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Spin-polarized attractive Fermi gases in one-dimensional �1D� optical lattices are expected to be remarkably
good candidates for the observation of the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� phase. We model these
systems with an attractive Hubbard model with population imbalance. By means of the density-matrix
renormalization-group method, we compute the pairing correlations as well as the static spin and charge
structure factors in the whole range from weak to strong coupling. We demonstrate that pairing correlations
exhibit quasi-long-range order and oscillations at the wave number expected from the FFLO theory. However,
we also show by numerically computing the mixed spin-charge static structure factor that charge and spin
degrees of freedom appear to be coupled already for a small imbalance. We discuss the consequences of this
coupling for the observation of the FFLO phase, as well as for the stabilization of the quasi-long-range order
into long-range order by coupling many identical 1D systems, such as in quasi-1D optical lattices.
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I. INTRODUCTION

Multicomponent attractive fermionic systems with un-
equal masses, densities, or chemical potentials have attracted
continued interest for many decades in several fields of phys-
ics ranging from high-energy1,2 to condensed matter2,3 and,
more recently, atomic physics.4–6 The interplay between pair-
ing and density imbalance of the different fermion species
leads to a rich scenario, which includes the possibility of
various exotic superconducting states.7 In this context, the
Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� phase8 recently
attracted a great deal of interest from both the experimental
and the theoretical community.1–6 In the FFLO phase, Coo-
per pairing occurs between a fermion with momentum k and
spin ↑ and a fermion with momentum −k+q �q�0� and spin
↓. As a result, the superconducting order parameter becomes
spatially dependent. Originally, the most favorable systems
for the observation of the FFLO phase were predicted to be
clean superconducting films in the presence of an in-plane
�i.e., Zeeman� magnetic field, which is above the so-called
Clogston-Chandrasekhar limit.9 Nevertheless, despite the
fact that the original prediction dates back to more than
30 years ago, the FFLO phase has been very elusive to de-
tect.

The experimental realization of interacting trapped Fermi
gases with population imbalance4,5 renewed the hope of ob-
serving the FFLO, thus stimulating an intense theoretical
activity.6,10 So far, most of the theoretical analysis has fo-
cused on three-dimensional �3D� cold atomic systems. How-
ever, as in the case of solid-state superconductors, the region
of the phase diagram wherein the FFLO phase has been
found to be stable is quite small.2,6 On the other hand, quasi-
one-dimensional or strongly anisotropic systems �such as
coupled chains and heavy-fermion, organic, high-Tc, and
CeCoIn5 superconductors� are believed to be good candi-

dates for the realization of the FFLO phase.2,3,11,12 Since the
dimensionality of cold atomic systems can be easily tuned,
and, indeed, cold atoms have already been successfully
trapped in one-dimensional �1D� geometries,13 it seems natu-
ral to consider these low dimensional systems as the ideal
candidates to observe nonhomogeneous pairing of the FFLO
type.

Many important results are available on the properties of
spin-polarized 1D Fermi systems with attractive inter-
actions, which have been obtained by different methods
and techniques. These include the Bethe-ansatz solutions
of certain exactly solvable models such as the Hubbard
or Gaudin-Yang models,14–17 as well as different
types of numerical approaches such as density-matrix
renormalization-group18–20 �DMRG� and quantum Monte
Carlo21 �QMC� or field theoretical techniques such as
bosonization.12,18 Very recently Orso14 and Hu et al.15 have
studied the phase diagram of harmonically trapped 1D polar-
ized Fermi gases by combining the exact solution of the
Gaudin-Yang model with a local-density approximation.
Mean-field theory was also applied by Liu et al.,22 although
it is known that it has a number of limitations23 in one
dimension, particularly as far as paring correlations are
concerned. DMRG was employed by Feiguin and
Heidrich-Meisner19 and Tezuka and Ueda,20 and QMC was
employed by Batrouni et al.21 to investigate the pairing cor-
relations in the spin-polarized ground state of the attractive
Hubbard model in the presence of harmonic trapping. Previ-
ously, Yang12 used bosonization to study the pairing correla-
tions and the phase diagram of a single 1D Fermi system as
well as an array of weakly coupled 1D Fermi systems in the
presence of a Zeeman field.

Yang’s12 analysis is valid only close to a continuous
magnetic-field-driven transition from a uniform BCS phase
and an FFLO phase, which he assumed to belong to the
commensurate-incommensurate universality class.24 Another
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important assumption in Ref. 12 is that charge and spin de-
grees of freedom are decoupled at low energies for a small
polarization. However, this scenario does not apply to the
Hubbard model away from half-filling17,25,26 nor to the
Gaudin-Yang model,16 which are the relevant models for cur-
rent 1D cold atomic systems. As we will show in this work,
charge and spin degrees of freedom are indeed coupled al-
ready for a small polarization, which leads to important dif-
ferences as compared to the scenario described by Yang.12

We also numerically demonstrate that the pairing correlation
function exhibits prominent oscillations with a wave number
equal �up to finite-size corrections, see below� to the differ-
ence of Fermi wave numbers, qFFLO= �kF↑−kF↓�, as predicted
by the FFLO theory in one dimension12 and in agreement
with a number of Luttinger-type theorems.27,28 Thus, the
finite-wave-number oscillations in the pairing correlation
function can be regarded as due to the excess of n↑−n↓ un-
paired majority-spin fermions.12 This is because in one di-
mension, the Fermi wave number and the density are propor-
tional to each other: kF�=�n�. On the other hand, this
relationship is no longer linear in dimensionality higher than
one, and in this case, the oscillations in the order parameter
are related to the center-of-mass momentum q of the Cooper
pairs. These observations seem to indicate that, in the 1D
case, it is not entirely clear whether there is a strict close
parallelism with higher dimensional FFLO, and in some re-
spects, the system can be also understood as a coupled Bose-
Fermi mixture of spin-singlet pairs �the bosons� and unpaired
fermions.15,26

The paper is organized as follows. Section II presents the
Hamiltonian that we use to describe the system of physical
interest, while Sec. III reports and discusses our main nu-
merical results. Our main conclusions are briefly reported in
Sec. IV.

II. MODEL

We consider a two-component mixture with a total of N
fermionic atoms loaded in a 1D optical lattice with L sites
�the lattice constant is taken to be unity�. An explicit example
is provided by mixtures of two hyperfine states of 6Li, as in
the pioneering experiments of Ref. 4. The fermions are as-
sumed to interact via attractive on-site interactions, whose
strength can be tuned, e.g., by means of a Feshbach reso-
nance. Sufficiently away from resonance�s�, this system is
modeled by the attractive Hubbard model, as proven in
Ref. 29:

Ĥ = − t �
�,�=1

L−1

�ĉ��
† ĉ�+1� + H.c.� − U�

�=1

L

n̂�↑n̂�↓, �1�

where t is the hopping parameter, ĉ��
† �ĉ��� is the creation

�destruction� fermion operator in the � site ��� �1,L��, �
= ↑ ,↓ is the pseudospin-1 /2 index �in experiments, this la-
bels the two different atomic hyperfine states of the mixture�,
U�0 is the strength of the on-site Hubbard attraction, n̂��

= ĉ��
† ĉ��, and N�=��n̂��. External parabolic trapping poten-

tials may give rise to spurious effects such as phase
separation.15 In order to disentangle such behaviors from

fundamental effects related to nonconventional FFLO-type
pairing, we have deliberately decided to limit our present
investigations to a homogeneous external potential. In this
context, simple open boundary conditions �OBCs� are the
natural type of boundary conditions for DMRG, as originally
formulated by White.30 Moreover, such conditions may turn
out to be useful for recent atom chip experiments.31 Our
calculations are performed in the canonical ensemble, and
the results apply only to lattices away from half-filling, that
is, when N�L. In the calculations, the spin polarization �
= �N↑−N↓� / �N↑+N↓� was varied by decreasing N↓ while
keeping constant the number of “background” up-spin atoms
N↑ from N↓=N↑ �the unpolarized case, i.e., �=0� all the way
down to N↓=0 �the fully polarized case, i.e., �=1�.

In the unpolarized case ��=0�, all fermions pair into spin
singlets due to the attractive on-site interaction. This yields a
gap to all spin excitations, and therefore, spin-spin correla-
tions exponentially decay with distance. Singlet pairing and
charge-density wave correlations exhibit a slower decay �of
power-law type in the ground state of a thermodynamically
large system�, with singlet pairing correlations the ones that
dominate at long distances in systems away from
half-filling.32 The aim of this work is to study the nature of
pairing for 0���1 as a function of the dimensionless ratio

U / t �in the fully polarized case, where �=1, Ĥ describes a
system of N=N↑ noninteracting fermions�. The expectation
values �¯� of all operators below are understood to be taken

over the ground state of Ĥ.

III. NUMERICAL RESULTS AND DISCUSSION

Due to the OBCs �or, in general, to any external potential
that breaks the Bloch translational invariance of the lattice�,
the spin-resolved site occupation profiles, n��= �n̂���, exhibit
Friedel oscillations. This is illustrated in Fig. 1. In the unpo-
larized �=0 case, the Friedel oscillations in n↑ are in phase
with those in n↓, giving rise to large-amplitude atomic-
density waves33,34 in the total site occupation n�↑+n�↓. As it
is clear from the top panel of Fig. 1, in the general ��0
case, the total site occupation displays N↓ maxima associated
with the formation of N↓ spin-singlet pairs that are delocal-
ized over the lattice. In the bottom panel of Fig. 1, we show
the local spin polarization n�↑−n�↓ �which could be mea-
sured through phase-sensitive optical imaging5�. For small �
�see, e.g., the plot for N↑=20 and N↓=16�, the local spin
polarization displays N↑−N↓ maxima corresponding to the
number of fermions that are left unpaired. With increasing �,
although the spatial dependence of the local spin polarization
becomes more complicated, the amplitude of the oscillations
in the bulk becomes indeed smaller, thus making it hard to
clearly identify N↑−N↓ maxima. These, however, are not dis-
tinctive and unambiguous signals of the FFLO pairing.

We thus proceed below to present a study of pairing cor-
relations: the model described in Eq. �1�, in fact, cannot sus-
tain any true long-range order32 in one dimension, i.e., the

ground-state expectation value of the pairing operator �̂�

= ĉ�↓ĉ�↑ is zero.
In the unpolarized case and for an extended system, the

correlation function of the pairing operator C���= ��̂�
†�̂��� de-
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cays with a power law ��−���−1/K� at large distances, where
1�K��2 is an interaction-dependent Luttinger-liquid di-
mensionless parameter.32 In the top panel of Fig. 2, we illus-
trate our DMRG results for the spin-polarization dependence
of C���=L/2 at U / t=5, which measures real-space pairing cor-
relations between the site ��=L /2 �the center of the trap� and
all the other sites. For �=0, the power-law decay of the
C���=L/2 for ��−L /2�	1 is clearly visible. For finite �, in-
stead, the pairing correlator is characterized by a distinctive
oscillatory character12 and a very simple nodal structure with
exactly N↑−N↓ zeros. We have carefully checked that the
long-distance decay of C���=L/2 is still power law, signaling a
quasi-long-range pairing behavior also at finite �.

A careful analysis of the oscillatory character of C���=L/2
can be done by means of the Fourier transform of the pairing
correlator,

C�km,km�� = FT �C���� = �
�,��=1

L

C���
m���
m����� . �2�

where 
m���= �2 / �L+1��−1/2 sin�km�� �with km=�m / �L+1�,
m=1, . . . ,L� are the eigenstates of the hopping term in Eq.

�1�. The mode with zero wave number is excluded from the
allowed km values due to the OBC. The lowest energy mode
corresponds to k1. The diagonal part of the matrix C�km ,km��
will be simply denoted by C�km�	diag
C�km ,km���
=C�km ,km�. In the bottom panel of Fig. 2, we plot the differ-
ence �C�km�=C�km�−C�0��km� between C�km� and its value in
the noninteracting gas �i.e., at U / t=0�, C�0��km�.35

At �=0, C�km� possesses a very narrow peak at k1 �see
inset in the bottom panel of Fig. 2�, signaling quasi-long-
range pairing order of the conventional BCS type. For a fi-
nite �, instead, C�km� has a local minimum at k1 and a single
well-defined peak appears at a wave number qFFLO=k1
+ �kF↑−kF↓�, where kF�=�N� / �L+1� are the spin-resolved
Fermi wave numbers. The peak at qFFLO in the Fourier trans-
form of the pairing correlator, which is a direct consequence
of the simple real-space nodal structure illustrated in the top
panel of Fig. 2, is a clear-cut signal of FFLO pairing. The
numerical results shown in Fig. 2 are in perfect agreement
with similar results obtained by means of the QMC method
which have appeared recently in the literature.21 We instead
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refer the reader to Refs. 19 and 20 for numerical studies of
the impact of a harmonic confinement on the pairing corre-
lations.

The DMRG data shown in Fig. 2 refer only to a single
value of U / t=5. We now turn to illustrate the dependence of
the pairing correlation functions on U / t. In the top panel of
Fig. 3, we illustrate the dependence of �C�km� on the inter-
action strength U / t for a fixed spin polarization �=25%. On
decreasing U / t, the quasi-long-range FFLO order �i.e., the
height of the peak at qFFLO�, which is emphatically strong for
large U / t, survives all the way down to the weak coupling
regime. This can be quantified better by analyzing the size of
the anomaly � at km=qFFLO, which is measured by the dif-
ference between the left and right �discrete� derivatives of
C�km� evaluated at qFFLO,

� = C�qFFLO + k1� + C�qFFLO − k1� − 2C�qFFLO� . �3�

In the bottom panel of Fig. 3, we plot � as a function of
U / t�5. In this range, � decreases in a smooth fashion to its

noninteracting value �i.e., �=0� as U / t, is decreased to zero.
In other words, for every finite �, C�km� uniformly and
smoothly tends to its noninteracting value C�0��km� as U / t is
decreased toward zero. For sufficiently large values of U / t,
the FFLO phase can be also characterized by the peak vis-
ibility defined by

� =
C�qFFLO� − C�k1�
C�qFFLO� + C�k1�

. �4�

This quantity is plotted in an inset in the bottom panel of Fig.
3.

Before concluding, we would like to illustrate the behav-
ior of the density-density, spin-spin, and mixed density-spin
static structure factors, Snn�km�, Smm�km�, and Snm�km�. These
are defined by the sum over all frequencies of the corre-
sponding dynamic structure factors36 that can be, in prin-
ciple, measured through Bragg spectroscopy or Fourier sam-
pling of time-of-flight images.37 In practice, Snn�km�,
Smm�km�, and Snm�km� are calculated from the following equa-
tions:

Snn�km� = diag
FT ��n̂�n̂��� − �n̂���n̂����� ,

Smm�km� = diag
FT ��m̂�m̂��� − �m̂���m̂����� ,

Snm�km� = diag
FT ��n̂�m̂��� − �n̂���m̂����� , �5�

where n̂�= n̂�↑+ n̂�↓ and m̂�= n̂�↑− n̂�↓. In Figs. 4 and 5, we
show the dependence of Snn�km�, Smm�km�, and Snm�km� on
U / t for a slightly asymmetric system with N↑=20 and N↓
=18 ���5% �. We remind the reader that in the unpolarized
�=0 case, Snn�km� has a peak at km=2kF↑=2kF↓ that signals
real-space atomic-density waves.33,34 In the spin-polarized
case, this peak splits into two peaks at 2kF↑ and 2kF↓. This is
clearly visible in Fig. 4 in the static density-density structure
factor �top panel�, which presents a double-peak structure
slightly below km=3� /4 �2kF↑2� /3 and 2kF↓3� /5 for
the system parameters in this figure�. This double-peak struc-
ture is not so visible in the magnetic structure factor Smm�km�,
most likely because magnetic correlations near 2kF↑ and 2kF↓
are still quite suppressed by the pairing correlations, at least
in the weakly polarized case �in the unpolarized case, they
are completely suppressed by the pairing gap�. From Fig. 5,
we note that Snm�km� is nonzero even at small km, thus indi-
cating that spin and charge degrees of freedom are coupled at
long wavelengths even for a small imbalance.

A. Experimental signatures of the Fulde-Ferrell-Larkin-
Ovchinnikov phase

The most direct way to detect FFLO pairing would be to
measure the pairing correlation function C���. We would like
to remark here that this correlation function is, at least in
principle, measurable via interferometric schemes38 in which
two atomic wave packets are coherently extracted from the
gas at different positions and then are mixed by a matter-
wave beam splitter. The atom counting statistics in the beam
splitter output channels has been shown38 to reflect the spa-
tial dependence of C���.
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The oscillations of the pairing correlations will also leave
a detectable signature in the noise correlations,39,40

G↑↓�k ,k��= �n̂k,↑n̂k�,↓�− �n̂k,↑��n̂k�,↓�, where n̂k,� measures the
number of fermions with momentum k and spin � in a time-
of-flight experiment. With increasing the spin polarization, in
fact, the peak at k=−k�= �k ,0 ,0� �Refs. 41 and 42� �here
�1,0,0� is the direction along the axis of the 1D system� will
shift to a finite relative momentum �see, e.g., the work by
Yang in Ref. 10 and the very recent DMRG calculation by
Lüscher et al.43�.

However, it is worth pointing out that the strength of the
noise signal in a strictly 1D system will be strongly affected
by finite-size and temperature effects. This is because in one
dimension, the order is not long range but quasi-long-range,
and therefore, the slowest decay exhibited by correlations
�such as the pairing correlations� is at most a power law.
Thus, in order to enhance the strength of the experimental
signal for FFLO, it would be desirable to couple many 1D
systems, as in a tight two-dimensional optical lattice �arrays
of “atomic quantum wires”�,44 so that the quasi-long-range
FFLO order can become a true long-range order. The phase
diagram of many coupled 1D systems has been worked out
in Ref. 12, where the author found that, at small polarization
�, true long-range 3D FFLO order will occur when the
Luttinger-liquid parameter for the charge excitations, K�, is

larger than 3 /2. In such a case, the low temperature proper-
ties of the system are dominated by hopping of pairs �i.e.,
Josephson coupling� rather than by single-particle hopping
�the latter would turn the system into an anisotropic Fermi
liquid, which could in turn become unstable to the FFLO
state under appropriate conditions45�.

However, the analysis of Ref. 12 assumed the transition
from the unpolarized to the polarized case to belong to the
commensurate-incommensurate universality class. This as-
sumption implicitly neglects the coupling between charge
and spin degrees of freedom at low energies, which is known
to modify the behavior of physical observables at the
transition.25,26 In this work, this coupling has been demon-
strated to also exist at long wavelengths by an explicit nu-
merical evaluation of the mixed static structure factor
Snm�km� in a weakly polarized system �see Fig. 5�. Thus, the
phase diagram depicted in Fig. 1 of Ref. 12 seems not ap-
propriate for coupled 1D Hubbard �or Gaudin-Yang16� mod-
els, and the transition to long-range order will not take place
in general for K�=3 /2 and may in general depend on the
system parameters �i.e., U / t and the lattice filling for the
Hubbard model�.

To the best of our knowledge, a quantitative phase dia-
gram of coupled 1D systems lacking spin-charge separation
has not yet been calculated. Furthermore, it is worth noticing
that in cold atomic systems with short range interactions,
another important factor must be taken into account, namely,
the relative strength of the pair hopping when compared to
the single-particle hopping. The strength of the latter is given
by t� �t��F, where �F is the Fermi energy, for the analysis
based on coupled Tomonaga-Luttinger liquids to hold�,
where t� is the hopping amplitude between two neighboring
1D systems. However, in the absence of long-range interac-
tions, pair hopping can only be generated by �virtual� single-
particle tunneling events, which at lowest order, yield a �Jo-
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U / t=0.4, 1, 2, 3, 4, and 5 �from bottom to top�. Bottom panel: the
spin-spin structure factor Smm�km�. The symbol coding is as in the
top panel.
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FIG. 5. The mixed density-spin structure factor Snm�km� as a
function of km for N↑=20 and N↓=18 and different values of U / t
=0.4, 1, 2, 3, 4, and 5. The symbol coding is as in Fig. 4. Whereas
the results at small U / t �see, for example, filled squares correspond-
ing to U / t=0.4� are likely to be somewhat affected by finite-size
effects, which prevent the full development of a pairing gap, the
results at larger U clearly show a nonvanishing weight of Snm�km� at
small km, thus indicating that spin and charge degrees of freedom
are coupled at long wavelengths.
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sephson� coupling strength of order t�
2 /��, where �� is the

spin gap. The phase diagram predicted in Ref. 12 is the result
of a calculation which only compares the scaling dimensions
of the pair hopping and single-particle hopping operators,
and thus does not take into account the microscopic details
of the coupling between 1D systems. Thus, the stabilization
of FFLO long-range order by a weak coupling between 1D
systems in the FFLO phase �the extreme anisotropic limit
that could not be accessed by the authors of Ref. 45� does not
seem easily achievable. In turn, the most likely scenario for
arbitrary polarization is that the single-particle hopping will
control the physics at low temperatures, and the system will
behave as a spin-polarized normal Fermi liquid, which, in
turn, could become unstable toward 3D FFLO ordering45 un-
der appropriate conditions.

In addition to the consequences for long-range FFLO or-
der discussed above, the coupling between charge will also
have other dramatic experimental consequences. Indeed, an
experiment like the one described in Refs. 46–48 trying to
reveal spin-change separation in a weakly polarized system,
would fail to do so. In brief, we expect that creation of a pure
total density �conversely, spin-density� fluctuation, using ap-
propriate laser pulses,46,47 will also lead to the excitation of
spin-density �total density� modes, thus revealing the spin-
charge coupling that we numerically find in the Snm�k� cor-
relations �see Fig. 5�. The coupling should also have impor-
tance consequences for the low frequency modes of
harmonically trapped spin-polarized attractive Fermi gases,
which will can be expected not to have a well-defined spin
and charge character.

IV. CONCLUSIONS

In summary, we have shown how ultracold spin-polarized
two-component Fermi gases confined in 1D optical lattices
are FFLO paired states whose pairing correlation functions
are characterized by a power-law decay and a simple nodal
structure. However, we have also shown that charge and spin
degrees of freedom appear to be coupled already for a small
value of the spin polarization. Finally, we have commented
on the impact of this coupling on the detectability of true
long-range FFLO order arising from Josephson coupling be-
tween 1D systems.
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