover, by the quasi-left continuity
of Hunt process and the assumption that Vn has compact closure, we find that for any n and
x ∈ E, Px{S = τVn = ζ < ∞} = 0 for any predictable time S. Hence ζi = TF c is the totally
inaccessible part of ζ w.r.t. Px for E-q.e. x ∈ E. Finally, for arbitrary {Un} ∈ Θ, we have
τVn∩Un ↑ ζ = T Px -a.s. for E-q.e. x ∈ E. Therefore I (ζ ) =

⋃
n[[0, τVn∩Un]] Px -a.s. for

E-q.e. x ∈ E, which completes the proof. ✷
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REMARK 2.5. We thank Professor Z.Q. Chen who brought to our attention that I (ζ )

had been used in [3]. In a private communication Chen told us that they were aware of the
distinction between I (ζ ) and [[0, ζ [[, and the authors of the paper [3] had made such a point
in Section 3 of [3]. Somehow after several iterations, that point got lost in the paper [2].

3. Transformation formula for MAFs. In this section, we give a transformation for-
mula for MAFs. We adopt the setting of Section 1. Suppose that (E,D(E)) is a quasi-regular
semi-Dirichlet form on L2(E; m) satisfying Assumption 1.3. From the proof of Theorem 1.4,
we can see that M [u],c is well defined whenever u ∈ D(E)loc. Below is the main result of this
section.

THEOREM 3.1. Suppose that (E,D(E)) is a quasi-regular semi-Dirichlet form on

L2(E; m) satisfying Assumption 1.3. Let m ∈ N, Φ ∈ C1(Rm), and u = (u1, u2, . . . , um)

with ui ∈ D(E)loc, 1 ≤ i ≤ m. Then Φ(u) ∈ D(E)loc and

M [Φ(u)],c =
m∑

i=1

Φxi (u) · M [ui ],c on I (ζ ) , Px -a.s. f or E-q.e. x ∈ E .

The proof of the theorem will be accomplished at the end of this section by employing
Theorem 3.3 below.

We fix a {Vn} ∈ Θ satisfying Assumption 1.3 and such that ˜̂
h is bounded on each Vn.

Let XVn , (EVn,D(E)Vn), h̄n, etc. be the same as in Section 1. For u ∈ D(E)Vn,b, we denote

by μ
(n)
〈u〉 the Revuz measure of 〈Mn,[u]〉. For u, v ∈ D(E)Vn,b, we define

(16) μ
(n)
〈u,v〉 := 1

2
(μ

(n)
〈u+v〉 − μ

(n)
〈u〉 − μ

(n)
〈v〉) .

Similar to [16, Lemma 3.1], we can prove the following lemma.

LEMMA 3.2. Let u, v, f ∈ D(E)Vn,b. Then
∫

Vn

f̃ dμ
(n)
〈u,v〉 = E(u, vf ) + E(v, uf ) − E(uv, f ) .

For u ∈ D(E)Vn,b, we denote by Mn,[u],c and Mn,[u],d the continuous and purely dis-

continuous parts of Mn,[u], respectively; and denote by μ
n,c
〈u〉 and μ

n,d
〈u〉 the Revuz measures of

〈Mn,[u],c〉 and 〈Mn,[u],d 〉, respectively. Then Mn,[u] = Mn,[u],c + Mn,[u],d and

(17) μ
(n)
〈u〉 = μ

n,c
〈u〉 + μ

n,d
〈u〉 .

Let (N (n)(x, dy),H (n)) be a Lévy system of XVn and ν(n) the Revuz measure of H (n). Similar
to [8, (5.3.7)–(5.3.10)], we can show that

〈Mn,[u],d 〉t =
( ∑

0<s≤t

(△Mn,[u],d
s )2

)p

=
∫ t

0

∫

Vn∪{∆}
(ũ(x) − ũ(y))2N (n)(XVn

s ,∆)dH (n)
s(18)
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and

(19) μ
n,d
〈u〉 (dx) =

∫

Vn∪{∆}
(ũ(x) − ũ(y))2N (n)(x, dy)ν(n)(dx) ,

where △M
n,[u],d
s = M

n,[u],d
s − M

n,[u],d
s− . For u, v ∈ D(E)Vn,b, we define

(20) μ
n,c
〈u,v〉 := 1

2
(μ

n,c
〈u+v〉 − μ

n,c
〈u〉 − μ

n,c
〈v〉) , μ

n,d
〈u,v〉 := 1

2
(μ

n,d
〈u+v〉 − μ

n,d
〈u〉 − μ

n,d
〈v〉 ) .

THEOREM 3.3. Let u, v,w ∈ D(E)Vn,b. Then

dμ
n,c
〈uv,w〉 = ũdμ

n,c
〈v,w〉 + ṽdμ

n,c
〈u,w〉 .(21)

PROOF. The argument for the proof of this theorem is similar to that of [16, Theorem
3.2]. We shall only emphasize the differences caused by the jump part.

By quasi-homeomorphism (cf. [12, Theorem 3.8]) and the polarization identity, (21)
holds for u, v,w ∈ D(E)Vn,b is equivalent to

∫

Vn

f̃ dμ
n,c

〈u2,w〉 = 2

∫

Vn

f̃ ũdμ
n,c
〈u,w〉 , ∀f, u,w ∈ D(E)Vn,b .(22)

For u,w ∈ D(E)Vn,b, we define

η(n)
u,w(dx) =

∫

Vn∪{∆}
(ũ(x) − ũ(y))2(w̃(x) − w̃(y))N (n)(x, dy)ν(n)(dx) .

Then, by (16)–(20), we find that (22) is equivalent to
∫

Vn

f̃ dμ
(n)

〈u2,w〉 = 2

∫

Vn

f̃ ũdμ
(n)
〈u,w〉 +

∫

Vn

f̃ dη(n)
u,w, ∀f, u,w ∈ D(E)Vn,b .(23)

For k ∈ N, we define vk := kR
Vn

k+1u. Then vk → u in D(E)Vn as k → ∞. By Assump-
tion 1.3 and [18, Corollary I.4.15], we can show that supk≥1 E(vkw, vkw) < ∞. Then, by
[18, Lemma I.2.12], there exists a subsequence {(vkl )}l∈N of {vk}k∈N such that ukw → uw in

D(E)Vn as k → ∞, where uk := 1
k

∑k
l=1 vkl . Note that uk → u in D(E)Vn as k → ∞ and

‖uk‖∞ ≤ ‖u‖∞ for k ∈ N. Moreover, ‖LVnuk‖∞ < ∞ for k ∈ N, where LVn is the generator
of XVn . For k, l ∈ N, we define fk := f ∧ (kh̄n) and fk,l := lĜ

Vn

l+1fk .
Similar to [16, Theorem 3.2], to prove (23), we may assume without loss of generality

that f ≥ 0, u = uk and f = fk,l .
For 0 < δ < 1, we have

lim
t↓0

1

t
Efk,l ·m[〈Mn,[uk]〉2

t ]

= lim
t↓0

2

t
Efk,l ·m

[∫ t

0
〈Mn,[uk]〉(t−s) ◦ θsd〈Mn,[uk ]〉s

]

= lim
t↓0

2

t
Efk,l ·m

[∫ t

0
E

X
Vn
s

[
〈Mn,[uk ]〉(t−s)

]
d〈Mn,[uk]〉s

]

≤ 2
〈
E·

[
〈Mn,[uk ]〉δ

]
· μ

(n)
〈uk〉, f̃k,l

〉
.
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Note that by our choice of uk , there exists a constant Dk > 0 such that Ex(〈Mn,[uk ]〉δ) =
Ex [(Mn,[uk]

δ )2] = Ex[(ũk(X
Vn

δ ) − ũk(X
Vn

0 ) −
∫ δ

0 LVnuk(X
Vn
s )ds)2] ≤ Dk for E-q.e. x ∈ Vn.

Letting δ → 0, we obtain by the dominated convergence theorem that

(24) lim
t↓0

1

t
Efk,l ·m[〈Mn,[uk]〉2

t ] = 0 .

We have∫

Vn

f̃k,ldμ
(n)

〈u2
k,w〉 = lim

t↓0

1

t
Efk,l ·m

[
〈Mn,[u2

k ],Mn,[w]〉t
]

= lim
t↓0

1

t
Efk,l ·m

[(
ũk

2(X
Vn
t ) − ũk

2(X
Vn

0 )
)(

w̃(X
Vn
t ) − w̃(X

Vn

0 )
)]

= lim
t↓0

2

t
E(fk,luk)·m

[(
ũk(X

Vn
t ) − ũk(X

Vn

0 )
)(

w̃(X
Vn
t ) − w̃(X

Vn

0 )
)]

+ lim
t↓0

1

t
Efk,l ·m

[(
ũk(X

Vn
t ) − ũk(X

Vn

0 )
)2(

w̃(X
Vn
t ) − w̃(X

Vn

0 )
)]

:= lim
t↓0

[I (t) + II (t)] .

Similar to [16, Theorem 3.2], we can show that

lim
t↓0

I (t) = 2

∫

Vn

f̃k,l ũkdμ
(n)
〈uk,w〉 .

Note that

lim
t↓0

II (t) = lim
t↓0

1

t
Efk,l ·m

[
(M

n,[uk],c
t )2M

n,[w]
t

]

+2 lim
t↓0

1

t
Efk,l ·m

[
(M

n,[uk],c
t )(M

n,[uk],d
t )M

n,[w],c
t

]

+2 lim
t↓0

1

t
Efk,l ·m

[
(M

n,[uk],c
t )(M

n,[uk],d
t )M

n,[w],d
t

]

+ lim
t↓0

1

t
Efk,l ·m

[
(M

n,[uk],d
t )2M

n,[w],c
t

]

+ lim
t↓0

1

t
Efk,l ·m

[
(M

n,[uk],d
t )2M

n,[w],d
t

]

:= lim
t↓0

{III1(t) + 2III2(t) + 2III3(t) + III4(t) + IV (t)} .

Similar to [16, Theorem 3.2], we can show that

(25) lim
t↓0

III1(t) = 0 .

By Itô’s formula and the orthogonality of the continuous and purely discontinuous martin-
gales, we get
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lim
t↓0

|III2(t)| ≤
{

lim
t↓0

1

t
Efk,l ·m

[
〈Mn,[uk],c,Mn,[w],c〉2

t

]} 1
2

·
{

lim
t↓0

1

t
Efk,l ·m[Mn,[uk],d

t ]2
} 1

2

.

Similar to (25), we can show that limt↓0 III2(t) = 0.
By Itô’s formula and the Burkholder-Davis-Gundy inequality, we get

lim
t↓0

|III4(t)| = lim
t↓0

∣∣∣∣
1

t
Efk,l ·m

{ ∑

0<s≤t

Mn,[w],c
s (△Mn,[uk],d

s )2
}∣∣∣∣

= lim
t↓0

∣∣∣∣
1

t
Efk,l ·m

{∫ t

0
Mn,[w],c

s d〈Mn,[uk ],d〉s
} ∣∣∣∣

≤ lim
t↓0

1

t
Efk,l ·m{Mn,[w],c,∗

t 〈Mn,[uk ],d〉t }

≤
{

lim
t↓0

1

t
Efk,l ·m(M

n,[w],c,∗
t )2

} 1
2
{

lim
t↓0

1

t
Efk,l ·m

(
〈Mn,[uk ],d〉t

)2
} 1

2

≤ C

{
lim
t↓0

1

t
Efk,l ·m(M

n,[w],c
t )2

} 1
2
{

lim
t↓0

1

t
Efk,l ·m

(
〈Mn,[uk],d 〉t

)2
} 1

2

= C

{
lim
t↓0

1

t
Efk,l ·m〈Mn,[w],c〉t

} 1
2
{

lim
t↓0

1

t
Efk,l ·m

(
〈Mn,[uk ],d〉t

)2
} 1

2

,

where M
n,[w],c,∗
t denotes the maximum of {Mn,[w],c

s , 0 ≤ s ≤ t} and C is a positive constant.
Hence limt↓0 III4(t) = 0. Similarly, we can show that limt↓0 III3(t) = 0.

Finally, we estimate IV (t). By Itô’s formula and the dual predictable projection, we get

IV (t) = 1

t
Efk,l ·m

{
(M

n,[uk],d
t )2M

n,[w],d
t

}

= 1

t
Efk,l ·m

{ ∑

0<s≤t

(Mn,[uk],d
s )2Mn,[w],d

s − (M
n,[uk ],d
s− )2M

n,[w],d
s−

−2M
n,[uk],d
s− M

n,[w],d
s− (Mn,[uk],d

s − M
n,[uk ],d
s− ) − (M

n,[uk],d
s− )2(Mn,[w],d

s − M
n,[w],d
s− )

}

= 1

t
Efk,l ·m

{ ∑

0<s≤t

(△Mn,[uk],d
s )2 △ Mn,[w],d

s

+
∑

0<s≤t

M
n,[w],d
s− (△Mn,[uk],d

s )2 +
∑

0<s≤t

M
n,[uk ],d
s− △ Mn,[uk],d

s △ Mn,[w],d
s

}

= 1

t
Efk,l ·m

{∫ t

0

∫

Vn∪{∆}

(
uk(X

Vn
s ) − uk(y)

)2(
w(XVn

s ) − w(y)
)
N (n)(XVn

s , dy)dH (n)
s
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+
∑

0<s≤t

M
n,[w],d
s− (△Mn,[uk],d

s )2 +
∑

0<s≤t

M
n,[uk ],d
s− △ Mn,[uk],d

s △ Mn,[w],d
s

}

:= IV1(t) + IV2(t) + IV3(t) .

We have

lim
t↓0

IV1(t) =
∫

Vn

fk,ldη(n)
uk,w

,

and by Lemma 1.12 and (24),

lim
t↓0

|IV2(t)| = lim
t↓0

∣∣∣∣
1

t
Efk,l ·m

{∫ t

0
M

n,[w],d
s− d〈Mn,[uk],d〉s

}∣∣∣∣

≤ lim
t↓0

1

t
Efk,l ·m

{
(M

n,[w],d,∗
t )〈Mn,[uk ],d〉t

}

≤ C

{
lim
t↓0

1

t
Efk,l ·m〈Mn,[w],d 〉t

} 1
2
{

lim
t↓0

1

t
Efk,l ·m〈Mn,[uk ],d〉2

t

} 1
2

= 0 ,

where M
n,[w],d,∗
t denotes the maximum of {Mn,[w],d

s , 0 ≤ s ≤ t}. Similarly, we get
limt↓0 IV3(t) = 0. Therefore, the proof is complete. ✷

PROOF OF THEOREM 3.1. By virtue of Theorem 3.3, following the argument of the
proof of [16, Theorem 3.10], we can prove Theorem 3.1. We omit the details here. ✷

4. Examples. In this section, we consider some concrete examples. Note that our
Theorems 1.4 and 3.1 are generalization of the corresponding results of [16], which were
only given for local semi-Dirichlet forms without jump.

EXAMPLE 4.1 (see [9] and cf. also [22]). Let (E, d) be a locally compact separable
metric space, m a positive Radon Measure on E with full topological support, and k(x, y)

a nonnegative Borel measurable function on {(x, y) ∈ E × E | x �= y}. Set ks(x, y) =
1
2 (k(x, y) + k(y, x)) and ka(x, y) = 1

2 (k(x, y) − k(y, x)). Denote by C
lip

0 (E) the family of
all uniformly Lipschitz continuous functions on E with compact support. Suppose that the
following conditions hold:

(A.I) x 
→
∫
y �=x

(1 ∧ d(x, y)2)ks(x, y)m(dy) ∈ L1
loc(E; m).

(A.II) supx∈E

∫
{y: ks (x,y) �=0}

k2
a (x,y)

ks(x,y)
m(dy) < ∞.

Define for u, v ∈ C
lip

0 (E),

η(u, v) =
∫∫

x �=y

(u(x) − u(y))(v(x) − v(y))ks(x, y)m(dx)m(dy)

and

E(u, v) = 1

2
η(u, v) +

∫∫

x �=y

(u(x) − u(y))v(y)ka(x, y)m(dx)m(dy) .
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Then, there exists α > 0 such that (Eα, C
lip

0 (E)) is closable on L2(E; m) and its closure
(Eα,D(Eα)) is a regular semi-Dirichlet form on L2(E; m). Moreover, there exists C > 1
such that for any u ∈ D(Eα),

1

C
ηα(u, u) ≤ Eα(u, u) ≤ Cηα(u, u) .

Therefore, our Theorems 1.4 and 3.1 hold for any u ∈ D(E)loc which satisfies Condition (S),
in particular, for any u ∈ D(E) by noting that |ka(x, y)| ≤ ks(x, y).

EXAMPLE 4.2 (see [27]). Let G be an open set of Rd . Suppose that the following
conditions hold:

(B.I) There exist 0 < λ ≤ Λ such that

λ|ξ |2 ≤
d∑

i,j=1

aij (x)ξiξj ≤ Λ|ξ |2 for x ∈ G , ξ ∈ Rd .

(B.II) bi ∈ Ld (G; dx), i = 1, . . . , d .

(B.III) c ∈ L
d/2
+ (G; dx).

(B.IV) x 
→
∫
y �=x

(1 ∧ |x − y|2)ks(x, y)dy ∈ L1
loc(G; dx).

(B.V) supx∈G

∫
{|x−y|≥1,y∈G} |ka(x, y)|dy < ∞, supx∈G

∫
{|x−y|<1,y∈G} |ka(x, y)|γ dy <

∞ for some 0 < γ ≤ 1, and |ka(x, y)|2−γ ≤ C1ks(x, y), x, y ∈ G with 0 < |x − y| < 1 for
some constant C1 > 0.

Define for u, v ∈ C1
0 (G),

η(u, v) = 1

2

d∑

i=1

∫

G

∂u

∂xi

(x)
∂v

∂xi

(x)dx

+ 1

2

∫∫

x �=y

(u(x) − u(y))(v(x) − v(y))ks(x, y)dxdy

and

E(u, v) = 1

2

d∑

i,j=1

∫

G

aij (x)
∂u

∂xi

(x)
∂v

∂xj

(x)dx +
d∑

i=1

∫

G

bi(x)u(x)
∂v

∂xi

(x)dx

+
∫

G

u(x)v(x)c(x)dx

+1

2

∫∫

x �=y

(u(x) − u(y))(v(x) − v(y))ks(x, y)dxdy

+
∫∫

x �=y

(u(x) − u(y))v(x)ka(x, y)dxdy.

Then, when λ is sufficiently large, there exists α > 0 such that (Eα, C1
0 (G)) is closable

on L2(G; dx) and its closure (Eα,D(Eα)) is a regular semi-Dirichlet form on L2(G; dx).
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Moreover, there exists C′ > 1 such that for any u ∈ D(Eα),

1

C′ ηα(u, u) ≤ Eα(u, u) ≤ C′ηα(u, u) .

Therefore, our Theorems 1.4 and 3.1 hold for any u ∈ D(E)loc which satisfies Condition (S),
in particular, for any u ∈ D(E) by noting that |ka(x, y)| ≤ ks(x, y).
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