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Abstract

This paper demonstrates a real-time, full-3D edge tracker based on a parti-

cle filter. In contrast to previous methods this system is capable of tracking

complex self-occluding three-dimensional structures. The system exploits

graphics hardware in a novel manner, allowing it not only to perform hidden

line removal for each particle but also to evaluate pose likelihoods directly

on the graphics card. This approach allows video-rate filtering with hundreds

of particles on a standard workstation.

1 Introduction

Tracking the pose of a camera relative to a known object in real-time is a common com-

puter vision task with a variety of applications from manufacturing to augmented reality.

Since the early work of Harris [4] this task has often been accomplished by observing

edges in the image: using a CAD model of the object to be tracked, the camera pose which

best aligns rendered model edges to detected image edges can be determined. Edges

are easy to detect in images, offer a large degree of invariance to pose and illumination

changes and have some resilience to difficult imaging conditions (noise and blur) and so

the tracking of edge models remains an active field of computer vision today.

The primary disadvantage of edges as features to track is that one image edge looks

much like another. Whereas a rich selection of description techniques exist for matching

point features, edges are often matched simply by image proximity to a prior. Without

a valid prior pose estimate, most edge-based systems will break and not recover track;

Typically this means that every single frame of a sequence must be correctly tracked to

provide the prior estimate for the next frame. Much recent work on edge-based tracking

has therefore attempted to increase frame-to-frame robustness to such a high level that

usefully long sequences can be tracked.

Approaches to increase frame-to-frame robustness have included the use of robust

estimation techniques [1, 3], the addition of external sensors [7], and the use of point

features for initialisation [17, 15]; Further, attempts at considering multiple edge corre-

spondence hypotheses have shown great potential [6]. However, all of these methods are

fundamentally uni-modal in that they calculate a single (two for [15]) Gaussian posterior

pose for each frame, which then provides a single prior pose for the next frame; if the

estimate is sufficiently incorrect, tracking will fail.

Particle filters provide an alternative approach to propagating pose estimates. Poste-

rior and prior distributions are no longer limited to single Gaussians but can adopt truly

non-Gaussian, multi-modal forms as convincingly demonstrated by Isard and Blake’s

CONDENSATION [5] algorithm. Despite the algorithm’s impressive performance in

1



real-time 2D edge tracking, an extension to 3D edge models has been conspicuous in

its absence until very recently: Pupilli and Calway [12], in an extension of their earlier

work using point matches [11], have shown that full 3D tracking using edge models and

an annealed particle filter is fundamentally possible and can indeed provide the robustness

advantages already demonstrated by CONDENSATION.

This paper presents an alternative implementation of full 3D particle-filter-based edge

tracking which addresses the primary limitation of the system proposed in [12], which is

restricted to tracking very simple 3D objects. The challenge lies in performing hidden

edge removal: whereas single-hypothesis trackers can afford to perform computationally

expensive rendering only once per frame, a particle filter requires this rendering step to

be performed for each particle. Pupilli and Calway do not attempt hidden edge removal

and are therefore restricted to tracking objects which do not self-occlude.

Our approach removes this limitation. By utilising the graphics acceleration hard-

ware commonplace in today’s workstations, we are able to perform hidden line removal

independently for each particle. However merely using hardware acceleration to render

visible edges does not solve the problem, since transferring the visible edges of each

particle back to the CPU is impractically slow. Instead, we show that it is possible to

measure each particle’s likelihood directly on the graphics card. Depending on model

complexity, this can be done at rates in excess of 10,000 pose hypotheses per second, and

allows our particle filter to track objects of a complexity comparable to that supported by

state-of-the-art unimodal systems.

Experimental results show a resilience to under-constrained scenes and erratic motion

typical of particle-filter-based systems. Further, the particle filter is highly flexible in

terms of motion models supported; this allows the correct integration of a fast motion

estimation algorithm [8] which produces very noisy rotation estimates. The combined

system is able to correctly track sequences not previously trackable without additional

inertial sensors.

2 Background

Most single-hypothesis edge tracking systems operate in a manner similar to that of Har-

ris’ RAPiD system [4] already described in the previous section: Edges are rendered based

on the prior pose estimate, and sample points are initialised at regular intervals along the

visible edges. Perpendicular 1D searches locate the nearest image edge and these dis-

tances are measured. From these distances and a motion Jacobian, the pose adjustment

which minimises the sum-squared edgel distances is found.

Standard least-squares is sensitive to outlier measurements and so later approaches

have attempted to reduce their sensitivity to outliers by adopting a form of robust esti-

mation. [1] achieves this using RANSAC to estimate individual edges and case deletion

to estimate pose. [6] goes beyond this by constructing a multi-modal likelihood esti-

mate from RANSAC at the low level and an exhaustive search at high level. A common

alternative to RANSAC is the use of a robust M-estimator [3, 9, 7, 17]. This replaces

the square-error metric with one which is less sensitive to outliers and typically requires

multiple iterations of re-weighted least squares to converge.

A further method of increasing edge tracking robustness is the use of some form of

pose initialisation. Any estimate of camera motion between frames helps edge tracking
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avoid correspondence errors. Physical rate gyroscopes are used in [7] to obtain the prior

pose; the system also modifies edge detection behaviour to account for motion blur. A

software approach is taken by [15, 17]: in these systems, edge tracking is initialised by

matching interest points from the previous frame. Highly impressive tracking results are

presented but it is not clear that these systems would operate correctly under motion blur.

The use of graphics hardware to facilitate computer vision tasks has been common-

place for many years. For example, while the visibility of sample points is determined

using software (a view-sphere) in [4], the OpenGL and stencil buffering is used for the

same task in [3]. The use of texture mapping to remove radial distortion from camera

images has been proposed in [18] (and is also used here). However, most early exam-

ples use the graphics system for some sort of graphical task, whereas now the advent of

programmable pixel and vertex shaders (along with the massive bandwidth of graphics

processors) has generated interest in the using GPUs for general-purpose computation.

Previous work most closely related to this paper is that of Rao and Hodges[13] who

attempt to accelerate markerless human motion capture. Like here, a particle filter is

used to represent the tracking system’s state, and a method of accelerating the likelihood

calculation of the filter is developed; this is however where the similarities end. The mea-

surements for each particle are not independent, and hence a breadth-first evaluation of

particles is performed; state for each particle is stored in large look-up textures which store

the accumulated information about each particle. These look-up textures are alternated

as inputs and outputs and iteratively filled before finally being read back to the CPU. (By

contrast, all the information passed from GPU to CPU in our approach is passed back by

an out-of-band extension, as described in Section 3.2.) The authors report an impressive

20× speed-up moving from a 3.06GHz CPU to a GeForce 5900FX GPU.

3 Method

3.1 Particle filtering

As in [12], the proposed system is fundamentally an implementation of the CONDENSA-

TION algorithm with annealing. The system differs from previous approaches primarily

in the choice of motion model and observation function. The algorithm attempts to pro-

cess live 640×480 video at 30Hz.

We represent camera pose as a 4×4 transformation matrix X which transforms points

from homogeneous world coordinates to the camera coordinate frame:

pppcamera = X pppworld , X =

[

R ttt

000 1

]

(1)

The posterior distribtuion (denoted +) at frame t − 1 is represented by a set of N

particles
{

X+

1 ...X+

N

}

and associated weights {w1...wN}. For the next frame t, samples are

drawn from this distribution and perturbed by a motion model to form the frame’s prior

distribution, which is a set of pose N particles
{

X−

1 ...X−

N

}

with uniform weight:

X−

i = Perturb(X+

n ) (2)

where n is sampled from 1..N according to the posterior particles’ weights {w1...wN}, and

Perturb() adjusts camera pose according to a motion sampled from a statistical motion

model (discussed in Section 3.4.)
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Next, each of the prior pose particles is evaluated against the received video frame.

The known 3D object to be tracked is rendered according to the particle’s pose and the

resulting edges are compared with edges found in the video image to produce a measure of

the particle’s likelihood; the particles weighted by this likelihood then form the posterior

distribution for frame t:

X+

i = X−

i , wi = Likelihood(X−

i ) (3)

In practice we perform the above procedure twice per frame with different motion

and likelihood models to produce an annealed filter [2, 11, 12] where each stage also

uses a different number of particles, however the system is in principle a straightforward

particle filter. The challenge lies in evaluating the likelihood for each particle fast enough

to permit real-time operation, and this procedure is described next.

3.2 Rendering and Likelihood Evaluation

Previous real-time, edge-based particle filters have tracked planar contours or simple 3D

objects for which self-occlusion can be ignored. Here we consider complex 3D models

which require that hidden edges be removed. If one assumed that the particle distribution

is not too broad and does not span significant aspect changes, one might be able to deter-

mine edge or sample-point visibility once for the mean pose and use this approximation

for all particles. This would however sacrifice some of the flexibility of particle filters

(in particular the ability to track multiple distinct modes) and so our approach treats each

particle individually and no common rendering or linearisation is performed.

Assuming the system performs around 300 likelihood measurements per frame and

operates at 30Hz, this requires that rendering and likelihood evaluation take no more than

around 100µs. To our knowledge this is not possible in software on standard workstations.

We therefore exploit the hardware graphics acceleration which comes as standard with

most computers available today.

Rendering an edge-based model with hidden lines removed is easily done in OpenGL

using the depth buffer, which stores scene depth for each pixel. For each particle, the

tracked object’s faces are rendered into the depth buffer using a pin-hole projection model

and the particle’s pose matrix. Next, the object’s edges are drawn with depth-testing

enabled: Every edge pixel is only drawn if its depth is not greater than that already stored

in the depth buffer. All of these operations are highly optimised on graphics cards and

this rendering step can be performed at rates well in excess of 10kHz.

Unfortunately, while performing hidden edge removal at high speeds is straightfor-

ward, accessing the results with the CPU is not. Graphics cards are designed for output to

screen and not for transferring data back to the CPU; while pixel values can be accessed

using glReadPixels() this incurs massive performance penalties as it is incompatible

with the asynchronous streaming operation of today’s graphics cards. The solution to

this problem is to calculate each particle’s likelihood directly on the graphics cards. This

minimises the amount of information which must be transferred from graphics card back

to the CPU: here, two integer values per particle suffice. Further, by using an OpenGL

extension specifically designed for asynchronous feedback, pipeline stalls associated with

explicit pixel read commands can be avoided.

The GL OCCLUSION QUERY extension [14] exposes an array of counters which can be

used to obtain a count of how many pixels from a drawing operation pass the depth and
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stencil tests. For each particle, we employ two counters to obtain two pixel quantities:

firstly, the number v of pixels which make up the visible edges of the model; secondly, the

number d of these edge pixels which also coincide with edges detected in the video image.

This is done first rendering the model’s faces into the depth buffer, and then by rendering

the model’s edges twice: the first pass uses the standard OpenGL pipeline, whereas the

second pass employs a pixel shader program which only draws pixels if they lie on or

close to a video frame edge. A description of this pixel shader and of the preparatory

steps required for its operation follows in Section 3.3. From the two pixel counts, the

particle’s likelihood (and posterior weight) is found:

Likelihood(X−

i ) ∝ exp

(

k
di

vi

)

. (4)

The above formulation is similar to Pupilli and Calway’s inlier/outlier test, except that

here it is applied to every single edge pixel. A complication is presented by the fact that a

different number of tests (v) is performed for each particle: this is unavoidable since each

particle may make the object appear at different sizes on screen, and may reveal or hide a

different number of edges. If the exponential were simply exp(−(v−d)) this would bias

the filter towards those particles which render as few pixels as possible, and here this is

avoided by division through v. The tuning constant k controls the discrimination of the

filter, with high values boosting the relative weight of strong particles.

3.3 Pixel shader and frame preprocessing

Pixel shaders are programs which can be executed on the graphics card to modify some

properties of pixels being rendered by the graphics card. The OpenGL specification im-

poses severe limitations on the capabilities of these programs in order to ensure high exe-

cution speed, which restricts their use for general-purpose computation; they are however

entirely appropriate for the task here.

To produce the count of actual-video-edge pixels d, a pixel shader is activated which

tests each incoming edge pixel to check if its location matches an edge detected in the

video image. In its simplest form, the pixel shader could simply calculate the gradi-

ent intensity in the video image (which is available as a texture on the graphics card) at

the pixel’s location and pass the pixel if this exceeds a threshold, however this would

be slow and produce very narrow likelihood peaks; instead, the shader makes use of a

pre-generated texture map which contains, for each pixel, two items of information: the

distance to the nearest video edge and the direction of this edge. The pixel shader checks

for suitable proximity to an edge, and then compares its direction to that of the edge being

rendered.1 If no edges are nearby or the directions do not match, the pixel is discarded

and will not increment the pixel count.

The texture map required for these lookups is generated afresh for every incoming

video frame. This processing involves a number of steps:

1. Rectification. OpenGL supports standard pin-hole rendering but no radial distor-

tion; hence the incoming video image is warped to remove the calibrated camera’s

radial distortion. This is done using a textured 20×20 grid.

1OpenGL note: Pixel shaders have no access to primitive information and so the direction of the edge being

rendered must be passed along by a suitably written vertex shader, which in turn requires 3D line orientation to

be passed along with vertex data.
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Figure 1: Frame preprocessing. From left to right: Raw frame; undistorted frame; thresh-

olded Sobel image; thinned edge image; spread image. Low-res versions shown here.

2. Sobel transform. The image gradients Gx and Gy for each pixel are calculated.

These are transformed into gradient magnitude an gradient direction, which is

stored as a normalised 2-vector. Pixels whose gradient magnitude exceeds a thresh-

old are marked as being edge pixels.

3. Non-maximal suppression (Thinning.) Edge pixels whose gradient magnitude is

not higher than that of their two neighbours in the direction of the image gradient

are eliminated.

4. Distance transform (Spreading.) Pixels which are not themselves edges adopt a

distance metric and the gradient direction of any adjacent edge pixel.

All of these steps can be performed on the graphics card using pixel shaders. The

result of the individual steps is illustrated in Figure 1. The last step of the procedure can

be performed multiple times; each pass spreads edges by one pixel and therefore broadens

the peaks of the likelihood function.

3.4 Motion model

Each prior particle X− is formed by perturbing a posterior pose by a sample from a statis-

tical motion model. A simple motion model draws these motions from a Gaussian noise

model:

Perturb(X+) = MX+ (5)

with M = exp(µµµ), µµµ ∼ N(000,σ2I6) (6)

where M is a 4×4 transformation matrix representing camera motion, generated by the

exponential map2 from a normally-distributed motion six-vector µµµ . Here σ , the motion

standard deviation, can be tuned to the specific application; depending on the scene to be

tracked, a different value may be used for the rotation and translation components.

This motion model is less general than the uniform distribution proposed in [12] but

we find it yields better results. Tracking accuracy for slowly-moving or stationary objects

can further be increased by sampling motions from a two-part Gaussian mixture, where a

small fraction of the motion samples are drawn from a narrower Gaussian with one-tenth

the standard deviation.

The motion model just described does not estimate camera velocity. Compared to the

constant-velocity models frequently used in unimodal tracking systems, this allows the

system to tolerate far more erratic acceleration (shake) but limits the maximum trackable

2This framework which represents the group SE(3) is explained in any of [3, 6, 7, 15].
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velocity. While it is possible to maintain a per-particle velocity model to handle larger

velocities, we here use the visual gyroscope algorithm of Klein and Drummond [8] to

estimate camera rotation instead. This algorithm attempts estimate camera rotation from

the structure of motion blur present in a video image, with low computational overhead

(2-3ms). The algorithm has several limitations and makes many simplifying assumptions,

with the result that motion estimates are very noisy; however, this behaviour can be mod-

eled and so integrates well with the particle filter framework.

In general, the algorithm is better at estimating the camera’s axis of rotation than

the magnitude of this rotation. We do not therefore adjust the algorithm’s estimate of the

rotational axis, but adjust the motion magnitude for each sample. If the original magnitude

estimate is ω , each particle samples an adjusted version from one of three classes:

ω ′ =







ω + ∆
0

−ω + ∆
∆ ∼ N(0,σb) (7)

The majority of samples are drawn from the first class which corresponds to the algo-

rithm working correctly, albeit noisily; the second class foresees occasional completely

erroneous measurements; and the class arises due to the algorithm’s inherent forwards-

backwards ambiguity. The ambiguity is usually resolved by testing the sum-squared dif-

ference of patches sampled from the previous frame, but this procedure is imperfect so a

small number of samples are projected “backwards” to account for this.

A transformation matrix Mb resulting from the sampled blur gyroscope estimate is

left-multiplied to the normally-generated (albeit with lower rotational noise) random mo-

tion to compete the system’s motion model.

3.5 Implementation notes

This section describes some details relating to the procedures described above.

Annealing: In a crude version of annealed particle filtering [2, 11, 12], we operate

two tracking stages per frame. The first stage corresponds to a broad search using many

particles and a blurred likelihood function, and the second iteration uses fewer particles,

smaller motions and narrower likelihood peaks to refine the estimates from the first stage.

The likelihoods peaks are adjusted by spreading the detected edges to different widths.

Minimal CPU - GPU data transfer: The geometry of the model to be tracked can be

cached on the graphics card. The only data which the CPU has to send the to the graphics

card each is each incoming video frame and the particles’ transformation matrices. The

only data received back are the edge pixel counts.

Sub-sampled distance map: The distance transform/spreading operation requires

many pixel accesses and is time consuming, particularly for the first iteration of tracking

where the likelihood peaks should be substantially blurred. A sub-sampled (320×240)

map is therefore used for the first iteration since this is far faster to generate. The second

iteration operates on a full-resolution map.

Sub-sampled depth buffer: Adjacent pixels along an image edge are so closely cor-

related that testing each individual edge pixel is redundant. For single-hypothesis track-

ers, it is common to spread sample points a distance of 10-20 pixels apart along an edge.

Sampling only every nth edge pixel also reduces the graphics bandwidth required and

so only every 4th pixel is sampled. Instead of explicitly drawing stippled lines, this is

7



Ship: 280+100 Box: 620+100 Maze: 250+100 Printer: 370+100

Figure 2: Tracked objects and the maximum number of particles for 30Hz operation

here achieved by using a sub-sampled depth buffer (160×120) since this further achieves

a bandwidth reduction for clearing and populating the depth buffer. However, this also

means that hidden line removal can be inaccurate to approximately four pixels. Apart

from this, the accuracy of the system is unaffected.

Parallel processing: Due to the asynchronous graphics it is possible to perform pro-

cessing on the CPU while waiting for results from the GPU. For example, the frame’s

motion blur is analysed on the CPU while the GPU is pre-processing the incoming frame.

4 Results

The system has been implemented on a P4 3.2Ghz with an nVidia GeForce 6800 (12

pipeline, AGP) graphics card. Of the 33ms/frame budget, 7ms are required by the pre-

processing described in Section 3.3 and the remaining graphics time is used for likelihood

evaluations. To maintain a 30Hz operating rate, the number of pose particles tested for the

first annealing stage is automatically adjusted, while the second stage uses 100 particles.

A variety of 3D models have been tracked, using both live video and prerecorded se-

quences. Since the time required for likelihood evaluation varies with model complexity,

the number of particles used changes. Figure 2 shows some of the models tracked and

the number of particles supported at 30Hz. As ever, it is difficult to convey tracking per-

formance in pictures and numbers, so an illustrative video file has been included; some

frames from this are shown in Figure 3.

Tracking robustness for simple objects such as the box is good. Compared to unimodal

edge-based systems, resilience to abrupt camera motions is very high, and local minima

around aspect changes do not cause problems. However, tracking accuracy is not as high

as systems which perform direct pose optimisation. Further, it is not clear how to extract

a single pose estimate to render from the posterior distribution; the mode pose exhibits

much jitter, while the mean pose can lag behind rapid motions. This is especially apparent

in the printer video, which shows the mean pose; very often this is misaligned, since

the sequence continually contains erratic motion which causes the filter to spread out.

The printer video further often shows the system tracking an incorrect local minimum,

however the filter generally re-converges on the correct pose quickly.

The system was tested on a pre-recorded sequence of a ship part in which a camera

undergoes rapid rotation with a slow shutter speed. The challenge here is tracking in

the continual presence of substantial motion blur. This sequence has previously been suc-

cessfully tracked through the use of rate gyroscopes to predict camera rotation and motion

blur [7]. Here this sequence is trackable without gyroscopes using rotation estimates cal-

culated from the motion blur, despite the fact that edge detection is not adjusted for blur

8



Figure 3: Selected frames from tracked sequences with rendered posterior distributions;

the first iteration is shaded gray to green, the second red. On the left, a single correctly-

aligned particle allows the filter to converge on the correct pose. Center, the posterior

diverges along the direction of motion blur as the camera pans rapidly. The filter re-

converges when the blur eases. Right, the filter recovers from a misaligned pose.

in any way. Since the rotation estimates produced by the visual gyroscope are sometimes

erroneous, a single-hypothesis system fails to track this sequence.

A further comparative test was performed on a sequence of the maze model tracked

successfully in [6]. This difficult sequence in a highly textured environment with many

parallel edges was not trackable at 30Hz. Even if the number of particles is raised to 500,

tracking remains fragile and tends to fail. The poor performance is presumably partially

due to the camera motion, which is smooth but rapid (and thus suited for a constant

velocity model rather than the one used here); further, [6] uses a texture change-point

edge detector rather than the high intensity gradient model used here.

5 Conclusions

This paper has demonstrated a particle-filter-based edge tracker capable of tracking com-

plex 3D objects with self-occlusions. Tracking can be performed at video rate by exploit-

ing hardware acceleration to perform hidden line removal and likelihood calculations.

The particle filter has robustness advantages over previous systems, particularly when

exposed to rapid, unpredictable accelerations. Further, the flexibility of the particle filter

allows the integration of a wide range of motion models, which is exploited here by utilis-

ing a fast but noisy visual gyroscope. A disadvantage of the proposed system is increased

jitter in stationary scenes. Further, the simple likelihood model dictated by real-time con-

straints makes the integration of more advanced edge detection [16, 6] difficult.

Future work will attempt to improve the pose estimates selected for rendering, since

neither mean nor mode of the posterior are satisfactory. Further, accuracy improvements

could be likely obtained by performing per-particle optimisation (cf. FastSLAM 2.0 [10])

with the edge models. This is unlikely to be possible in real-time on current hardware but

may well be feasible in the near future.
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