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Abstract

In this paper we focus on building robust image repre-
sentations for gender classification from full human bodies.
We first investigate a number of state-of-the-art image rep-
resentations with regard to their suitability for gender pro-
filing from static body images. Features include Histogram
of Gradients (HOG), spatial pyramid HOG and spatial
pyramid bag of words etc. These representations are learnt
and combined based on a kernel support vector machine
(SVM) classifier. We compare a number of different SVM
kernels for this task but conclude that the simple linear ker-
nel appears to give the best overall performance. Our study
shows that individual adoption of these representations for
gender classification is not as promising as might be ex-
pected, given their good performance in the tasks of pedes-
trian detection on INRIA datasets, and object categorisa-
tion on Caltech 101 and Caltech 256 datasets. Our best
results, 80% classification accuracy, were achieved from
a combination of spatial shape information, captured by
HOG, and colour information captured by HSV histogram
based features. Additionally, to the best of our knowledge,
currently there is no publicly available dataset for full body
gender recognition. Hence, we further introduce a novel
body gender dataset covering a large diversity of human
body appearance.

1. Introduction
Recently, there has been much work in the area of

behaviour analysis for video surveillance. However, an
equally important issue, that has received relatively little at-
tention thus far, is the ability to profile people in video data
based on age and gender. Such profiling would allow future
intelligent CCTV systems which could determine the intrin-
sic threat posed by certain individuals, or groups of individ-
uals, to others. In this work we will only investigate gender
classification without consideration of age. Specifically, we
investigate gender classification in static images of full body
pedestrians. To date, much of the work in computer vision

with regard to gender classification has focused on facial
gender recognition. Moghaddam and Yang [19] investi-
gated the use of non-linear support vector machines (SVM)
for gender classification with low resolution “thumbnail”
faces. The SVM performance (3.4% error) was shown to be
superior to traditional classifiers such as linear, quadratic,
and Fisher linear discriminate, and more modern techniques
such as radial basis function classifiers and large-ensemble
RBF networks. Buchala et al. [3], investigated principal
component analysis (PCA) for face classification with re-
gard to gender, ethnicity, age and identity. They found that
gender, ethnicity and age could be encoded in a relatively
few number of PCA components, and that these were pre-
dominantly to be found amongst the first few. With respect
to gender, they found information related to complexion,
length of nose, the presence or absence of hair on the fore-
head, eyebrow thickness, and the presence or absence of a
smile useful. Mäkinen and Raisamo [18] presented a sys-
tematic study on gender classification with automatically
detected and aligned faces. They experimented with 120
combinations of automatic face detection, face alignment
and gender classification. They found that the best gender
classification rates of around 86% were achieved with an
SVM.

Whilst the face contains many discriminating features,
in a real world surveillance scenario facial based gender
recognition is not really a viable option. Unlike building
access controls, a CCTV camera is typically not capturing
a close up image of a cooperative subject looking head on
into the camera. Generally the camera field of view will be
of a much wider area, and as such, if it can be seen at all, a
face will be of a much lower resolution than traditional face
based classifiers require. Also, it is likely that the face could
be partially or entirely occluded if the subject in question is
seen from the side or back. Within the area of psychology,
studies have shown that reducing resolution and increasing
noise leads to reduction in facial gender classification by
human subjects [7]. It is clear that a different approach is
required to identify gender in this type of scenario. As such
it is proposed to investigate image representations for gen-
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der classification based on full body images. We examine
features such as body shape, clothing colour and other con-
textual clues in order to do this classification. Full-body
based gender classification is a much harder problem than
the face based approach. For example females and males
may dress in the same colour clothing or not. Long hair can
be an indication that a subject is likely to be female but it is
not a guarantee. People of both genders can choose cloth-
ing or hair of very similar styles. Also full body images
tend to contain more background clutter than cropped fa-
cial images, so there are further complications in extracting
relevant information. Hence, it is still unknown how much
information we can get from the human body appearance
for gender identification. However, to a large extent, human
perceivers can discriminate genders based on the appear-
ance of a person, as well as the way he or she walks.

Making use of temporal information available in video
footage, there has been some work done into recognis-
ing gender by human gait analysis from silhouettes [15].
Human body shape can be categorized using three com-
ponents; endomorphy (soft and roundness), mesomorphy
(hardness and muscularity) and ectomorphic (linearity and
skinniness). These were originally defined by Sheldon et
al. in 1940 [23] and were qualitative. However, quantitative
values for these characteristics can be obtained using the
Heath-Carter anthropometric method of somatotyping [6].
In a recent study, Munoz-Cachon et al. [20] found that
females displayed higher rates of endomorphy or relative
body fat, whereas mesomorphy tended to be higher among
males and ectomorphy was similar in both sexes. These
characteristics may be obscured by clothing but in recent
research by Balan and Black [1] it has been shown that it is
possible to infer a parametric 3D human body shape from
images of clothed people and use it for gender classifica-
tion. However, they require images of the person obtained
with four differently viewing cameras. They capture four
different silhouettes from each camera and search through
the pose parameters such that for each set of values they
generate four silhouettes from a learned model of 3D an-
thropomorphic data and these are then matched to those ob-
tained from the cameras. Gender classification rates of 94%
accuracy were obtained.

For the purposes of full-body gender classification, it
would be useful to include automatic person detection, in
order to segment out the figure before presenting the re-
sult to the gender classifier. This would enable an auto-
mated system to be developed which could work in real time
surveillance scenarios. Viola et al. [27] presented an effi-
cient moving pedestrian detector for video sequences. Their
detector was trained using AdaBoost and combined both
motion and appearance information to detect a walking per-
son. For still images, Dalal and Triggs [9] present a method
of using Histograms of Oriented Gradients which shows

experimentally to significantly outperform existing feature
sets for human detection. This work showed near perfect
results on the publicly available MIT pedestrian database.
However, to the best of our knowledge, there has been no
previous work done looking at the problem of gender recog-
nition from static full body images - with one exception [5].
It is intended to use the findings of this work as a benchmark
for this study and to attempt to achieve comparable or supe-
rior results. Cao et al. [5] represented full body images in a
fixed view (frontal or back) as a collection of patch features
to model different body parts and provide a set of clues for
gender recognition. They built an ensemble learning algo-
rithm to combine the clues and attempt to recognise gender.
Their best results achieved an accuracy of approx 75% for
both fixed and mixed view.

2. Approach
Working with a database of still images, described in

section 3.1, our approach to the full body gender recogni-
tion problem is to represent each image using local features.
Unlike in the case of Cao et al., our features are computed
across the whole image and not computed individually for
parts of the images over a grid based part division. The
images we use are already quite closely cropped to the fig-
ures so the influence of background information is negligi-
ble and we have found that our features based on the im-
age as a whole have produced comparable results to Cao.
Motivation for using features of this type came from recent
work in the field of object categorization by Bosch et al. [2]
where objects were recognized as part of a global class, and
then further classified into specific sub categories. It was
felt that this was analogous to the gender recognition prob-
lem, where both male and female are of the global class
human/pedestrian.

The Pyramid Histogram of Gradients (PHOG) and Pyra-
mid Histogram of Visual Words (PHOW) representations
described in this work are state of the art representations.
In their experiments on the Caltech 101 dataset, they found
that different features achieved different classification per-
formances depending on the specific task. For example
when distinguishing between cars and airplanes, the shape
based descriptor PHOG was more useful, however the ap-
pearance based descriptor PHOW was more useful to dis-
tinguish between horses and zebras. For some other object
categories it was found to be most useful to use a combina-
tion of the two. Their best results, computed as the mean
recognition rate per class of the Caltech 101 dataset, so that
easier classes are not favoured, are reported as 69.0% ± 0.6
for PHOG and 68.1% ± 0.6 for PHOW [2].

A number of different representations and combinations
of representations have been examined here and are de-
scribed below with the PHOG and PHOW features serving
as a starting point. In each case, the result is that for each



image a feature vector is produced. These feature vectors
are then presented to an SVM classifier which extracts the
discriminative information from the vectors and outputs a
prediction score classifying the image as positive (male) or
negative (female).

2.1. Representations

The following section gives an overview of the image
representations used in our experiments.

2.1.1 Appearance Based Features

Pyramid Histogram of Words (PHOW)
This is a descriptor used to capture object appear-

ance. The image is described using a histogram of vi-
sual words [2] drawn from a vocabulary of underlying local
SIFT features [16]. SIFT descriptors are computed at points
on a regular grid with spacing M pixels, here M = 10.
At each grid point the descriptors are computed over circu-
lar support patches with radii r = 4, 8, 12 and 16 pixels.
The SIFT descriptors are computed across each of the HSV
channels to incorporate colour cues which gives a 128 x 3
D-SIFT descriptor for each point. K-Means clustering is
then performed over a sample of training images per cat-
egory selected at random to build a vocabulary per class.
We chose to produce a vocabulary of 150 words for each
set of training images. The male and female vocabularies
were then combined into a 300 word global vocabulary be-
fore computing the feature vectors. The vocabulary is then
used to produce a Bag of Visual Words representation for
each image, which is in turn used to generate a Pyramid
Histogram of Words feature vector for each image using the
scheme proposed by Lazebnik et al. [14] which is based on
spatial pyramid matching. Whilst these features are useful
in describing the appearance of the image, a downside is
the requirement to first build up vocabularies using a sam-
ple of the training images from each class and the need to
first compute the underlying SIFT features for each image.
However, in a live system, the vocabularies would likely be
pre-computed, which would reduce the computational over-
head.

2.1.2 Shape Features

Pyramid Histogram of Orientation Gradients (PHOG)
The PHOG descriptor [2] is used to describe object

shape. Its motivation for use here is that it is felt that human
observers look at body shape when classifying a person as
male or female e.g. body contours, long/short hair etc. The
underlying feature of this is an edge map, computed using
Canny’s method [4]. The feature vector describes the im-
age by local shape and spatial layout of the shape. Local
shape is captured by the distribution over edge orientations

within a region, and spatial layout by tiling the image into
regions at multiple resolutions. The descriptor consists of a
histogram of orientation gradients over each image sub re-
gion at each resolution level - a Pyramid of Histograms of
Orientation Gradients (PHOG).

Histogram of Canny Oriented Gradients (CHOG)
Bosch et al. refer to the Histogram of Oriented Gradients

(HOG) of Dalal & Triggs [9] as inspiration for their PHOG
descriptor. The HOG descriptor was originally proposed
for use as a method of pedestrian detection in static images
and showed near perfect performance for this task on the
publicly available MIT Pedestrian Database [21] used by
Cao et al. for their paper.

Looking at the way in which the PHOG descriptor was
calculated, it was felt that it did not capture enough spatial
information for the gender classification task at hand and
was more suited to easier object recognition tasks where
the difference in shape of two object categories is more ob-
vious. At each level of the pyramid, each region of the pyra-
mid was divided into a 4x4 grid. So for example at the third
level the image is divided into 16 cells, where the size of
those cells is determined by the original image size. The
vectors from each pyramid level were then concatenated to-
gether to produce one long vector at the end.

Dalal & Triggs’ INRIA HOG detector divides the image
by a gridding process into a number of small connected cells
of fixed size (6x6 pixels was found to be optimal for human
detection) and for each cell a histogram of edge orientations
is computed. Cells are then grouped by overlapping blocks
of 2x2 cells so that each cell contributes more than once
to the final descriptor and each block is normalised. The
resulting feature vector is the concatenated histograms from
each block [9].

It was felt it would be better to incorporate the more rigid
geometric constraints of the original HOG detector of Dalal
& Triggs. The original PHOG process of producing the
Canny edge map and dividing it up into a number of bins
remains the same, but here rather than computing the his-
tograms over numerous pyramid levels and increasing num-
bers of regions, a single level is looked at and the gridding
process, described in the HOG detector above, is applied to
produce the feature vector for each image.

The main difference between this feature vector and the
original HOG detector is the way in which the underlying
gradient is computed. Dalal & Triggs found that the de-
tectors performance was sensitive to the way in which the
gradients were computed; they tested a number of meth-
ods but found that the simplest was the best for their pur-
poses. They apply no smoothing to the image and use a 1-D
[-1,0,1] derivative mask. Here however, we use an edge map
computed using Canny’s method, as in the PHOG features
above. We found that for the purposes of gender classi-



fication, the soft connecting edges, which the Canny edge
map determines whether or not to include through its use of
high and low thresholds [4], had a positive effect on perfor-
mance. This was verified by re-computing the features, us-
ing an edge map which used the low value threshold for both
high and low, thereby including all connecting edges indis-
criminately. This resulted in a drop in classification perfor-
mance of as much as 4–8% depending on the test pass.

PixelHOG (PiHOG)
Whilst the CHOG feature type proved quite effective for

gender classification, it was felt that perhaps its use of a
Canny Edge map to compute the underlying gradients may
discard too much information from the image as the result-
ing feature vector was quite sparse. For this reason it was
decided to also investigate a more dense HOG based fea-
ture type more akin to the original INRIA detector to see if
it could better capture the spatial information in the image.
This is produced in the same way as the CHOG feature ex-
cept that in place of computing the edge map using Canny’s
method, instead a custom edge map is used corresponding
to all pixels where the gradient is above a threshold value.
The result was an edgemap which included almost all pixels
in the image.

We found a reasonable improvement in classification ac-
curacy over the CHOG in using these denser feature vectors,
but at a somewhat significant additional computational cost
in training the SVM. Much of this computational overhead
however relates to generation, and I/O of the text based files
that SVMlight uses and in a real time system faster methods
of input could be used to interact with the classifier.

2.1.3 Colour Features

Local HSV Colour Histogram (LHSV)
It was noted that when manually classifying images as

male or female, that colour played an important role for the
human performing the task. The modern convention in fash-
ion seems to be that girls and women tend to prefer brighter
colours and boys and men more comfortable with muted
colours [12] and this pattern is also evident in the dataset
images. Whilst this trend would not be robust enough of a
discriminating factor alone it was felt that a feature which
captured colour information in some way would be useful
if combined with shape features.

This feature is essentially a Hue Oriented His-
togram [25]. The image is divided into the three HSV chan-
nels. The H channel is divided up into a number of bins and
the corresponding S value at each pixel is used at the vot-
ing weight for the histogram. The value in each histogram
bin is the sum of the pixel values in the S Channel whose
corresponding H Channel pixel value belongs to the current
bin. The same HOG gridding process as used in the previ-

ous feature is then applied to the image and a histogram is
computed for each cell of 6x6 pixels. And each overlapping
block of 2x2 cells is the normalised vector after concatenat-
ing each of these four histograms. The final overall feature
vector is the concatenation of each of the block vectors.

2.2. Classification

To demonstrate robustness of our features, five-fold cross
validation was used. The overall accuracy is deemed to be
the mean accuracy of the five test passes.

An SVM was used for classification as it is the under-
lying classification method of the INRIA HOG pedestrian
detector and due to the fact that in Moghaddam and Yang’s
work on facial gender recognition, the SVM was shown to
be robust with respect to scale and degree of detail. We
used Joachims SVMlight implementation of the SVM clas-
sifier in our experiments. [13] which has both the Linear and
RBF kernels as built in options and allows for user defined
kernels also. As well as the basic Linear SVM we also ex-
amined the RBF, χ2, and Intersection kernels with Linear
proving to be the most accurate by a small degree.

• The Radial basis function (RBF) kernel defined as:

k(xi, xj) = Σn
i=1(exp(−γ||xi − xj ||2)) (1)

• The χ2 Distance kernel [28]:

k(xi, xj) = Σn
i=1 exp

(
−γ

(
(xi − xj)2

(xi + xj)

))
(2)

• The Intersection kernel [17]:

k(xi, xj) = Σn
i=1 exp(γ.min(xi, xj)) (3)

In each of these kernels, optimisation of the gamma pa-
rameter was estimated using the method of Zhang et al. of
using the inverse of the mean value from a distance ma-
trix of the feature vectors thus reducing the computational
cost of doing further cross validation to calculate the opti-
mal value [28].

3. Experimental Results
3.1. Datasets

Due to the fact that the problem of full body gender clas-
sification is a new area of research, a publicly available
database of human body pictures with gender labels does
not currently exist. Cao et al. [5] manually labelled images
from the MIT pedestrian database [21] for their study. This
database consists of only front and back views of people,
and a limited range of poses. They determined that there
were 600 suitable images which they classified as male and
288 female images.



3.1.1 MIT Dataset

Figure 1. Sample male and female images from the
MIT Dataset. (128x64 pixels)

In order to compare results of our classification process
to those of Cao et al. we have also manually categorised the
MIT Pedestrian Dataset. The actual divisions of this dataset
which were used in their work have not yet been released,
however we got a similar overall number of images for male
and female as they did. The only variable is perhaps which
of the original MIT images we each chose to leave out of
the set due to being unsure of the genders during manual
labelling. The images in the MIT dataset are 128x64 pixels
with the figure in the centre. We then further cropped the
images down to 106x45 pixels giving a tight crop of the fig-
ure. (See Figure 2) This was done automatically based on
the INRIA HOG detector which uses a 128x64 pixel search
window but includes a margin around the returned person
on all four sides. We determined that running the detec-
tor on the MIT images always returned the full 128x64 im-
age with the person centred, so we could automatically re-
move the boundary pixels. In a real time system the detec-
tor would be run to locate a person and the margin would be
automatically removed as a preprocessing step before gen-
erating feature vectors. The HOG detector uses this extra
background information to provide context for person de-
tection, however we found it had an adverse effect on our
HSV colour based features for gender classification when
compared to results from our other more tightly cropped
VIPeR image dataset. A number of experiments were run
using both the cropped and uncropped versions of the MIT
images. For the purposes of our experiments, we decided to
focus on frontal view images only. However the process is
equally suitable for back and side poses also. Ideally a clas-
sifier robust to pose changes could be trained but for now,
we focus on front poses for simplicity.

After manual classification of the MIT dataset, looking
at front pose images, we had 305 male and only 123 female
images. In our preliminary experiments we found that the
unbalanced division of the data classes had a negative ef-
fect on classification. The classifier appeared to have a bias
towards the majority class, classifying almost all images as
male and producing misleading results. For example for the
combined HOG and LHSV feature type which proved to
give our most accurate results on balanced datasets, using
this unbalanced class division for classification resulted in

Figure 2. Sample of automatic cropping of male and
female images on MIT Dataset. (106x45 pixels)

an overall mean accuracy across the 5 cross-fold divisions
of 71.97%. However looking at this more closely it had
classified all but one or two female images at most as male
for each pass of the cross validation, resulting in a mean
positive accuracy of 100% and a negative accuracy of only
2.47%. For this reason, when looking at results for a binary
classification problem such as this, it is important to look at
accuracies on an individual class level as well as the overall
result. Whilst it is true that this over fitting can be accounted
for by the use of a weighted SVM or other techniques, this
is beyond the scope of this paper as we are focused on the
image representations themselves. For this reason it was de-
cided to balance the MIT dataset by randomly selecting 123
male images to match the number of female images avail-
able and discard the rest. It has been shown that results on
quite unbalanced data tend to less meaningful [24].

3.1.2 VIPeR Dataset

Figure 3. Sample male and female images from
VIPeR Dataset.

It was also felt that after balancing the MIT dataset, per-
haps the number of images available would not be sufficient
to rigorously evaluate our representations. Also given that
the database was initially designed for pedestrian recogni-
tion, not gender classification and all the frontal images are
in the same standardised pose, it was felt they might not test
the feature types robustly enough.

For this reason we have also gathered images from other
sources and manually categorised them by gender and pose.
A further 1249 images have been categorised from another
publicly available dataset. This dataset, VIPeR, was con-
structed for use with Viewpoint Invariant Pedestrian Recog-



nition [11], but is equally suitable for our work after manual
categorisation. This set contains front, back and side profile
images. The VIPeR dataset is more evenly split between
the genders, so no special balancing considerations had to
be made. There are 292 male front view images and 291 fe-
male. The images are 128x48 pixels and are a tighter crop
to the figure, leaving less background than those in the MIT
set so no preprocessing to remove margin pixels was re-
quired. Also, within the set of frontal images the poses are
more varied than those of the MIT set. Within both datasets
each image is of a unique subject thus ensuring that there is
no overlap of subjects between training and test sets.

3.2. Comparison

Comparison of SVM Kernels:
In all, four kernels were investigated for the classification

task; Linear, RBF, χ2 and Intersection. The simple Linear
SVM which just takes the dot product between each pair
of feature vectors seemed to produce the most accurate re-
sults (see Figure 4 for example). It has been shown previ-
ously that if the dimensionality of feature vectors is high,
then the performance of the Linear SVM is generally quite
similar to that of the RBF [8] and this is confirmed by our
results, however for completeness we also investigated the
other kernel functions.

The INRIA HOG detector binaries available can be re-
trained for any detection problem. We investigated retrain-
ing the detector using male images as the positive exam-
ple, and female images as the negative to see how a de-
tector specifically suited to the human form would perform
when differentiating between genders in comparison to our
other features. However, we found it would not discrim-
inate between the classes to a satisfactory level. This is
perhaps in part to do with the relatively small datasets in-
volved. The original detector used 1239 positive training
examples and 12180 negative examples of person-free im-
ages. Our present available gender datasets cannot come
close to matching these numbers.

Feature Male
Accuracy

Female
Accuracy

Overall
Accuracy

PHOW 53.67±11.78 60.90±11.50 57.25± 6.81
PHOG 43.83±12.22 59.30± 8.75 51.59± 5.44
CHOG 69.20±10.55 70.73±10.36 69.92± 4.36
LHSV 67.50± 5.61 49.60± 4.41 58.52± 2.48
CHOG + LHSV 72.47± 7.84 69.97±12.71 71.15± 4.79
PiHOG 71.50± 8.75 72.37±10.76 71.90± 7.22
PiHOG + LHSV 72.37± 8.86 72.37±16.45 72.28± 8.07

Table 1. Average classification accuracy (%) of different features
by linear SVM on uncropped MIT images

Comparison of Features:
Across all 3 sets of results, a dramatic improvement can

Figure 4. ROC Curve for corresponding test passes on
CHOG+LHSV features from MIT dataset over all four
kernels indicating similar performance but with Linear
proving slightly better overall.

Feature Male
Accuracy

Female
Accuracy

Overall
Accuracy

PHOW 60.03±10.34 53.50± 9.45 56.84± 6.81
PHOG 47.10± 6.90 56.77±13.94 51.96± 7.83
CHOG 62.70±11.17 67.57± 9.90 65.11± 8.34
LHSV 65.13± 9.30 56.97±12.00 60.98± 5.58
CHOG + LHSV 67.63± 9.76 70.03±17.27 68.71± 7.57
PiHOG 72.37± 9.92 76.50±10.25 74.42± 7.28
PiHOG + LHSV 72.40± 6.35 79.73±16.19 76.00± 8.13

Table 2. Average classification accuracy (%) of different features
by linear SVM on cropped MIT images

Feature Male
Accuracy

Female
Accuracy

Overall
Accuracy

PHOW 69.16± 5.92 58.07± 5.00 63.63± 2.58
PHOG 64.00± 8.14 42.96± 8.58 53.52± 4.22
CHOG 69.17± 5.49 73.90± 7.07 71.53± 5.80
LHSV 73.99± 3.98 66.76± 8.12 70.37± 2.92
CHOG + LHSV 77.08± 3.55 78.35± 4.65 77.70± 0.83
PiHOG 77.74± 2.45 71.83± 8.28 74.79± 3.73
PiHOG + LHSV 79.47± 4.87 81.80± 7.72 80.62± 2.58

Table 3. Average classification accuracy (%) of different features
by linear SVM on uncropped VIPeR dataset images

be seen between the PHOG and CHOG results. Incorpo-
rating the tighter geometric constraints of the INRIA HOG
Detector designed for human figures into the PHOG pro-
cess clearly captures much more relevant spatial informa-
tion about the image suitable to the task of full body gender
recognition. Further improvement is also noted when mov-
ing to the PiHOG representations.

Comparing the results in Tables 1 and 2 we can see
that the CHOG features actually performed better on the
Uncropped version of the MIT images (69.92%) than the
cropped versions (65.11%). This is likely due to the same



effect observed in the original INRIA HOG detector where
the margin of extra pixels around the figure located was
used to provide extra contextual information which the de-
tector found useful. It is clear however, that for other fea-
tures which use the entire image, the extra background in-
formation introduces noise and lowers the overall classifica-
tion accuracy. This can be seen in both the LHSV features
and the PiHOG. The Canny edge map would discard much
of the boundary information except for some connecting
soft edges, whereas in the case of PiHOG the entire bound-
ary would be included accounting for the introduction of
noise in this case.

As can be seen from the VIPeR dataset results in Table 3,
the highest accuracy of 80.62% is reported when combining
the PiHOG feature vectors with the LHSV.

We found that the best method for combining feature
types was that presented by Zhang et al. in [10] of taking
each of the 2 scores outputted by the SVM for both feature
types and putting them together into new feature vectors
for each image, before presenting these new feature vectors
to another SVM for classification. The results confirm the
speculation, that the shape based features of the HOG would
complement the colour information of the LHSV thus pro-
viding more discriminative information for the classifier.
The same trend is observed in combing the LHSV features
with the CHOG which provides 5% improvement for the
VIPeR dataset than CHOG alone. A similar improvement
over CHOG/PiHOG alone can be seen in the both cropped
and uncropped MIT dataset when LHSV features are also
taken into account, although to a slightly lesser degree. The
relatively low accuracy score for LHSV alone in the MIT
set of only 60.98% when compared to the PiHOG score of
74.42% accounts for this lower increase. The trend of fe-
males wearing brighter clothes holds across both datasets,
but it is more evident in the VIPeR set and this is reflected
in the results. In the case of the VIPeR set both individual
scores are quite high to begin with and closer together and
in this way they complement each other particularly well.
We also tried combining corresponding feature vectors into
one long vector and presenting this to the SVM, but found
the results were slightly less accurate than our other com-
bination method. In some particular cases in the MIT sets
in fact, combining the significantly lower accuracy LHSV
features with the HOG based features actually dragged the
overall accuracy down a little.

Based on the fact that the CHOG features performed bet-
ter on the Uncropped MIT images, an experiment was run
to check how combining the Uncropped CHOG features
with the cropped LHSV features would perform. How-
ever there is negligible difference between this and the case
where both features are computed from the uncropped im-
ages. As in the VIPeR dataset, cropped PiHOG combined
with cropped LHSV features still proves to be the best over-

all feature choice.
The appearance based PHOW features achieved accu-

racies in the range of 56-64%. This is better than ran-
dom guess, but they are out performed by the LHSV fea-
tures. Some experiments where also done in combining
these PHOW features with the LHSV and HOG based fea-
tures, but no improvement in overall performance was ob-
served.

(a)

(b)

(c)
Figure 5. Examples of misclassified images from VIPeR
dataset
(a) Misclassified by PiHOG alone (shape)
(b) Misclassified by LHSV alone (colour)
(c) Misclassified even when both LHSV and PiHOG
features were used together.

Figure 5 shows example images which were misclassi-
fied in the VIPeR dataset. Figure 5 (a) shows images which
were misclassified by PiHOG alone (shape) but correctly
classified when colour information from LHSV was also
taken into account. Note the bright colours of the female
images and dark male images. Similarly 5 (b) shows im-
ages misclassified by LHSV colour information alone, but
adding shape information took body shape into account and
corrected the error. Finally, 5 (c) gives a sample of misclas-
sified images even when both LHSV and PiHOG features
were used together. This is unsurprising. For example the
first image is female, but this may not be immediately obvi-
ous even to a human observer and could easily be mistaken
for an overweight male. Similarly the long hair on the male
in the 4th image may account for its misclassification as the
majority of male training images would have had short hair.



4. Conclusion
This paper presents an experimental investigation into

the problem of gender recognition from full body static im-
ages with a view to emulating the rapid progress of the field
of generic object recognition in that of specific gender pro-
filing. It examines a number of feature types for extract-
ing discriminative information from the images suitable for
classification. By combining both shape and colour infor-
mation we achieved the best accuracy of 80.62% demon-
strating that multiple cues should be taken into considera-
tion when classifying full body images and no one feature
type is sufficient to capture all relevant information alone.

Future work will examine more sophisticated meth-
ods of combining features such as multiple-kernel learn-
ing [26, 22], to see if this can improve the classifier score.
We will also investigate other feature types to try and cap-
ture a wider range of information from the images than
shape and colour cues. It would also be good to exam-
ine some alternative colour representations than the current
LHSV implementation we are using to see if any improve-
ment can be gained.
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