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In this paper, the synchronization between two different Josephson junction models is investigated based on variable 
back-stepping technique. Firstly, we examined the synchronization of identical RCL-shunted Josephson junction (RCLSJ) 
systems emanating from different initial conditions by means of a proposed variable back-stepping technique. Secondly, by 
utilizing a reduced-order synchronization technique, we realized synchronization between the third order RCLSJ model and 
the parametrically modulated Josephson junction (PMJJ) system (second order).  In both cases, the designed controllers are 
singular in nature and thus easier to construct and implement in practice.  They ensure that the states of the controlled chaotic 
slave system exponentially synchronize with the state of the master system.  Numerical simulations are illustrated to verify 
the proposed methods. 

 
 

1.     Introduction 

Over the last three decades, researchers have been 
intensively interested in nonlinear systems that 
exhibit complex dynamical behavior due to their 
universality in nature.  Among these nonlinear 
systems, the Josephson junction is a fascinating 
one.  Most of the earlier studies on Josephson 
junction (JJ) dynamics have used an RC-shunted 
junction model (RCSJ) [1-6], in which a resistor 
and a capacitor are shunted parallel to the ideal JJ 
flown through by the super-currents.  It appears in 
many applications as in JJ arrays and ladders [4-6], 
in superconducting quantum interference devices 
(SQUIDs) [1,7], as a millimeter and sub-millimeter 
wave oscillator [1,2] in digital systems [3], 
measurement of small magnetic flux, detection of 
electromagnetic waves, construction of logical 
gates using flux quanta and so on.  Also, from the 
viewpoint of fundamental physics, Josephson 
devices have provided ideal physical systems 
studying nonlinear equations including soliton 
solutions and chaos [8,9]. 

The RCSJ model fails to describe the current-
voltage characteristics of the junction if the 
resistive shunt due to its wiring contains a non-
negligible inductance and for higher temperatures, 
anomalies in the characteristics have been found.  
Thus, in order to remedy this lack, a resistive-
capacitive-inductive junction (RCLSJ) model has 
been suggested to describe these junction [10,11].  
Consideration of this model leads to a better 
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agreement of the numerical simulation with the 
experimentally obtained data [10,12] and thus it is 
a consideration in this paper.  The junction shows 
chaotic behaviour in a selected parameter space 
even in absence of any external forcing [13,14].  
The RCLSJ model is found more in high frequency 
applications [13]. 

Synchronization between coupled chaotic 
systems [15] is an interesting area of study for 
understanding the collective behaviour of nonlinear 
systems [16] and according to Pikovsky [17], 
studies on the synchronization of chaotic systems 
are in general important in science.  
Synchronization of the superconducting junction 
arrays is also important for the purpose of 
generating reasonably large output power [18].  
However, synchronization of chaotic systems are 
related to the observer problem in control theory 
and many recent synchronization methods  employ 
control techniques to achieve synchronization 
goals.  In earlier works, the control of chaos on JJ 
was investigated, for instance in [19], where 
control was achieved using weak periodic forcing. 
Olsen et al. [20] used the external rf signal for 
controlling chaotic patterns in an RC-shunted 
junction.  Likewise, the taming of chaos in a single 
RC-shunted junction using weak perturbation was 
reported by Hsu et al. [21], while the control of 
RCLSJ using the back-stepping design was 
presented by Vincent et al. [22].  Since Pecora and 
Carroll [24] introduced a method to synchronize 
two identical chaotic systems with different initial 
conditions, many methods and techniques have 
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been developed.  Most of the methods are used to 
synchronize two identical chaotic systems.  
However, it is difficult to find identical chaotic 
systems in reality, such as in physics, auto-control, 
information and secure communications.  
Therefore, it is important to synchronize two 
different chaotic systems, especially with different 
orders. 

Recently, Dana et al. [18] proposed a method 
for synchronizing two identical junctions using a 
negative pulse forcing and the robustness of the 
technique to white noise was also established. Ucar 
et al. [23] employed the active control technique to 
synchronize two RCLSJ models with slightly 
different parameters. In Vincent et al. [22], the 
synchronization of RCLSJ based on back-stepping 
nonlinear control was achieved, whereas the 
synchronization of a parametrically modulated 
Josephson junction model (PMJJ) based on 
Lyapunov stability theory and Routh-Hurwitz 
criteria was examined in [24].  

In this paper, we are employing the recursive 
back-stepping technique to achieve synchronization 
between two identical RCLSJ systems as well as 
reduced-order synchronization [25] between the 
RCLSJ and PMJJ.  In all other works, the control 
functions are numerically equal to the dimension of 
the system and could be very complex. In control 
theory applications, it is important that the control 
should be as simple as possible. Thus, the 
controller complexity is a fundamental problem 
that should be addressed. Here we will be utilizing 
only one controller and this will reduce the 
complexity of the controller and in practical 
applications, the less the number of controllers 
designed in control process the better the control 
method [26]. 

The main feature of the reduced-order 
synchronization is that the order of the slave system 
is less than the master system. Reduced-order 
synchronization has received interesting attention 
due to its application in real life such as in the 
movement of neurons [27,28], where the output 
from higher-order neurons always drives the 
neurons with lower-order in the subsystem; 
circulatory and respiratory systems were observed 
to behave in a synchronous way and the master 
system is strictly different from the slave system 
where the difference may involve different orders. 
The reduced-order synchronization problem is 
pertinent in the study of neural networks [27-29].  
According to Ho et al. [30], studying such 
problems can help us elucidate the coherent 
behaviour of complex systems; notwithstanding the 
inherent interest in the problem itself. 

Recently Ho et al. [30] investigated the 
reduced-order synchronization of uncertain chaotic 
systems, which was based upon the parameters 
modulation and the adaptive control techniques.  
This was applied to generalized Lorenz system 
(fourth order) and Lu system (third order) as well 
as Rossler hyperchaotic system (fourth order) and 
Rossler system (third order).  Likewise Lu et al. 
[31] designed a controller to realize 
synchronization between the Rossler and 
hypechaotic Chen system.  In Li et al. [32], they 
proposed a new synchronization manner, reduced-
order generalized synchronization, which has the 
characteristics of having a functional relation 
between the slave and the partial master systems.  

In view of the above considerations, the motive 
of this paper is two-fold; firstly to show that the 
synchronization between two identical RCLSJ 
system could be achieved using a single control and 
secondly to achieve the reduced-order 
synchronization between the RCLSJ system (third 
order) with the PMJJ system (second order).   In 
both cases, the required controllers are singular in 
nature, thus, easier to construct and achieve in 
practice.  This is a deviation from the earlier works 
on RCLSJ and PMJJ [22-24]. 

The rest of this paper is organized as follows: 
Sec. 2 presents the Josephson junction models 
under consideration.  Sec. 3 and Sec. 4 present the 
recursive back-stepping technique and reduced-
order technique to achieve synchronization, 
respectively.  Conclusions are finally drawn in Sec. 
5. 

2.     The Josephson junction models 

2.1     The RCL-shunted Josephson junction 

In this paper, we study the synchronization of two 
different Josephson junction models – RCL-
shunted Josephson Junction (RCLSJ) and the 
Periodically Modulated Josephson Junction 
(PMJJ). The RCLSJ model of JJ in dimensionless 
form is described by the following set of first order 
differential equations: 
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Where, the nonlinear damping function g(z) is 
approximated by a current-voltage relation between 
the two junctions and is defined by      
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x, y, and z represent the phase difference, the 
voltage at the junction, and the inductive current, 
respectively.  Cβ and Lβ are constants 

representing the capacitive and inductive values, 
respectively, and 0i  is the dc external current.  

Fig. 1 is a chaotic attractor for the following set 
of parameters: 1.150 =i , 6.2=Cβ  and 

707.0=Lβ with the initial conditions 

)0,0,0())0(),0(),0(( =zyx . The RCLSJ model 

exhibits chaotic dynamics for the dc external 
current in the region 3.11 0 << i  [10-13]. 

 
Fig. 1: Phase portrait of y and z variables of the system 
(1) for 15.10 =i . 

 
2.2     The periodically modulated Josephson 

junction 

The periodically modulated Josephson Junction 
(PMJJ) model is a second order dynamical system 
which was recently analyzed by Wu and Li [33] 
and is given by  
 

( )[ ] ( ),cossincos1 0 tt ωγφδρφθξφ +−++Ω+−= &&&    (2) 

where φ  is the phase difference between quantum-

mechanical wave function of the two separated 
superconductor of the junction; ( )θξ +Ωtcos  is the 

modulating term with amplitude ξ , phase θ  and 

frequency Ω ; 0ρ is the dc bias, δ  is the damping 

parameter; and γ  and ω  are the amplitude and 

frequency of the rf current, respectively.  When the 
parameters are fixed as follows: 

0.2,1.0,1.0,0,4 0 =====Ω γδρθ , and 

0.3=ω , one can observe then a sequence of 
period-doubling route to chaos as ξ  is 

progressively increased.  Fig. 2 shows a chaotic 

attractor for 2.462=ξ  arising from a tori-doubling 

bifurcation. The plot in Fig. 2 is essentially the 
same with those obtained by Wu and Li [33].  

3.     Synchronization for the RCLSJ 

In this section, we consider a one controller scheme 
based on variable back-stepping control, by letting 

 
Fig. 2: Phase portrait of y and z variables of the system 
(2) for 2.462=ξ . 
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We can recast the RCLSJ system as a driver system 
given by 
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The corresponding response system is thus, 
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Where, u is the undetermined controller. 
Let the error variables be 
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Thus, the time derivative of above gives  
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Substituting (3) and (4) into (6), gives the 
error dynamics equation 
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Considering the subsystem  
 

31 ee =&           (8) 

of equation (7), and assume the following 
Lyapunov function, 

2
11 2

1
eV =           (9) 

Thus, 
 

111 eeV && =         (10) 

Suppose 13 ee d −=  ( de3  is desired error state 

for 3e ). Then, 31 ee =& , which implies that 

13 ee −= , so that equation (10) becomes 2
11 eV −=& , 

which is negative definite, ensuring the stability of 
system (8).  

Suppose the error between the desired states 

de3  and 3e  is L, that is, 

 

deeL 33 −= .    

Assume a Lyapunov function of the form 
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for the error L, then,  
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Therefore, 
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Thus, if  
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Then, 2
112 eVV −== && , is negative definite and 

systems (3) and (4) is synchronized.  
 
Proof: 
Substituting (13) in error dynamics (7) leads to 
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The eigenvalues of the characteristic equations of 
system (14) are  41.1,0 21 −== λλ  and 13 −=λ . 

Thus, the synchronization is achieved. 
The time response of the system (3) for 

15.10 =i  and initial state conditions 

)0,0,0())0(),0(),0(( 111 =zyx  is displayed in Fig. 3 

and that for system (4) for initial state conditions 
)1,2,1())0(),0(),0(( 222 =zyx  is displayed in Fig. 4. 

In Fig. 5, we display the time response of the 
error signals of the coupled RCLSJ chaotic system 
with the controller applied at a time 250≥t  sec for 
same system parameters and external input 

15.10 =i . The state initial conditions are as for the 

systems (3) and (4).  

 
Fig. 3: The time response of the system (3) for 15.10 =i  

and initial conditions )0,0,0())0(),0(),0(( 111 =zyx . 
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Fig. 4: The time response of the system (4) for 15.10 =i  

and initial state conditions )1,2,1())0(),0(),0(( 222 =zyx . 

 

Fig. 5: The time response of the error signals of the 
coupled RCLSJ chaotic system with the controller 
applied at time 250≥t  sec for same system parameters 
and the external input, 15.10 =i . The state initial 

conditions for the systems (3) and (4) were ),0(( 1x  

)0,0,0())0(),0( 11 =zy and )1,2,1())0(),0(),0(( 222 =zyx , 

respectively.  

4.     Reduced-order synchronization  
for RCLSJ and PMJJ 

This section will address the problem of 
synchronization between two different Josephson 
junction models with different orders, where the 
drive system is given in (3) and expressed as  
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with the following system parameters 6.2=Cβ  

and 707.0=Lβ  and the external input is 

15.10 =i . The slave system is the second-order 

PMJJ given in (2) and expressed as: 
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Where, u is the undetermined controller and system 
parameters are: 4=Ω , 0=θ , 1.00 =ρ , 1.0=δ , 

0.2=γ , 0.3=ω  and 2.462=ξ . 

In the following, a systematic way of designing 
the controller u is presented. Let the first error 
variable be 
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Then, its time derivative along the solutions of 
systems (15) and (16) is 
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Defining the second error variable as  
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Then, its time derivative  
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along the solutions of systems (15) and (16) is 
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If the controller u is taken as  
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and the feedback coefficients satisfy the following 
conditions: 
 

0,0 21 >> kk ;                    (22) 

 
then, the reduced-order synchronization between 
systems (15) and (16) can be achieved. 
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Proof: 
With the choice of controller (21), the error 
dynamics of the system is given by  
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It is obvious that system (23) has only one 
equilibrium point at (0,0).  The corresponding 
characteristic equation is  
 

012
2 =++ kk λλ        (24) 

 
Where, λ is the eigenvalue. 

According to the Routh-Hurwitz criterion, the 
real eigenvalues or all the real parts of complex 
conjugate eigenvalues are negatives when ki meets 
the conditions (22).  Therefore, the origin is 
asymptotically stable. 

In order to achieve synchronization within 
4.0=≥ stt  sec after control signal is activated, 

1001 =k , 202 =k  are chosen. The numerical 

results for the closed loop system are depicted in 
Fig. 6 and Fig. 7 when the control signals are 
activated at 250 sec. 

 
Fig. 6: The time response of the system (16) for 

462.2=ξ  and the initial conditions 

)0,0())0(),0(( 22 =zy with the controller applied at a 

time 250≥t  sec. 

 
Fig. 6 displays the time response of the system (16) 
for 462.2=ξ  and the initial conditions 

)0,0())0(),0(( 22 =zy with the controller applied at 

a time 250≥t  sec. Fig. 7 shows the time response 
of the error signals defined in (17) and (19) for the 
reduced order synchronization of RCLSJ chaotic 
system with the controller applied at a time 250≥t  
sec and this shows that reduced order 
synchronization have been achieved.  

 
Fig. 7: The time response of the error signals defined in 
(17) and (19) for the reduced order synchronization of 
RCLSI chaotic system coupled with PMJJ and the 
controller applied at a time 250≥t  sec.  

5.     Conclusions 

In this paper, we have investigated the chaos 
synchronization and reduced-order synchronization 
between two different Josephson junctions with 
different orders by utilizing a proposed recursive 
back-stepping technique based on Lyapunov 
stability theory and Routh-Hurwitz criterion, which 
is aimed at designing a single controller in contrast 
to others that have control functions numerically 
equal to the dimension of the system.  The 
approach makes practical application much easier 
and provides answer to the question of controller 
complexity. 

The simulation results show that the controllers 
in both cases are effective and the states of the 
systems are asymptotically synchronized. 
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