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Abstract— This paper proposes a new algorithm for full
body human motion estimation using 3D marker position
measurements. The joints are represented with Lie group
members, including special orthogonal groups SO(2) and
SO(3), and a special euclidean group SE(3). We employ the
Lie Group Extended Kalman Filter (LG-EKF) for stochastic
inference on groups, thus explicitly accounting for the
non-euclidean geometry of the state space, and provide the
derivation of the LG-EKF recursion for articulated motion
estimation. We evaluate the performance of the proposed
algorithm in both simulation and on real-world motion capture
data, comparing it with the Euler angles based EKF. The
results show that the proposed filter significantly outperforms
the Euler angles based EKF, since it estimates human motion
more accurately and is not affected by gimbal lock.

I. INTRODUCTION

Human bodies have evolved to perform complex

manipulation and locomotion tasks. We are able to

accomplish very intricate movements, carry light and heavy

loads, achieve energy efficient locomotion at various speeds,

reject disturbances, and adapt to environment constraints.

Inspired by the human body, robotics researchers aim to

develop systems with similar capabilities. To design a

humanoid that can perform as well as a person, researchers

must first capture and analyze human motion. Accurate

pose estimation allows the design of controllers to simulate

human like movements on a robot through motion re-

targeting and imitation learning. In human-robot interaction

the participant’s pose must be known to guarantee safety

and to allow collaborative tasks. Finally, to improve the

performance of assistive devices in rehabilitation or to

enhance user’s capabilities with an exoskeleton, the system

must be able to reproduce human like movements [1].

Optical motion capture is a method to record the

movements from body worn markers observed by multiple

cameras. The 3D positions of the markers are extracted

from the images using the relative positions of the cameras

to each other and are analyzed to compute the pose.

Typically, a kinematic model of the participant is defined

based on anthropomorphic tables or by measurement
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and markers are assumed rigidly attached to the skeleton

links. Unfortunately, for a full body skeletal model, there

is no closed form solution for the inverse kinematics

(IK). Differentiating the positions of the attached markers

with respect to the joint angles and forming a Jacobian

matrix allows to iteratively solve for joint angles using the

pseudoinverse of the Jacobian. In singular configurations

the Jacobian is not invertible. It is possible to include a

non-zero damping constant in the least squares minimization

to maintain full rank; various damping factors have been

proposed [2].

The Jacobian inverse based methods do not account for

stochastic error in marker position measurements, are greatly

affected by outlier measurements, and are not capable of

predicting future poses. By treating the skeleton pose as a

state and 3D marker positions as measurements, recursive

stochastic estimators can be used to help reduce the effect

of stochastic marker position errors. Including the joint

positions, velocities, and accelerations in the motion model

of the filter helps to maintain correct pose estimate during

short term occlusions. Various stochastic filters have been

proposed for IK, such as the Smart Sampling Kalman Filter

[3] and the Unscented Kalman Filter [4]. The filtering

approach can even be used to perform estimation from

unlabeled markers [5]. Bonnet et al. modelled not only

kinematics but also the dynamics of a human body within

an EKF to estimate the pose and dynamic parameters [6].

In the aforementioned methods the kinematic models are

rigid links connected with joints that may be rotational,

translational, or spherical. All of these formulations are

representations of transformations in the euclidean space.

However, human motion and many other types of motion

of interest in robotics do not occur in Euclidean space, but

rather arise on curved geometries often called manifolds. By

using the manifold representations, the overall performance

of wide variety of applications can be significantly improved

[7]–[9]. In particular, the attitude of an object can be

modelled as a special orthogonal group SO(n), n = 2, 3,

while the pose can be modelled as a special euclidean

group SE(n), n = 2, 3 [7]. Notably, both SO(n) and SE(n)
belong to a family of matrix Lie groups. Recently, several

theoretically rigorous approaches for filtering on manifolds

have been proposed. In [10] the authors proposed an EKF

able to perform estimation respecting the geometry of matrix

Lie groups. Alongside, the unscented transform-based [11]

and the particle-based [12] approaches have also attracted

significant attention.

The benefit of manifolds for human action recognition

has already been explored in the literature. In [13] the



authors exploited the manifold structure by relying on the

particle filter for learning purposes, while in [14] the authors

use different manifolds as priors for manifold learning.

Devanne et al. have used a spatio-temporal modeling of

trajectories in a Riemannian manifold for action recognition

purposes [15]. Recently, Brossette et al. have proposed the

posture generation problem that encompasses non-Euclidean

manifolds as well [16].

In this paper, we propose an algorithm for human motion

estimation on Lie groups, which uses 3D marker position

measurements. We explicitly account for the geometry of

the state space and apply Lie group EKF (LG-EKF) for

stochastic inference on Lie groups. We employ a constant

acceleration model [17] in the motion prediction step and

derive the update and observation equations for positional

measurements. We compare the performance of the proposed

approach with the Euler angles-based EKF, and show that the

proposed algorithm achieves significantly better performance

in both simulations and real-world experiments.

The paper is organized as follows. In Sec. II we present

the theoretical preliminaries addressing the association of

uncertainties to Lie groups, and provide the basic relations

needed for forward kinematics of articulated bodies with

groups. In Sec. III we derive the proposed estimation

approach. In Sec. IV we describe the Euler angle-based

approach, while in Sec. V we present the validation results.

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical background for

performing human motion estimation on matrix Lie groups.

We first discuss a human body modeling approach and the

corresponding state space construction, and after provide the

relations for manipulating the required Lie group members.

A. Construction of the state space

Before proceeding to filtering, we first construct the

state space for representing a human that models body

flexibility to a satisfactory level. Therefore we determine the

appropriate Lie Group representation for each joint based

on its mobility. For example, 1 DoF revolute joints are

represented with a special orthogonal group SO(2), while 3
DoF spherical joints are modelled with a special orthogonal

group SO(3). To localize the human in 6 DoF space, we use

a special euclidean group member SE(3) for connecting the

origin of the space with the base of the body, modeling both

translational and rotational motion. Finally, the state of the

system modelling a human is constructed by concatenating

Lie group members via a Cartesian product, starting with

SE(3), and extending with either SO(2) or SO(3) groups.

For example, a human leg can be constructed as

SE(3)× SO(3)× SO(2)× SO(2)× SO(2) . (1)

Here, the first term represents the 3D position and orientation

of the waist with respect to the reference frame, the second

term represents the hip as a spherical joint, the third describes

the knee, while the last two represent the two dimensional

ankle as shown in Fig. 1 (left).

SO(2)× SO(2)

SO(2)

SE(3)
SO(3)

Z

X
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Fig. 1: Left: Lower body kinematic model joints represented by their
respective group members. Middle: Same lower body in prismatic
and revolute (Euler angle) joint representation. Right: Full body Lie
Group model with attached markers.

Fig. 2: An illustration of mappings within the triplet of Lie group
G, Lie algebra g and the Euclidean space R

p.

B. Lie groups and Lie algebra

We now introduce the concept of Lie groups and Lie algebra

as prerequisites for estimation on Lie groups [18].

Generally, a Lie group G is a group which has the structure

of a smooth manifold. Group operators, composition and

inversion, are smooth operations, given simply as matrix

multiplication and inversion. Lie algebra g elements

represent a tangent space of a group at the identity element

[19]. In particular, a Lie algebra is an open neighborhood

around 0
p in the tangent space of G at the identity In.

The matrix exponential expG and matrix logarithm logG
establish a local diffeomorphism between G and g as

expG : g → G and logG : G → g. (2)

The Lie algebra g associated to a p-dimensional matrix Lie

group G ⊂ R
n×n is a p-dimensional vector space defined by

a basis consisting of p real matrices Er, r = 1, .., p, often

referred to as generators [20]. A linear isomorphism between

g and R
p is given by

[·]∨G : g → R
p and [·]∧G : Rp → g. (3)

An illustration of the above mappings is given in Fig. 2.

In addition, in Lie group based calculus we need two more

operators – adjoint representation of a Lie group, denoted

as AdG and Lie algebra adG. More detailed discussion on

adjoints and the used notation can be found in [18] and [10],

respectively.

C. Concentrated Gaussian distribution

To make use of EKF on Lie groups, the Gaussian error

distribution covariance must be established. Distribution on

the group tightly focused around the identity element XI



can be expressed on the Lie algebra [21] with probability

density function given as

p(XI) = β exp

(

−
1

2
[logG(X

I)]∨
T

G P−1[logG(X
I)]∨G

)

,

where β is a normalizing constant and P is a positive definite

matrix. If ǫ , [logG(X
I)]∨

G
is tightly focused, it can be

described with a classical Gaussian ǫ ∼ NRp(0p×1, P ). The

distribution of random variable XI can be translated over

G by using the left action of the Lie group, and finally a

random variable X can be seen as

X = µ expG (ǫ
∧
G) , with X ∼ G(µ, P ) , (4)

where G denotes the so called concentrated Gaussian

distribution (CGD) [21]. For a more formal introduction,

the interested reader is referred to [18].

D. Special orthogonal group SO(2)

The SO(2) group represents a rotation around a single axis:

SO(2) =
{

X ⊂ R
2×2 |XTX = I, det(X) = 1

}

. (5)

For a euclidean space vector consisting of an angle x = φ,

the Lie algebra so(2), is given as

x∧
SO(2) =

[

0 −φ

φ 0

]

∈ so(2) . (6)

where (·)∧
SO(2) : R

1 → so(2). Its inverse, (·)∨
SO(2) : so(2) →

R
1, follows trivially from relation (6). The exponential for

SO(2), performing expSO(2) : so(2) → SO(2), is given as

expSO(2)(x
∧
SO(2)) =

[

cosφ − sinφ
sinφ cosφ

]

, (7)

while the inverse operator, logSO(2) : SO(2) → so(2), can

be evaluated from (7). Due to the commutativity of SO(2),
the adjoint operators are given as

AdSO(2)(X) = 1 and adSO(2)(x) = 0 . (8)

These properties will greatly simplify the LG-EKF formulae.

E. Special orthogonal group SO(3)

The SO(3) group represents an orientation of a rigid body

in 3D space, and is defined as

SO(3) =
{

X ⊂ R
3×3 |XTX = I, det(X) = 1

}

. (9)

For a euclidean joint space vector x = [φ1 φ2 φ3]
T, the Lie

algebra so(3) is given as a skew symmetric matrix

x∧
SO(3) =





0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0



 ∈ so(3) . (10)

where (·)∧
SO(3) : R

3 → so(3). Its inverse, (·)∨
SO(3) : so(3) →

R
3, follows trivially from (10). The exponential for SO(3),

performing mapping expSO(3) : so(3) → SO(3), is given as

expSO(3)(x
∧
SO(3)) = cos(|x|)I3+

+ (1− cos(|x|))
xxT

|x|2
+ sin(|x|)

x∧
SO(3)

|x|
.

(11)

The logarithm, performing mapping logSO(3) : SO(3) →
so(3), is given as

logSO(3)(X) =
θ

2 sin(θ)
(X −XT)

s.t. 1 + 2 cos(θ) = Tr(X)
{

θ 6= 0 −π < θ < π

θ = 0 log(X) = 0
.

(12)

The adjoints AdSO(3) and adSO(3) are respectively given as

AdSO(3)(X) = X and adSO(3)(x) = x∧
SO(3) . (13)

F. Special euclidean group SE(3)

The group SE(3) describes 6 DoF rigid body pose and is

formed as a semi-direct product of the euclidean space vector

R
3 and the special orthogonal group SO(3)1, corresponding

to translational and rotational parts, respectively. This group

is defined as

SE(3) =

{(

R t

0 1

)

⊂ R
4×4 | {R, t} ∈ SO(3)× R

3

}

.

For a euclidean space vector representing the pose of a rigid

body consisting of a 3DoF position vector t and a 3DoF

orientation vector φ, where x = [t φ]T, the Lie algebra se(3)
is

x∧
SE(3) =

[

φ∧
SO(3) t

0 0

]

∈ se(3) . (14)

where (·)∧
SE(3) : R

6 → se(3). Its inverse, (·)∨
SE(3) : se(3) →

R
6, follows trivially from (14). The exponential for SE(3),

performing mapping expSE(3) : se(3) → SE(3), is given as

expSE(3)(x
∧
SE(3)) =

[

C Lt

0 1

]

(15)

C = expSO(3)(φ
∧
SO(3))

L =
sin(|φ|)

|φ|
I3 + (1−

sin(|φ|)

|φ|
)
φφT

|φ|2
+

1− cos(|φ|)

|φ|2
φ∧
SO(3).

The logarithm, performing mapping logSE(3) : SE(3) →
se(3), is calculated by deconstructing X , and determining

φ by using (12). Then, from (15) we can determine t.

In order to determine the adjoints for SE(3), we need to

deconstruct the state X ∈ SE(3) and vector x ∈ R
6. Firstly,

we extract the rotation part C and translation part t from X ,

and secondly, we split the translation part t and orientation

part φ from x. Then, the adjoints AdSE(3) and adSE(3) are

AdSE(3)(X) =

[

C tC

0 C

]

, adSE(3)(x) =

[

φ∧
SO(3) t∧

SO(3)

0 φ∧
SO(3)

]

.

We next present the new human motion estimation method

based on the LG-EKF.

1The euclidean space can be formed only by employing direct product,
while other ways to concatenate Lie groups also exist, i.e., semi-direct
product, twisted product, etc.



III. HUMAN MOTION ESTIMATION ON LIE GROUPS

The LG-EKF performs motion prediction and measurement

update steps recursively, assuming a constant acceleration

model (CA) [17] for each joint.

A. Motion prediction step

The LG-EKF approach assumes the motion model of the

system can be described with the following equation

Xk+1 = f(Xk, nk) = Xk expG

(

[Ω̂k + nk]
∧
G

)

, (16)

where Xk ∈ G is the state of the system at time k, G is a

p-dimensional Lie group, nk ∼ NRp(0p×1, Qk) is zero mean

white Gaussian noise with covariance Qk and Ω̂k = Ω(Xk) :
G → R

p is a non-linear C2 function.

For example, assuming a CA motion model and

considering a single SO(2) joint with associated angular

velocity and angular acceleration, the state would be given

by X ∈ G = SO(2)× R
1 × R

1, and

Ω̂k =





T q̇k + T 2

2 q̈k
T q̈k
0



 ∈ R
3 , nk =





T 2

2 na
k

Tna
k

na
k



 ∈ R
3 , (17)

where qk, q̇k and q̈k are the angle, angular velocity

and angular acceleration represented in tangential space,

respectively2. The term na
k represents the acceleration

increment during the k-th sampling period [17].

In general, the state of the system X is formed by using

direct (Cartesian) product between the group members,

i.e., by placing them block-diagonally. Then, after applying

expG or logG, the element will stay in the block diagonal

arrangement. The motion model Ω̂k can be seen as

representing an addition to the current state, and for N

joints it is given as Ω̂k = [Ω̂1
k Ω̂2

k ... Ω̂N
k ]T. The motion

model and the process noise associated with the i-th joint,

i.e., Ω̂i
k and ni

k, are elements of euclidean space R
r, where

r = 3 × (# DoF) since position, velocity and acceleration

are included. Hence, for the associated group member

SO(2), SO(3) and SE(3), the coefficient is r = 3, r = 9
and r = 18.

We assume the posterior distribution at step k − 1
follows the concentrated Gaussian distribution assumption

G(µk−1, Pk−1). The mean propagation of the LG-EKF is

then governed by

µk+1|k = µk expG

(

[Ω̂k]
∧
G

)

, (18)

while the covariance prediction is governed by

Pk+1|k = FkPkF
T
k +ΦG(Ω̂k)QkΦG(Ω̂k)

T . (19)

The operator Fk represents a matrix Lie group equivalent to

the Jacobian of f(Xk, nk), and is calculated by

Fk = AdG

(

expG

(

[−Ω̂k]
∧
G

))

+ΦG(Ω̂k)Ck

Ck =
∂

∂ǫ
Ω (µk expG (ǫ

∧
G))|ǫ=0 .

(20)

2Euclidean space R
p belongs to a family of Lie groups, while for

constructing G we employ its matrix representation obtained by matrix
embedding. It is also a subgroup of SE(n) where a pure translation is
employed [18].

Ck represents the linearisation term where the argument of

the motion model is the current state Xk with an incremental

perturbation additively added in each of the p directions.

Contrary to the conventional EKF, a linear additive process

noise injects the system as a function of the current state

of the system over the transformation ΦG(Ω̂k)QkΦG(Ω̂k)
T,

where ΦG appears due to the displacement of the tangential

space during the prediction step, and is given as

ΦG(v) =

∞
∑

i=0

(−1)i

(i+ 1)!
adG(v)

i , v ∈ R
p . (21)

B. Measurement update step

We next derive the update step by employing position

measurements of markers attached to a human body obtained

by a motion capture system. The markers are assumed to

be rigidly attached to a predetermined skeletal model. The

discrete measurement model on the matrix Lie group is

modelled as

Zk+1 = h(Xk+1) expG′ ([mk+1]
∧
G′) , (22)

where Zk+1 ∈ G′, h : G → G′ is a C1 function

and mk+1 ∼ NRq (0q×1, Rk+1) is zero-mean white

Gaussian noise with covariance Rk+1. The measurement

function, in our marker based approach, is given as

h(Xk+1) = diag{h(Xk+1)
1, h(Xk+1)

2, .., h(Xk+1)
M},

where M block-diagonally placed measurement components

correspond to M marker position measurements, and hence

the measurement space is given as G′ = R
3M .

The update step of the filter strongly resembles the

standard EKF update procedure, relying on the Kalman gain

Kk+1 and innovation vector νk+1 calculated as

Kk+1 = Pk+1|kH
T
k+1

(

Hk+1Pk+1|kH
T
k+1 +Rk+1

)−1

νk+1 = Kk+1

(

[

logG′

(

h(µk+1|k)
−1Zk+1

)]∨

G′

)

. (23)

The matrix Hk+1 can be seen as a matrix Lie group

equivalent to the Jacobian of h(Xk+1), and is given as

Hk+1 =
∂

∂ǫ

[

logG′

(

h(µk+1|k)
−1h(µǫ

k+1|k)
)]∨

G′ |ǫ=0
,

where h(µǫ
k+1|k) = h(µk+1|k expG (ǫ

∧
G
)), describes the

variation of markers’ positions for an infinitesimal motion

ǫ. We now evaluate the part of Hk+1 corresponding to the

i-th marker’s measurement Zi
k+1. This relation is given as

Hi
k+1 =

∂

∂ǫ

(

logG′

(

h
(

K0
si
(Xk+1|k)

)−1

h
(

K0
si
(Xǫ

k+1|k)
)))∨

G′ |ǫ=0
(24)

=
∂

∂ǫ









logG′

















I

0
K0

si
(Xǫ

k+1|k)









0
0
0
1

































∨

G′ |ǫ=0

,

where K0
si
(Xk+1|k) stands for the forward kinematics of

the i-th marker for a given predicted state Xk+1|k, while

K0
si
(Xǫ

k+1|k) = K0
si

(

Xk+1|k expG (ǫ
∧
G
)
)

corresponds to the



forward kinematics for the infinitesimally perturbed state

Xk+1|k. Note that the term K0
si
(Xk+1|k)

−1 vanishes after

applying the partial derivatives over ǫ. We now decompose

the kinematics term K0
si
(Xk+1|k) into several parts as

K0
si
(Xk+1|k) = K0

j (Xk+1|k)X
j

k+1|kK
j+1
si

(Xk+1|k) , (25)

where K0
j (Xk+1|k) represents the transformation from the

base frame to joint j and Kj+1
si

(Xk+1|k) represents the

transformation from joint j + 1 towards sensor i.

Let us now consider a part of the Hi
k+1 term relating

the i-th measurement with the j-th joint, denoted as Hi,j
k+1.

Furthermore, let us assume the j-th joint is represented with

an SE(3) term, hence covering the most general case, since

SO(2) and SO(3) are simplifications of SE(3). Then, by

exploiting results from [19], Hi,j
k+1 can be expressed as

[

Hi,j,r
k+1

1

]

= K0
j (Xk+1|k)X

j

k+1|kE
rKj+1

si
(Xk+1|k)









0
0
0
1









,

where Er represents the r-th generator of SE(3) group,

i.e., r = 1, .., 6 [21]. Each of the 6 generators represents

an infinitesimal motion in one of the directions of SE(3)

space, and Hi,j
k+1 =

[

Hi,j,1
k+1 ... Hi,j,6

k+1

]

. Since marker position

measurements are only a function of the joint positions, the

part of the Hk+1 matrix relating measurements with velocity

and acceleration components is filled with zero values.

Finally, the measurement update step is calculated as

µk+1 = µk+1|k expG ([νk+1]
∧
G) (26)

Pk+1 = ΦG(νk+1) (I
p −Kk+1Hk+1)Pk+1|kΦG(νk+1)

T .

For a more formal derivation of the LG-EKF update, the

interested reader is referred to [10].

IV. EULER ANGLE BASED APPROACH

The proposed approach is compared to conventional EKF

applied to a standard kinematic model defined with revolute

and prismatic joints [22]. Three perpendicular revolute joints

(Euler angles) can be used to model human spherical joints

such as the shoulder and the hip. The transformation between

the world frame and the base of the body can be modelled

with three prismatic and three perpendicular revolute joints,

as shown in Fig. 1 (right). The state of the EKF is defined

as the position q, velocity q̇, and acceleration q̈ of the joints.

Assuming constant acceleration the linear motion model is

qk+1 = qk + T q̇k +
T 2

2
q̈k

q̇k+1 = q̇k + T q̈k (27)

q̈k+1 = q̈k .

Treating the attached markers as end effectors, the

measurement Jacobian for the i-th marker, Hi, is the

velocity Jacobian in the base frame.

Hi = [Jvi1Jvi2 . . . Jvin] (28)

Jvij =

{

zj × (oi − oj) for revolute joint j

zj for prismatic joint j
(29)

where joint j is centered at oj and actuates about zj axis and

oi is the end effector position. With the Jacobians defined

EKF can be set up to estimate the positions, velocities, and

accelerations of all the joints in the kinematic model based

on motion capture marker measurements.

V. VALIDATION RESULTS

We validate the proposed approach with three datasets.

First, in simulation, we demonstrate the benefits of LG-

EKF over EKF during highly dynamical movements whose

motion is better described on the group and show that unlike

EKF, LG-EKF is not affected by gimbal lock. Next, to

show the benefits of SO(3) representation, we evaluate the

performance of LG-EKF and EKF on real motion capture

data of arm boxing movement. Finally, we perform full

body estimation of a highly dynamic martial arts movement

sequence to verify the effectiveness of the SE(3) joint

connecting between world origin and the body base frame

and demonstrate the overall benefits of LG-EKF over EKF.

A. Simulation Validation

1) Dynamic Motion: To test the convergence and

estimation properties of LG-EKF, we simulate a human

arm composed of the shoulder, elbow, and wrist joints,

the state is an element of SO(3) × SO(2) × SO(3) group

respectively. Two simulated motion capture markers are

placed at the shoulder and elbow and 4 about the wrist.

The kinematic chain is visualized in Fig. 3 (middle). We

generate angular velocity on the group using a Fourier

series with 5 harmonics and coefficients from a uni-variate

distribution, the angular velocity is then propagated at

100Hz according to the motion model defined in equation

16 with no additive noise. The simulated marker positions

are computed with forward kinematics and Gaussian noise

with standard deviation σdev = 1mm is added to simulate

errors in 3D marker measurement. This creates a highly

dynamic motion as can be seen from the positions of the

four wrist markers in Fig. 4. The measurement noise was

set to 0.01 for both LG-EKF and EKF. No further tuning

was performed to improve estimation of either filter, the

initial covariances were set to identity and process noise for

all states was 0.01.

To compare the estimate with the ground truth, we use the

deviation from the identity matrix as the distance metric [23]

DF =
∥

∥I −RT
eRgt

∥

∥

F
(30)

where Re and Rgt are the estimated and ground truth

rotation matrices of each joint and ‖·‖F denotes the

Frobenius norm, which is funcionally equivalent to the

geodesic on SO(3) [23]. Figure 5 shows the comparison in

estimation of rotation matrices for each of the three joints



Fig. 3: Left: 3D Arm model showing simulation marker placement.
Middle: Lie group-based arm model with attached markers for
dynamic motion simulation. Right: Euler angle-based arm model
for the CMU dataset (no wrist) with CMU markers attached.
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Fig. 4: Trajectories of wrist markers attached to the simulated arm
model undergoing the generated highly dynamic motion over 2.5 s.

between LG-EKF and EKF using this distance metric. On

average LG-EKF improves estimation over EKF by 20.9%.

The observed improvement is composed of gimbal lock

avoidance, described in the next section, and a better error

covariance representation on the manifold.

2) Gimbal Lock: Any set of Euler angles will lose a

degree of freedom when two of the rotation axes align [24],

implying that in that configuration the rotation about the

locked axis cannot be correctly estimated by EKF. Typically

the order of the joint axes is carefully selected to try and

avoid the lock, however in human motion estimation gimbal

lock often takes place at the shoulder joint due to its high

manoeuvrability. Unlike the Euler angle formulation, an

SO(3) representation of the spherical joint does not suffer

from gimbal lock and thus LG-EKF will accurately estimate

any 3D rotation.

To demonstrate the benefits of LG-EKF over EKF during

gimbal lock we simulate a single spherical joint at the

origin with three motion capture markers attached at offsets

of [0.3, 0.1, 0]T, [0.3,−0.1, 0]T, and [0.3, 0, 0.1]T for full

observability. To ensure continuation in position, velocity,

and acceleration we use a quintic polynomial to generate

a smooth trajectory, sampling at 200Hz. First, the model

experiences a 1 second rotation about the world y axis with

initial position 0 rads and final positions π
2 rads and zero

initial and final velocity and acceleration. Since the second

joint of the Euler model is aligned with the y axis this
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Fig. 5: Rotation matrices error for each of the three joints in the
simulated lower body.
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Fig. 6: LG-EKF and EKF estimation during gimbal lock. Both filters
accurately estimate the rotation about the y axis until 1 second.
After the rotation about y the Euler angle model is in gimbal lock
and thus EKF cannot accurately track the orientation until the lock
is escaped at 1.5 seconds. LG-EKF estimation is unaffected by
gimbal lock.
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Fig. 7: Trace of the LG-EKF and EKF position error covariance.
Both filters start with the same error covariance that quickly
converges to a low value. As the Euler angles approach the gimbal
lock the EKF position error covariance increases and continues to
grow until EKF escapes the lock. LG-EKF position error covariance
is unaffected.

effectively puts the Euler angle model into gimbal lock. Next,

the model experiences the same 1 s rotation in the now locked

world z axis. In order to focus only on the gimbal lock

problem, no noise was added to the marker measurements.

Measurement noise, process noise, and initial covariances

were set as described in Sec. V-A.1.

Figures 6 and 7 show respectively the distance metric

described in (30) and the trace of the position error

covariance of both filters.
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Fig. 8: Position error covariance of LG-EKF and EKF for the
spherical shoulder joint (top) and hinge elbow joint (bottom) during
boxing motion estimation.

B. Real-world experiment - boxing arm

To evaluate the benefits of estimating real human motion

with the proposed method we compare the filters on a

highly dynamic boxing motion from the CMU Graphics Lab

Motion Capture Database [25]. The movement is captured

at 120Hz with a Vicon motion capture system using 12
cameras. Skeletal model of each participant is created with

the Vicon BodyBuilder software and markers are attached

at predetermined bony landmarks. We simplify the model

by ignoring finger joints and extra joints in the spine Vicon

software generates in post processing. In order to focus on

the performance of the SO(3) joint, only the motion of the

right arm is estimated. The kinematic chain consists of a

spherical joint at the shoulder and a hinge joint at the elbow.

Three motion capture markers are used, placed on the upper

arm, elbow, and forearm. Figure 3 shows the Euler angle and

Lie group models side by side.

To conduct a fair comparison the filters are initialized

with the same noise parameters; the initial error covariances,

process noise for all states, and observation noise are set to

identity, 0.01, and 0.01 respectively. Furthermore, both filters

are initialized with a good initial guess obtained from Vicon

inverse kinematics available as part of the CMU dataset.

We evaluate the performance of each filter by looking at

the error covariance as well as using the estimated state

to compute the forward kinematics and compare the actual

and predicted marker positions. Figure 8 shows the position

error covariances of the filters for the spherical shoulder

and revolute elbow joints. The shoulder movement is better

estimated on the SO(3) group and thus the error covariance is

significantly more uniform than its Euler angles counterpart.

Generally, the SO(2) is expected to behave identically as

wrapped R
1 [26]. Table I shows the RMSE between the

actual and estimated marker positions. LG-EKF has a better

representation of error covariance and avoids gimbal lock at

the SO(3) shoulder joint leading to a lower RMSE in the

upper arm and elbow markers. The better estimation at the

shoulder is propagated through the kinematic chain leading

to a lower RMSE in the forearm marker even though the

SO(2) joint behaves identically to a single Euler angle.

TABLE I: Root mean squared error in cm between actual and
predicted marker positions for boxing arm motion. Where UPA,
ELB, and FRA are the upper arm, elbow, and forearm markers
respectively. On average LG-EKF improves estimation by 14%.

UPA ELB FRA

EKF 2.61 3.04 2.79

LG-EKF 2.30 2.69 2.27

TABLE II: Root mean squared error in cm between actual and
predicted marker positions for markers attached to the waist of the
full body model. Where RF, LF, RB, and LB are the right and left,
front and back markers respectively. On average estimation on SE3
improves RMSE by 8.2%.

RF LF RB LB

EKF 1.76 1.91 1.57 1.61

LG-EKF 1.66 1.70 1.42 1.46

C. Real-world experiment - full body

To enable localization of the actor in the world frame we

add SE(3) as the first element of LG-EKF’s state vector and

express the entire full body as a collection of SO(3) and

SO(2) elements presented in Fig. 1 (right). SE(3) element

connects the world frame to the base of the kinematic model.

Shoulders, hips, and neck joints are modelled as SO(3)
elements. Elbows, knees, and wrists are described using a

single SO(2) element and the ankles with two perpendicular

SO(2) elements. A total of 37 markers are attached to

the body following the Vicon motion capture manual [25].

To demonstrate the benefits of the SE(3) representation of

localization over a sequence of prismatic and revolute joints

and the overall improvement of LG-EKF we use a dynamic

full body martial arts movement sequence from the CMU

database. Both filters are initialized identically with the same

noise parameters as described in Sec. V-B and with a good

initial state from the Vicon IK.

Figure 9 compares the position error covariance of the

LG-EKF’s SE(3) element state and the EKF’s prismatic and

revolute joint states. As seen from the uniform covariance,

the fast full body rotations and translations are better

represented on the SE(3) group. This can also be observed

in the RMSE of the predicted and actual marker positions

of the 4 pelvis markers shown in Table II. As an extra

comparison we use the Vicon CMU IK results and their

more complex full-body model to run forward kinematics

and compare the RMSE of predicted and actual marker

positions. Table III provides RMSE for the rest of the

markers on the body including that of Vicon IK. Even

without tuning the noise parameters and initial covariances,

the stochastic filtering approaches significantly outperform

the Vicon IK method. Furthermore, the LG-EKF achieves a

much lower RMSE in almost all the markers over the EKF.

The lower error covariance and avoidance of gimbal lock

at the SE(3) joint provides a better estimation of the entire

skeleton position and orientation. The improvement in the

estimation at the base and each SO(3) joint is propagated

down the kinematic tree reducing the RMSE of the markers.
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Fig. 9: LG-EKF and EKF position error covariance of the
transformation of an SE(3) from world to base of the kinematic
model. Since the transformation is an SE(3) element LG-EKF is
able to accurately estimate it and its evolution over time. Prismatic
joints and Euler angles do not correctly represent SE(3) thus EKF
covariance increases during highly dynamic motion.

TABLE III: Root mean square error between predicted and actual
marker positions for full body motion capture. LG-EKF outperforms
both EKF and VICON IK for most of the markers. Refer to [25] for
marker placement and naming details. Note, VICON IK prioritizes
ankle markers to avoid unrealistic sliding at the feet.

R Arm RSHO RELB RUPA RFRM RWRA RWRB

VICON 6.33 4.57 5.17 4.64 7.01 6.91
EKF 2.89 3.04 2.82 2.87 2.43 2.39
LG-EKF 2.6 2.67 2.91 2.58 2.29 2.23

L Arm LSHO LELB LUPA LFRM LWRA LWRB

VICON 7.82 5.96 6.32 8.19 11.11 10.74
EKF 2.98 4.51 3.95 2.77 4.22 2.32
LG-EKF 2.82 4.15 3.86 2.59 4.1 2.02

Torso and Head CLAV T10 STRN RFHD LFHD RBHD LBHD

VICON 6.09 2.98 2.22 12.85 13.07 10.65 10.59
EKF 1.74 1.55 1.72 1.3 1.18 1.5 1.49
LG-EKF 1.64 1.45 1.59 1.26 1.13 1.45 1.43

R Leg RTHI RKNE RSHN RANK RHEE RTOE RMT5

VICON 3.99 4.78 4.27 0.4 1.47 2.54 1.81
EKF 2.06 2.42 2.34 1.15 1.18 0.94 1.06
LG-EKF 1.93 2.4 2.33 1.14 1.16 0.93 1.04

L Leg LTHI LKNE LSHN LANK LHEE LTOE LMT5

VICON 4.36 4.45 2.48 0.53 1.4 2.29 2.4
EKF 2.09 2.01 1.35 1.06 1.22 1 1.18
LG-EKF 2.07 1.98 1.34 1.04 1.21 1 1.16

VI. CONCLUSION

We proposed a novel algorithm for human motion estimation

based on body worn marker position measurements. The

human joints were described as Lie group members,

including special orthogonal groups SO(2) and SO(3), and

a special euclidean group SE(3). For stochastic inference

on Lie groups the LG-EKF was employed, thus explicitly

accounting for the non-euclidean geometry of the state

space. A constant acceleration motion model for human

motion estimation on the group was developed and the

Jacobian of the marker position measurements was derived.

The performance of the proposed method was evaluated

on both simulation and real-world motion capture data,

comparing it with the Euler angles-based EKF as well as

Vicon IK for full body estimation. We showed that LG-EKF

improves estimation for highly dynamic motions and is not

affected by gimbal lock.
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