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Abstract— Human gait is an important indicator of health,
with applications ranging from diagnosis, monitoring, and
rehabilitation. In practice, the use of gait analysis has been
limited. Existing gait analysis systems are either expensive,
intrusive, or require well-controlled environments such as a
clinic or a laboratory.

We present an accurate gait analysis system that is eco-
nomical and non-intrusive. Our system is based on the Kinect
sensor and thus can extract comprehensive gait information
from all parts of the body. Beyond standard stride information,
we also measure arm kinematics, demonstrating the wide range
of parameters that can be extracted. We further improve over
existing work by using information from the entire body to
more accurately measure stride intervals. Our system requires
no markers or battery-powered sensors, and instead relies on
a single, inexpensive commodity 3D sensor with a large pre-
existing install base. We suggest that the proposed technique
can be used for continuous gait tracking at home.

I. INTRODUCTION

Human gait has been shown to be an important indicator
of health, and is applicable in a wide range of settings,
such as diabetes [1], neurological diseases [2], [3], and fall
detection and prediction [4]. Accurate, non-intrusive, low-
cost clinical gait analysis systems have many applications
in diagnosis, monitoring, treatment and rehabilitation [5],
[1]. Such applications include early diagnosis and assessment
[2], [6], measuring medication effectiveness at home [7], and
even direct treatment optimization [8], [9].

Several methods have been proposed for gait analysis.
Marker-based systems typically use IR cameras and markers
placed on the subject. These systems are accurate, but
often very expensive and impractical to move. Additionally,
passive or active markers must be correctly placed on the
body before each capture session. Therefore, such systems
are only suitable for laboratory settings. Force plates are also
used for gait analysis. Again, these systems are usually costly
and are only found at laboratories and clinics. Moreover, they
measure the dynamics of the lower limbs only.

Recent studies proposed the use of wearable sensors [10],
[11]. Such systems are more suitable for ambulatory mea-
surements in home settings as they are small, lightweight,
mobile and less expensive (see [12] for a review). One
can also use insole pressure sensors as another means of
measuring gait properties. Despite their advantages, wearable
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sensors suffer from some drawbacks. Sensors must be placed
correctly and securely [12], and must account for gravity,
noise and signal drift [13]. Moreover, each sensor is usually
limited to measuring very few gait properties and hence
an array of sensors is needed to obtain a comprehensive
analysis. Moreover, these sensors are intrusive in the sense
that they require changes to the daily routine of the subject.
They also require maintenance in the form of charging
batteries, uploading data and sanitary treatment.

Markerless optical gait analysis systems have been dis-
cussed in the context of biometric identification and surveil-
lance. Single or multiple video cameras can be used to
recognize individuals [14]. [15] discusses another technique
in the context of medical applications, but the accuracy of the
extracted stride parameters was not verified. [16] focuses on
extraction of knee joint angles, but not on standard stride
parameters. This system uses two cameras to generate a
3D image, but requires complex setup and calibration, as
many similar systems do. Both techniques are limited to
information from the lower part of the body.

We propose a low-cost, non-intrusive system that can
accurately measure a wide range of gait parameters using
the Kinect sensor and Software Development Kit (SDK).
Kinect is an array of sensors, including a camera and a depth
sensor. In addition to the raw depth image, Kinect extracts
a 3D virtual skeleton of the body [17]. These capabilities,
packed in an affordable and compact device, already led
several researchers to propose its use for home monitoring
and gait analysis [18], [19].

We apply a supervised learning approach to automatically
and accurately extract lower and upper body gait parameters,
using the 3D virtual skeleton. This allows us to go beyond
standard foot stride parameters. For example, we extract arm
kinematics using the same sensor. We show that our method
is accurate and robust to attributes such as sensor position.
Moreover, our method can be extended to measure other
properties such as leg kinematics.

Stone and Skubic [18], [19] were the first to propose the
use of Kinect for clinical gait analysis. In their work, they
use the depth image to locate objects which are at a height of
50cm or less. They use the volume of these objects to infer
whether the left or the right foot is touching the ground.
We improve on their work in several ways. Our technique
uses information from the entire body to improve accuracy.
Moreover, we demonstrate how a rich set of parameters
can be extracted. To demonstrate that, we measure arm
kinematics parameters that have been shown to be useful
for medical applications [20], [2]. Finally, we show that our
method is robust to environmental changes and changes in



the placement of the Kinect sensor.
Empirical evaluation shows our results to be very accurate

when compared to reference signals such as pressure sensors,
and compared to previous work. We demonstrate the ability
to extract a rich set of parameters, for example arm swing
parameters. Moreover, we suggest that the proposed method
is affordable and non-intrusive since in a typical use-case a
Kinect sensor can be placed in a fixed position at home.

II. METHODS

Our technique uses a “virtual skeleton” produced by the
Kinect sensor and software. The skeleton information is
converted into a large set of features which are fed to a
model that predicts the values of interest. For example, in
order to measure stride duration, the model detects whether
the foot is touching the ground. The outcome of this model
is fed to a state machine that detects the current state from
which the measurements are derived. In the following section
we discuss each of these steps in detail.

A. Experimental Setup and Data Acquisition

To build and evaluate our model, we captured Kinect
skeleton recordings of walking subjects with time synchro-
nized readings from in-shoe pressure sensors and a gyroscope
attached to the wrist via straps. Applying our method does
not require the wearable sensors, but we use them to evaluate
accuracy. Therefore, we use parts of the data acquired to train
a model to predict the values of interest and other parts of
the data to evaluate the quality of these predictions.

Subjects and Kinect Setup: We captured recordings of 23
subjects (19 male, 4 female), in the age range of 26 to 56
years. Subjects were instructed to walk at a normal pace back
and forth 5 times along a straight path of approximately 7m.
In each experiment, a Kinect sensor was placed to capture
the image of the subject. For 11 subjects (9 male, 2 female)
the sensor was placed at an approximate 45 degree angle to
the middle of the path line, at a height of 30–60cm above
the floor. For the other 12 subjects (10 male, 2 female) the
sensor was fixed to the ceiling, straight ahead of the path
line (0 degree angle), simulating a hallway. The view angle
ensures that the sensor covers the middle part of the walking
path, but not the edges where subjects turn. Recordings were
collected in several locations, and the Kinect sensor itself was
occasionally moved between recordings, to allow testing the
robustness of the proposed approach. We used the Kinect
Sensor for XBOX 360 model 1414, with the Kinect SDK
v1.0 beta 21.

B. Validation Setup

We use readings from wearable sensors as “ground truth”
to first build our model, and later evaluate its accuracy. It is
important to note that the model itself (see Sec. II-C) does
not use sensors’ reading and they need not be present when
it is being used. Sensor readings were sampled by custom
hardware and wirelessly transmitted to a PC, where they were

1http://www.microsoft.com/en-us/kinectforwindows/
develop/beta.aspx

synchronized to the Kinect skeleton frames and recorded.
To minimize the effect of the wearable sensors on gait, each
subject was recorded 4 times: once with the pressure sensors
in the left shoe, once in the right shoe, and similarly once
for the gyroscope on each arm. This resulted in 92 sessions
being recorded.2

Pressure Sensors: Two pressure sensors (FlexiForce
A2013) were placed inside the shoe, below or on top of
the insole. One sensor was placed under the heel to capture
the heel strike. The second pressure sensor was placed
underneath the great toe joint to capture the time when the
foot is being lifted off the ground.

Recorded pressure sensor values are affected by differ-
ences in weight, foot anatomy, and shoe type. Hence, we
use a linear normalization such that all the readings but the
top 10% and bottom 10% will fit in the [−1, 1] range.

Gyroscope: Similar to pressure sensors, we used a gyro-
scope (ITG-3200 by InvenSense4) to record angular velocity
of the arms. To avoid errors due to sensor placement [12],
the sensor was attached to the upper part of the wrist using
a strap in a fixed ordination: facing outwards from the
arm. Nevertheless, we applied Principal Component Analysis
(PCA) [21] to the readings from the 3D gyroscope sensor to
find the main direction of arm movement and used only the
measurements in this direction.

C. Predictive Model

The Kinect sensor and its SDK provide a 3D virtual
skeleton. The virtual skeleton consists of the positions of
20 joints and body parts (such as the wrists, knees, head
and torso), which we refer to as joints. For each joint, the
x, y and z coordinates are reported, as well as a confidence
parameter which indicates the confidence of the skeleton
extraction algorithm in those coordinates. Kinect provides
approximately 30 skeleton frames per second.

Our method converts the skeleton frames into a feature
vector. For each of the sensors used, we build a regression
model that predicts the value recorded by the corresponding
sensor. A simple state machine is used to identify the begin-
ning of strides and to partition strides to their parts. In the
following we provide more details about these components.
It is important to note that the sensors described in Sec. II-
B are not needed when using the system. Instead, the only
sensor needed is Kinect.

1) Features: Skeleton data is converted into a large set of
features. We examine each frame together with the 2 previous
frames and the 2 following frames. In each frame, we locate
the “center of mass” (COM) as the center of the hip joints,
the shoulder joints and the spine. The change in position
of the COM between consecutive frames is computed and
the median (in each coordinate) of these differences is
considered the current direction of progress (DOP). The

26 sessions were discarded. In 5 sessions, the pressure sensor could not
be fitted securely in subject’s shoe. Another session was dropped due to a
failure of the gyroscope during the recording session.

3http://www.tekscan.com/pdf/A201-force-sensor.pdf
4http://invensense.com/mems/gyro/itg3200.html



speed of walking is defined to be the norm of the direction
vector.

For each joint, in each frame, the current position of
the joint is estimated in the coordinate system, which is
composed from: (a) the DOP; (b) the up direction provided
by the Kinect sensor; and (c) the direction tangent to these
vectors. The axes are aligned such that the zero in the up
direction is the ground while in the other direction’s zero is
defined as the COM. Finally, for each joint we generate the
following features: the position in each of the frames (in the
above coordinate system), the difference in position between
consecutive frames (an estimate of the velocity), and the
difference of the differences (an estimate of the acceleration).
The same set of features is computed also for the center of
mass (COM), and together with the speed and the direction
of progress, they form the feature vector.

2) The regression model: We use an ensemble of re-
gression trees to predict the values of interest from the
feature vector described in Sec. II-C.1. To learn the regres-
sion model, we use the Multiple Additive Regression Trees
(MART) algorithm [22], [23]. A regression tree is a rooted
binary tree with conditions in the inner nodes and real values
in the leaves. Each condition is a comparison of one of
the input features to a threshold. The ensemble learned by
MART consists of 150 trees, each having 20 leaf nodes. The
value predicted by the ensemble is the sum of the values
predicted by all the trees in the ensemble. Parameter tuning
for the MART algorithm was done on few recordings which
were not a part of this experiment.

D. Stride Detection and Partitioning
We follow standard practice (see, for example, [4], [3],

[11]) and define stride time as the time from initial contact
of one foot with the ground to the subsequent contact of the
same foot. Each stride (gait cycle) is composed of a stance
phase where the foot is on the ground, followed by a swing
phase where the foot is swung forward. The heel and toe
pressure signals (estimated or real) are fed to a simple state
machine consisting of three states: HEEL, TOE and SWING.
Whenever the heel signal is “pressed” (scaled reading greater
than zero), we assume that the state is HEEL. Once the toe
signal is pressed, the state machine is advanced to state TOE.
If neither signal is pressed for the next 100ms, the state
advances to state SWING. We consider the foot to be in
a stance phase whenever the state machine is at the HEEL
or TOE states. Otherwise, we assume the swing phase.

III. RESULTS

We evaluated the accuracy of our method by comparing
extracted parameters from the skeleton to the reference
values from the sensor. We conducted two experiments, one
to measure the accuracy of the proposed method and the
other to measure its robustness to changes in the placement
of the Kinect sensor and the environment.

A. Experiment 1 – Accuracy
To prevent over-fitting, accuracy is measured using cross-

validation [24]: We hold the data for one of the participants

out and train on the remaining data. We use the held out
data for testing the model. We repeat this process for every
participant and report the average accuracy.

The summary of the results of measuring stride durations
is presented in Table I. For different components of a stride,
the table shows the following statistics: (1) the average
duration as measured by the pressure sensor (Avg), (2) the
average difference between the duration measured by the
pressure sensor and the duration measured by the regression
model (Mean-diff), (3) the standard deviation between the
two measurements (Std-diff), (4) the average differences
between the measured duration in absolute values (Abs-diff),
and (5) the number of events (N). All but the last column
are reported in milliseconds.

Table I shows that the predictions generated by the model
are very accurate. The Mean-diff (or bias) is especially small
(less than 1% when measuring stride duration). Both the bias
and the standard-deviations in our experiment are smaller
than the corresponding values reported in [19, Table I]. The
Abs-diff column shows that in absolute value, the difference
between the predictions and measured durations is 35–71ms.
Given the 30 frames per second rate, this could be interpreted
as 1–2 frames difference.

We also tested the quality of the prediction of the angular
velocity. Here we compared the readings from the gyroscope
to the corresponding Kinect-based model. The correlation
coefficients between the Kinect-based prediction and the
true value are greater than 0.91 for both arms. The average
difference between the readings is 1.52 (-0.86) for the left
(right) arm and the standard deviation is 48.36 (44.63) where
the unit of measurement is degree/second.

Our method can detect the stride phase and the arm
state simultaneously. This allows for a detailed analysis of
the angular velocity of the arm at different stride phases.
Table II shows some values computed by this method. Other
states, including both legs on the ground, are not reported
to keep the presentation concise. Nevertheless, this analysis
shows that the methods presented here allow for detailed and
accurate full body gait analysis.

B. Experiment 2 – Robustness

One of the limitations of many gait analysis methods is
that they require careful calibration and setup. To test the
robustness of our method, we conducted a second experi-
ment. In this experiment, we trained the models using the
data captured when Kinect was placed at approximately 45
degrees to the path line and at a height of 30-60cm from
the ground. We tested the models on the data recorded on
different subjects, when the sensor was attached to the ceiling
in front of the walking path line.

The results in Table III show the estimations of durations
of stride components in this experiment. The accuracy of the
measurements degrades only slightly when compared to the
results in Table I despite the fact that the models were trained
on one viewing angle and were tested on a different viewing
angle. The models for the angular velocities of the arm
exhibit even greater robustness to the different viewing angle.



TABLE I
EXPERIMENT 1: STRIDE DURATIONS PREDICTIONS COMPARED TO

PRESSURE SENSORS. THE UNIT OF MEASUREMENT IS A MILLISECOND.

Interval Avg Mean-diff Std-diff Abs-diff N
Left stride 1169 8 62 45 62

Right stride 1130 2 46 32 46
Left stance 634 -8 110 70 111

Right stance 595 -20 90 67 96
Left swing 518 6 115 71 146

Right swing 541 27 104 70 124

TABLE II
EXPERIMENT 1: ARM ANGULAR VELOCITIES AT DIFFERENT STRIDE

PHASES. THE UNIT OF MEASUREMENT IS DEGREE/SECOND.

Feet state Arm Avg Mean-diff Std-diff Abs-diff N
Left swing Left -100 -3.6 21 16 148
Left swing Right 91 -0.9 29 22 163

Right swing Left 106 8.0 24 20 149
Right swing Right -88 -1.7 27 22 152
Left stance Left 78 3.3 20 16 102
Left stance Right -75 0.5 22 18 118

Right stance Left -84 -3.4 19 14 121
Right stance Right 70 -1.9 26 19 110

The correlation coefficient between the prediction and the
true value is 0.9 (0.89) for the left (right) arm. The average
difference in the reading is 1.62 (5.33) and the standard
deviation is 56 for both arms. This accuracy confirms our
assumption regarding the robustness of the approach.

IV. DISCUSSION

In this work we have presented a novel method for full
body gait analysis using the Kinect sensor. Using the virtual
skeleton as the input to a learned model, we demonstrated
accurate and robust measurements of a rich set of gait
features. We showed that our method improves on prior art
[19] both in terms of having smaller bias and in having
smaller variance. Moreover, our method can be extended
to measuring other properties, including lower limb angular
velocities and core posture. The sensor used is affordable and
small, thus allowing installation in domestic environments.
Since the sensor does not require maintenance, it allows for
continuous and long term tracking of gait and its trends.
These properties enable many applications for diagnosis,
monitoring and adjustments of treatment [5], [1]. However,

TABLE III
EXPERIMENT 2: STRIDE DURATION COMPARISON

Interval Avg Mean-diff Std-diff Abs-diff N
Left stride 1152 18.1 112 98 8

Right stride 1129 27.3 52 45 8
Left stance 613 5.4 123 84 32

Right stance 601 8.0 128 92 37
Left swing 532 -8.3 106 68 42

Right swing 523 11.7 112 74 49

measuring the utility of the methods presented here for
medical applications is a subject for further research.
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