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Abstract. This paper presents a marker-less method for full body hu-
man performance capture by analyzing shading information from a se-
quence of multi-view images, which are recorded under uncontrolled and
changing lighting conditions. Both the articulated motion of the limbs
and then the fine-scale surface detail are estimated in a temporally co-
herent manner. In a temporal framework, differential 3D human pose-
changes from the previous time-step are expressed in terms of constraints
on the visible image displacements derived from shading cues, estimated
albedo and estimated scene illumination. The incident illumination at
each frame are estimated jointly with pose, by assuming the Lamber-
tian model of reflectance. The proposed method is independent of image
silhouettes and training data, and is thus applicable in cases where back-
ground segmentation cannot be performed or a set of training poses is
unavailable. We show results on challenging cases for pose-tracking such
as changing backgrounds, occlusions and changing lighting conditions.

1 Introduction

Marker-less capture of human skeletal motion from images is one of the well-
studied problems of computer vision, with recent advances being able to re-
construct human motion at increasing speed and accuracy and under lesser
controlled situations [1–7]. These methods have several applications in indus-
try: ranging from game and movie productions to use in biomechanics, ergon-
omy and sports sciences. However, despite great algorithmic advances, even
latest approaches can not yet be applied in arbitrary environments with possibly
changing lighting conditions, occlusions and starkly varying scene backgrounds.
This is why purposefully placing markers in the scene is still the method of
choice under such more challenging conditions [8]. Special effects professionals
and producers of 3D video content are sometimes interested beyond kinematic
motion parameters - demanding faithful and detailed dynamic 3D shape mod-
els of captured scenes, such that believable virtual actors or convincing novel
viewpoint renderings can be created. The research community has responded to
this requirement by developing so-called performance capture approaches, i.e,
methods that simultaneously capture shape, motion and possibly appearance
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of people in general apparel from a handful of video recordings [9–13]. Unfor-
tunately, many state-of-the-art performance capture approaches are limited to
studio settings with controlled lighting, controlled background, and to scenes
without static or dynamic occluders. This has prevented the use of performance
capture in practical applications such as outdoor movie sets or sports stadiums.

In this paper, we make a principal contribution towards the goal of model-
based performance capture under less controlled conditions. We propose an algo-
rithm that analyzes shading information to simultaneously estimate (a) human
skeletal motion parameters, (b) arbitrary and time-varying incident scene illu-
mination, (c) an approximation of surface reflectance, and (d) detailed dynamic
shape geometry - such as folds and muscle bulges. We accept as input a multi-
view video recorded from a synchronized and calibrated set of cameras, along
with a rough initial shape-template of the person given as a 3D mesh fit to a
kinematic skeleton. We do not require the subject to wear specific clothing or
markers. Unlike previous performance capture methods [9–13], we do not re-
quire a fully controlled scene background, such as green screen, and thus do not
expect exact foreground-background segmentations. We handle changing back-
ground and even some occlusions in the scene (Fig. 1). We do not rely on image
features such as SIFT; our method is suitable even when the subject wears
sparsely textured clothing.

The main idea in our paper is to mathematically formulate the image shading
constraint in terms of its differential towards the motion parameters of the kine-
matic chain representing human body pose. Along with pose, we simultaneously
estimate time-varying incident illumination, surface albedo and detailed surface
geometry in a joint framework. Thus, we integrate the human motion estimation
problem into the broader framework of multi view shape-from-shading.

Our major contributions in this paper are as follows.

1. We present a new theoretical formulation of performance capture that si-
multaneously recovers human articulated motion and time-varying incident
illumination, by a minimization of shading-based error.

2. We provide a solution to reconstruct both skeletal motion estimates and
finely detailed time-varying 3D surface geometry for human performances
that are recorded under general and changing illumination and in front of
less constrained background.

2 Related Work

For a thorough discussion and a historical perspective on human motion capture
from images, one should consult any of the surveys [5, 7, 14]. Research efforts
today can be broadly distinguished into studio-based methods which use multi-
ple synchronized and calibrated cameras to achieve a high level of accuracy, and
general purpose methods that work under fewer cameras in potentially cluttered
surroundings - albeit producing pose estimates of lower accuracy. Many of the
successful methods [15–17] validated on the HumanEva dataset [5] rely on a set
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(a) (b) (c)

Fig. 1. Shading based pose tracking: (a,b) Overlay of estimated pose with recorded
images - the actor is partially occluded by a person moving in the background (c)
Reconstructed high-detail 3D geometry. The inset shows folds of the yellow T-shirt
captured in 3D.

of training poses of tracking which limits their generalizability to new poses not
observed in the training set. Methods for performance capture [9–13], i.e, de-
tailed reconstruction of 3D surfaces along with skeletal motion, required studio
conditions and green-screen to facilitate background segmentation. By contrast,
in this paper we propose a shading-based approach that requires neither silhou-
ettes nor training data. Silhouette estimation is sometimes integrated into the
pose-estimation pipeline [18, 19] where 3D shape estimates are incorporated as
a prior into image segmentation step. In particular, Hasler et al. [18] use this
idea for an outdoor motion capture method. However, their approach does not
capture detailed time-varying surface geometry. Also, background segmentation
is an inherently error-prone step that fails in many cases; and hence should be
avoided if possible for 3D shape reconstruction. Stoll et al [6] recently proposed a
sums-of-Gaussian based holistic image and shape representation for pose track-
ing without silhouettes. But unlike them, we handle dynamic lighting changes,
and recover not only body pose but also dense 3D surface detail, by analyzing
image shading information.

Works in dynamic photometric stereo [20, 21] relied on specially engineered
illumination to recover normal orientations that could be integrated to obtain
the 3D surface. For example, a light-stage [21] captures images under temporally
multiplexed illumination : with the shape being recorded under multiple known
lighting conditions that provide a basis for describing light variations. These
works analyze image shading information at a dense scale and thus recover true
dynamic surface detail, instead of interpolating it from sparse image information
such as silhouettes. However, finding a temporally coherent parameterization of
the dynamic surface, despite some recent efforts [22, 23], remains a difficult task
- especially when skeletal articulated motion need also be simultaneously cap-
tured. Wilson et al [24] use stereo and optical flow in a light-stage setup to
obtain a temporally coherent parameterization for facial performance capture.
They compute optical flow amidst a subset of tracking frames that are all cap-
tured under the same incident lighting. By contrast, in this work, we address
arbitrary and unknown lighting conditions which can vary from frame-to-frame.
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Fig. 2.Overview: (a) input multi-view images (b) skeletal pose (c) incident illumination
(d) surface albedo (e) refined surface geometry. (b-e) are outputs of our method. Steps
(A,B) for estimating pose and lighting are alternated in a joint optimization framework.
In the step (C), final estimates of lighting, albedo and surface geometry are obtained.
These estimates at t are provided as input for the optimization at t+ 1.

Wu et al.[25] have recently published a work that combines the strengths of model
based performance capture with the inverse-rendering approaches of photomet-
ric stereo to reconstruct dynamic 3D surface detail that approaches the quality
of light-stage reconstructions, albeit under arbitrary and unknown lighting con-
ditions. The reconstructed surfaces are temporally coherent and aligned with
simultaneous skeletal motion estimates. However, in that method, performance
capture of the coarse geometry and dynamic shape refinement were treated as
subsequent and independent problems, and the first part required the scene to
be covered in green screen to enable coarse geometry estimation via silhouettes.
By contrast, we use illumination estimation and shading constraints throughout
the performance capture pipeline, i.e, for skeletal pose estimation and detailed
shape reconstruction.

Our work is also relevant to the broader problem of dynamic shape from shad-
ing. Zhang et al.[26] provide an elegant formulation for shape and motion esti-
mation under varying illumination, but the number of unknowns in the problem
make it severely under-constrained, limiting their approach to only rigid mo-
tion estimates. However, as mentioned by them and others, shading variations
provide cues for estimating flow even in texture-less regions. In this work, we
build upon this insight to estimate complete articulated human motion under
unknown and time-varying incident illumination, without relying on silhouettes



Full Body Performance Capture 761

or training data. To the best of our knowledge, this has not been attempted
before, to achieve results of even lower quality.

3 Overview

The input to our method is a multi-view video sequence of a moving actor cap-
tured using a sparse set of synchronized and calibrated cameras. Lighting in the
scene can be arbitrary and time-varying, and since no background subtraction is
required, no green-screen is expected and other potentially occluding elements
can be in the scene. A rigged 3D mesh model with an embedded skeleton is
provided as a template for tracking. We only need a smooth template mesh at a
low resolution; the fine-scale detail is added later by our method. Similar to [13],
the smooth template is built from a static laser scan of a person, alternatively
image-based reconstruction methods are also feasible. The embedded bone skele-
ton as well as the skinning weights for each vertex, which connect the mesh to
the skeleton, are obtained using standard tools.

An outline of the processing pipeline is given in Fig. 2. Given a set of captured
multi-view images (a) as input, at each time-step t+1 we estimate skeletal pose
(b), incident illumination (c), surface albedo (d), and detailed surface geometry
(e). For each of these variables, we solve an inverse-rendering problem that at-
tempts to make the rendered images as-close-as-possible to the captured image
data. In Step-A, starting with the skeleton and the refined mesh from time t, the
skeletal pose is optimized by assuming incident lighting and surface albedo from
t, thereby exploiting temporal coherence. In Step-B, the incident illumination
at time t+ 1 is estimated based on the skinned coarse mesh in the new skeletal
pose. The Step-A is then repeated by taking the newly estimated lighting which
results in a better pose estimate. The steps A and B constitute the main part
of our method and are described in Sec. 5. In Step-C, we re-estimate incident
lighting, surface albedo and then refine the surface geometry. The refined sur-
face now captures folds and bulges not describable by articulated motion. For
the initialization of the very first frame, we refer readers to Gall et al. [13] for
pose estimation based on the manually segmented silhouettes and Wu et al. [25]
to calculate the albedo value for each albedo segment, which could be provided
by the user or any albedo segmentation method.

4 Image Formation Model

Assuming the object being tracked is a non-emitter of light (i.e, no surface inter-
reflections), the reflectance equation describing the light transport at a certain
surface point on the object can be defined as [27]

I(q, ωo) =

∫

Ω

L(ωi)V (q, ωi)ρ(q, ωi, ωo)max(ωi · n(q), 0)dωi, (1)

where I(q, ωo) is the reflected radiance, and the variables q, n, ωi and ωo are
the spatial location, the surface normal, and the incident and outgoing light
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directions, respectively. The symbol Ω represents the domain of all possible
directions, L(ωi) represents the incident lighting, V (q, ωi) is a binary visibility
function, and ρ(q, ωi, ωo) is the bidirectional reflectance distribution function of
the surface at q. To simplify the reflectance equation, we assume the reflectance
to be Lambertian i.e, ρ(q, ωi, ωo) = ρ(q), and represent the light transport with
spherical harmonics (SH) so that the integral in the spatial domain will be
converted to a dot product in the frequency domain.

We define the variable G = LV and represent it with SH coefficients gk. Then
Eq. (1) will be simplified as follows:

I(q) = ρ(q)

d2

∑

k=1

gk(q)Sk(n(q)), (2)

where Sk(n(q)) is the scaled SH basis function depending on the surface normal
directions n(q), and d − 1 is the order of SH used. When visible lighting and
albedo are known, the rendering value is determined by the surface normal only.
This equation is employed to provide the shading constraints for pose estimation
(Sec. 5) and later used for surface geometric refinement (Sec. 6).

5 Pose Estimation under Varying Illumination

At each time-step t+1, we perform a simultaneous estimation of body pose and
incident lighting, both of which may change from time t. In order to keep the op-
timization tractable, we assume that changes in body pose are independent from
changes in lighting, and alternate between the optimization of these variables.

We take as initialization the refined mesh and the embedded skeleton of time
t, as well as the estimated incident lighting and surface albedo. In Sec. 5.1, we
introduce how the mesh changes according to pose-changes. In Sec. 5.2, we define
the shading constraint used to estimate the pose parameters, given the incident
lighting. The optimization to minimize the shading error is described afterwards.
The method to estimate incident lighting is described in Sec. 5.3.

5.1 Surface Parameterization with Respect to Pose

We use the popular linear blend skinning approach to deform the mesh to a
skeletal pose. Similar to [1], we represent the articulated pose to be estimated by

a set of twists θk ξ̂k. The state of a kinematic chain is determined by a global twist
ξ̂ and the joint angles Θ = (θ1, · · · , θm). Assuming the state of the kinematic
skeleton of the previous time-step to be known, the unknowns for pose estimation
are the rigid motion of the root node and changes in joint angles which we denote
as φ = (∆ξ̂,∆θ1, · · · , ∆θm). Let qti be the position of vertex i at t. By using
exponential maps to represent each joint’s rigid motion and by linearizing the
rigid body transforms, the pose of the vertex i at t + 1 can be expressed with
the skinning equation as
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(

qt+1
i

1

)

=

m
∑

j=1

wje
∆ξ̂

∏

k∈T (j)

eξ̂k·∆θk

(

qti
1

)

≈

(

qti
1

)

+

⎛

⎝∆ξ̂ +
m
∑

j=1

wj

∑

k∈T (j)

ξ̂k ·∆θk

⎞

⎠

(

qti
1

)

=

(

qti
1

)

+Mq(i) · φ,

(3)

where T (j) determines the indices of joints preceding the joint k in the kinematic
chain, and Mq(i) is the matrix determining how the pose change influences the
change of vertex position. Each vertex i is assigned a set of skinning weights
wj that determine how much influence bone (or joint) j has on the deformation
of vertex i. Skinning weights are once defined during template building using
standard techniques [13]. A similar equation can be derived for the vertex normal
nt+1
i at time t+ 1

(

nt+1
i

0

)

≈

(

nt
i

0

)

+Mn(i) · φ, (4)

where Mn(i) is a matrix that determines how the pose change φ results in a
change in normal orientation.

5.2 Shading Constraint for Pose Estimation

Our shading constraint requires the rendered images of the optimal pose accord-
ing to our lighting model to be as-close-as-possible to the image data captured.
Following Eq. (2), the shading constraint for a single camera c is defined as

Es
c =

∑

i

(ρig(q
t+1
i ) · S(nt+1

i )− It+1
c (xt+1

i , yt+1
i ))2, (5)

where (xt+1
i , yt+1

i ) is the projection of the surface vertex qt+1
i , and g(qt+1

i ) and
S(nt+1

i ) are the vectors of SH coefficients gk and Sk of Eq. (2). We assume the
albedo ρi at time t+1 is the same as that at time t, thereby exploiting temporal
coherence in scene motion. However, both the lighting and geometry at time
t+1 are unknown. We attempt to estimate both of them in a unified framework
in order to properly account for shading changes due to changes in either light-
ing or pose. Since simultaneous estimation of both of them is computationally
challenging, we alternate between error minimization with respect to either of
these two variables. First we minimize the shading error to estimate the pose,
by assuming the lighting of the previous time-step, and thereafter we solve for
lighting. To do this, we linearize the SH term S(nt+1

i ) and the image intensity
term It+1

c . The SH term is expressed in a first-order Taylor-series expansion, and
using the terms of Eq. (4).

S(nt+1
i ) ≈ S(nt

i) +
∂S(nt

i)

∂nt
i

∆nt
i = S(nt

i) +
∂S(nt

i)

∂nt
i

Mn(i) · φ, (6)
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where
∂S(nt

i
)

∂nt

i

is derivative of scaled SH function with respect to normal changes

∆nt
i, which are expressed in terms of pose changes φ.
Inspired by the formulation of optical flow, we linearize It+1(xt+1

i , yt+1
i ) as:

It+1(xt+1
i , yt+1

i ) = It+1(xt
i + ui, y

t
i + vi) ≈ It+1(xt

i, y
t
i) + It+1

x ui + It+1
y vi. (7)

Next, we derive the linear approximation for the flow (ui, vi) in an image from
the motion parameters φ. This is similar to the derivation in [1], but we use
the full perspective camera model instead of scaled orthographic projection [1],
as camera calibration is available for our system. Then, the image motion from
time t to time t+ 1 can be linearized as:
(

ui

vi

)

≈

(

s1
Zt

i

0 0 s3

0 s2
Zt

i

0 s4

)

· eξ̂c ·

(

∆qti
0

)

+

(

s1
Zt

i

2 0 0 0

0 s2
Zt

i

2 0 0

)

· eξ̂c ·

(

qti
1

)

·∆Zt
i , (8)

where s1, s2, s3, s4 are the acquired camera intrinsic parameters, eξ̂c acts as the
extrinsic matrix of the camera’s pose, Zt

i is the depth of qti for the current camera.
The linearization is based on the assumption that the rigid motion ∆qti as well
as the relative depth change ∆Zt

i are small enough. As both of them can be
expressed through pose change φ (from Eq. (3)), the flow (ui, vi) can ultimately
be expressed as a linear function of φ.

The shading constraint in Eq. (5) can be further improved by considering
the color similarity between the rendered color and the image color. The color
similarity is computed as the Euclidean distance in HSV space and appears as
a weighting factor αi in our shading constraint. This helps us avoid optimizing
the model where the template material does not yet match to its projection in
the image. Combining terms from multiple cameras, our non-linear multi-view
shading energy function is given as

E =
1

N

∑

c

∑

i

{αc
i(ρig(q

t+1
i ) · S(nt+1

i )− It+1
c (xt+1

i , yt+1
i ))}2, (9)

where N is the total number of constraints for error normalization (i.e, the num-
ber of pixels in all cameras getting the projection from the mesh), and αc

i is the
color similarity for pixel i in camera c. Using the previously described recipe of lin-
earization, this can be expressed in terms of pose parameters φ as a linear system:

H · φ = b (10)

Specifically, the kth rows of matrix H and vector b have the following form
(detailed derivation is in the supplementary document, r⊤3 refers to the last row
of the rotation matrix of the camera pose) :

Hk = α
c
iρig(q

t+1

i ) ·
∂S(nt

i)

∂nt
i

Mn(i)− α
c
i

[

s1
Zt

i

It+1
x , s2

Zt

i

It+1
y , 0, s3I

t+1
x + s4I

t+1
y

]

e
ξ̂cMq(i)

+α
c
i

[

s1

Zt

i

2 I
t+1
x , s1

Zt

i

2 I
t+1
y , 0, 0

]

e
ξ̂c

[

qti
1

]

·

[

rT3 0
]

·Mq(i),

bk = α
c
i I

t+1(xt
i, y

t
i)− α

c
iρig(q

t+1

i ) · S(nt
i).

(11)
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Coarse-to-Fine Optimization. To minimize the non-linear error function of
Eq. (9), we iteratively solve Eq. (10) and linearize around the new solution. Note
that here after solving Eq. (10), we check if the original energy in Eq. (9) de-
creases to decide the appropriate step size for updating the solution, in a fashion
similar to Newton-Raphson style minimization with adaptive step size. Besides,
as given in Eq. (7), the linearization assumes that the local image intensity
variations can be approximated by a first-order Taylor expansion. So we adopt
a coarse-to-fine strategy for pose estimation - by building an image pyramid
through successively downsampling each captured image, and running the pose
estimation from coarsest images to the finest images. This helps us track big
motions and reduces the chance of getting stuck in local minima.

5.3 Lighting Optimization

In the general case, lighting changes can be abrupt and impossible to model.
However, for most cases, it can be assumed that the lighting at t + 1 changes
gradually from lighting at t. In our method, we optimize for pose and lighting
in a two pass strategy. For the first pass, we use the lighting at t to optimize
for pose at t + 1, as described in the previous section. For the second pass, we
estimate the lighting at t + 1 based on the new pose, and then use it to refine
the pose estimates. We have empirically observed that one additional iteration
of alternating optimization is sufficient for getting good estimates.

We derive the constraint for lighting optimization from the image formation
model defined in Eq. (1). But instead of Eq. (2), following Wu et al. [25], we use
a different type of linearization. We define T (q, ωi) = V (q, ωi)max(ωi · n(q), 0)
and then represent it with SH coefficients tk, while representing the incident
lighting L with SH coefficients lk. This gives the linearization:

I(q) = ρ(q)

d2

∑

k=1

lktk. (12)

We compare the rendered intensity values with the captured image Ic and solve
for the lighting coefficients lk. In order to deal with outliers, i.e. erroneous projec-
tion due to the inaccuracy of the pose, we solve a ℓ1 norm minimization problem
defined as:

l̂ = argmin
l

∑

i

∑

c∈Q(i)

|

d2

∑

k=1

lktk − Ic(Pc(xi))|. (13)

Here, i is the vertex index, c is the camera index, Q(i) is the set of cameras that
can see the i-th vertex xi, and Pc is the projection matrix for camera c.

6 Dynamic Surface Refinement

After the pose and lighting estimation step, we have a coarse template model
that strikes the correct pose, as parameterized by the respective skeleton pose
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parameters. Different from linear skinning that we used in skeletal pose estima-
tion for its simplicity, we here use quaternion blend skinning[28] to render the
final shape of the surface mesh in the current pose, as it leads to higher quality
surface deformation, in particular around joints. When we have the coarse mesh
of time t + 1, we refine the vertex positions qi from shading cues as given in
Eq. (3). We refer to [25] for detailed explanation of this step. A minor difference
is that temporal consistency is taken into account for assigning albedo labels, by
formulating this as a Markov-Random-Field (MRF) problem with the data term
consisting of two values (i) the similarity of vertex color to the average color in
the material label and (ii) the label similarity with previous time-step.

7 Results

7.1 Quantitative Evaluation

In order to quantitatively evaluate our method, we generated a synthetic se-
quence of 100 frames with 10 camera views. The ground-truth skeleton and mesh
geometry are taken from the results of a previous performance capture method
of a human walking sequence. The ground-truth surface albedo map and dy-
namically changing illumination are manually assigned. With these generated
synthetic images as input, and given the mesh, skeleton, albedo segmentations
for the first frame, we run our algorithm on the remaining 99 frames. In Fig. 3,
we report the accuracy of our approach, with the mean joint position error of
only around 6 mm.

7.2 Real-Word Sequences

We use three real captured sequences for qualitatively evaluating our method.
The sequences were captured with 11 cameras in a studio, but unlike in the input
data of previous performance capture methods, the subject can wear sparsely
textured apparel, there is no need for green-screen background, and there may
be potentially occluding objects in the scene and dynamic background (Fig. 1).
Cameras recorded at a resolution of 1296 × 972 pixels, and at a frame rate of
40fps. Each sequence shows major illumination changes; they are induced by
an operator randomly setting control knobs for various lights in the studio -
these readings are not taken nor provided in any way to our method. Please also
note that some of the captured images are saturated, which our method handles
robustly. As can be seen in the overlayed images of our estimated skeleton and
3D shape in Fig. 4, good pose estimates are obtained despite the challenging
scene conditions. Even when a few cameras are partially occluded, our method
still works quite well thanks to the use of shading cues and multiple cameras
setup. High quality surface detail such as deforming cloth folds are also captured
(Fig. 6). We invite the readers to see the results in our accompanying video, which
is better suited for observing temporal information. Minor errors in skeletal joint
positions might cause the surface to jitter over time, which we remove in our
video results by temporal smoothing of the vertices.
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(a) (b) (c)

Fig. 3. Quantitative evaluation: (a) The mean error of joint positions. (b) The standard
deviation of joint position errors. (c) A generated synthetic image.

We compare the results of our method with a texture-based tracker that
does not estimate lighting explicitly at each frame. Instead, it assumes texture
from the first frame and uses optical flow for tracking; it loses track after a few
frames as the lighting changes significantly (see Fig. 5-b). We also implemented
a silhouette-based tracker [13] that explicitly performs background segmenta-
tion using chroma-keying on the captured images. Due to changing lighting and
moving background objects, the extracted silhouettes are sometimes misleading
and result in inaccurate pose estimates (see Fig. 5-c).

7.3 Computation Time

The computation time of our method depends on image resolution, mesh res-
olution and the order of SH used for representation. In our experiments, we
represented 3D shape using meshes of 80000 vertices, and used a 4th order SH
for representing lighting. With these values, our method takes about 10 min per
each frame on a standard CPU with a 2.6 GHz processor and 8 GB RAM. Specif-
ically, the computation times are 3 min for one-pass of pose estimation, which we
do twice for each frame. The lighting estimation step is quite fast, taking only
10 seconds. The other time-consuming part is the dynamic shape refinement,
which takes 4 min, of which 1 min is spent on visibility calculation. Striking a
trade-off between representation accuracy and computation time, we utilized a
low-resolution mesh (around 5000 vertices) to render the visibility map for each
vertex on the high-resolution mesh. As our code is unoptimized, we believe the
computational time can be further reduced by parallelizing the algorithm.

7.4 Limitations and Future Work

Our algorithm becomes less effective when the underlying shape template is not
accurate. For example, the rotation of the upper arm may not be modeled in the
skeleton. We corrected for such errors by manually adjusting the pose where the
algorithm failed (roughly one frame per 200 frames needed such correction in
our experiments). Please note that a global optimization strategy such as that
used in [13] can automatically handle such cases. Also since we estimate lighting
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(a) (b) (c) (d)

Fig. 4. Illumination changes in a real captured sequence: (a,c) Frames showing widely
different incident illumination (b,d) The output skeletal pose and mesh overlayed onto
the images. The insets show estimated illumination at each frame.

(a) (b) (c)

Fig. 5. Comparison with alternative tracking methods: (a) Our method (b) Texture-
based tracking (c) Silhouette-based tracking [13]

Fig. 6. Results of pose and 3D shape estimation: (a,b) Overlayed skeletal pose at
different frames and camera views (c) Fine-scale 3D shape reconstruction. The inset
shows dynamic cloth deformations captured from shading.
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and pose sequentially at each time-step, error accumulation may cause drift of
the tracker. In future work, we would like to address this issue by stronger priors
from data-driven modeling. Our assumptions of Lambertian reflectance and local
shading model may not be justified in some cases. Abrupt lighting changes, e.g,
the illumination generated by a controlled light stage, are also hard to model.
However, in such cases, the lighting pattern is known beforehand and can be
directly provided as input to our method. A final limitation is the computation
time for running our method which is too high for real-time deployment. We
would like to address these and other limitations in future work.

8 Conclusion

In this paper, we provide a novel shading based frame-work for human per-
formance capture under uncontrolled and dynamic lighting. Starting from syn-
chronized multi-view images, we estimate both the articulated human pose and
fine-scale time varying surface geometry. Key innovation is a novel iterative
pose optimization framework that exploits estimated lighting and shading cues.
Our approach does not expect carefully engineered backgrounds as it does not
perform silhouette extraction or any other form of background segmentation.
Ultimately, one of the goals of vision based motion capture is to obtain high
quality motion reconstructions using a very limited set of cameras in outdoor
situations. Even though we do not explicitly evaluate our method in outdoor
scenes, we believe that our work provides a crucial step towards this goal.
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