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Ascertaining the physical state of a system is vital in order to
understand and predict its behaviour. However, due to their fragile
nature, the direct observation of quantum states has been elusive until
recently. Historically, determination of the quantum state has been
performed indirectly, through use of tomography. We report on two
experiments showing that an alternative approach can be used to de-
termine the polarisation quantum state in a simple, fast, and general
manner. The first experiment entails the direct measurement of the
probability amplitudes describing pure polarisation states of light,
the first such measurement on a two-level system. The second ex-
periment entails the direct measurement of the Dirac distribution (a
phase-space quasi-probability distribution informationally equivalent
to the density matrix), demonstrating that the direct measurement
procedure is applicable to general (i.e., potentially mixed) quantum
states. Our work has applications to measurements in foundational
quantum mechanics, quantum information, and quantum metrology.

Measurement plays a vital role in the practice of science. This is especially
so in the case of quantum mechanics, where the measurement process is funda-
mental to the formulation of the theory. A crucial feature of quantum mechanics
is that a measurement of one variable of a system erases information about the
corresponding conjugate variable. The classic example is that determining the
position of a particle disturbs its momentum, and vice versa. These measure-
ments, known as strong measurements, collapse the wavefunction such that no
additional information can be obtained.

In order to completely determine a quantum state, which is described in gen-
eral by complex numbers, one must perform multiple measurements on many
identical copies of the system. Quantum tomography1 is one method of quan-
tum state determination that uses strong measurements2–6. Tomographic re-
construction entails estimating the complex numbers that describe the state
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from the real-valued probabilities that result from strong measurements. Con-
sequently, this approach can be considered indirect state determination due to
the requirement of post-processing.

The first demonstration of direct quantum wavefunction measurement was
recently reported7. In this study, the transverse spatial wavefunction, that
is, the probability amplitude for photon detection at each position ψ(x), was
measured directly. In contrast to tomography, this method is considered direct
because the measurement apparatus records the complex probability amplitudes
describing the state, and therefore there is no need for post-processing. The
technique for direct quantum state determination is applicable to many different
systems, which, as the authors of7 point out, includes the polarisation degree of
freedom. Recently it has been proposed that this technique can be generalized
to measure all aspects of a general quantum state, i.e., so that it is compatible
with mixed states8.

Although familiar and convenient, the density matrix is not the only way
to describe a general quantum state. A state can be expressed in terms of
its Dirac quasi-probability distribution (or phase-space representative), which
is informationally equivalent to the density matrix ρ8–11. Quasi-probability
distributions have been both studied theoretically, in the context of discrete
systems12,13; and measured directly, for case of the spatial Wigner function14,15.
The Dirac distribution is particularly useful due to its relation to the direct
measurement technique8.

Directly measuring a quantum system relies on the technique of weak mea-
surement: extracting so little information from a single measurement that the
state does not collapse16–30. The first measurement of a weak value was the
amplified transverse displacement between the polarisation components of light
induced by a birefringent crystal19. More recently, the technique was used to ob-
serve the transverse displacement of a beam of light by only several angstroms25

and an angular rotation on the order of femtoradians26. Weak measurement
was recently proposed as a tool to study nonlinear optical phenomena with
single photons by amplifying the apparent photon number29. Weak measure-
ments have also allowed observation of apparent super-luminal velocity21 and
the mapping of average photon trajectories after they pass through a double
slit28.

The main results of our paper are the direct measurements of the wavefunc-
tion and Dirac distributions for polarisation states of light. These results are the
first direct measurements that are applicable to qubits - the fundamental unit
of quantum information. We demonstrate direct state measurement in a two-
dimensional Hilbert space by weakly coupling the polarisation state of light to
the spatial degree of freedom. This study extends previous work on polarisation
weak measurements17,19,24. We obtain the weak value by introducing a small
spatial shift between the horizontal and vertical polarisation components, then
strongly measuring the polarisation in the diagonal/anti-diagonal basis. Impor-
tantly, our experimental implementation determines the general description of
the state, and, in contrast with previous experimental work, it is not limited to
pure states.
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In our experimental procedure, we use direct measurement to determine the
polarization state of the photons in an intense beam of light that has been pre-
pared such that each photon is in the same quantum polarisation state. Thus,
even though the light beam is intense, our procedure determines the quan-
tum polarization state of each photon. We note that certain photon states,
such as those that involve entanglement, could not be measured using the ex-
act procedures described here. For such states, the measurement would need
to be performed at the single photon or biphoton level. The basic procedure
outlined in this paper could still be used in this situation, although the de-
tection process would need to be performed using single-photon detectors. In
this regard, we note that recent work has shown that cooled28 or commercial
electron-multiplying31 CCD cameras can be operated at the single-photon level
and with sufficient sensitivity to determine quantum features of the light field.
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Figure 1: Schematic representation of the experiment. a, The output of
the single-mode fibre (SMF) is a near-Gaussian transverse mode of light. A po-
larising beamsplitter (PBS) and waveplate(s) create a known pure polarisation
state. b, A quartz crystal at an oblique angle performs the weak measure-
ment by introducing a small (compared to the beam waist) lateral displace-
ment between horizontal and vertical polarisation components. c, A strong
measurement in a basis (diagonal/anti-diagonal) mutually unbiased from the
weak measurement is used to complete the direct measurement. Inset: To
measure the wavefunction, a linear polariser oriented to transmit diagonally po-
larised light performs the strong measurement and post-selection; to measure
the Dirac distribution, a λ/2 wave-plate and calcite beam displacer perform the
strong measurement. d, A 50:50 non-polarising beam splitter (NPBS) splits the
light into two sub-ensembles. These are imaged in the near-field (dotted line,
NF) and far-field (dashed line, FF) of the quartz crystal onto non-overlapping
regions of the CCD camera.
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Theory.− In any quantum measurement, the observer couples an unknown
probe state to a pointer that reads out the value. For example, a birefringent
crystal can couple the polarisation state of light to the spatial degree of freedom;
in this case, the initial polarisation state is called the probe state, and the spatial
degree of freedom of the light is considered the pointer. If the pointer state is a
Gaussian mode with width w, a strong measurement separates the eigenstates
of the measurement operator Â, by an amount δ ≫ w, such that the eigenstates
are completely resolved.

Weak measurements occur in the opposite regime, where the coupling is
much less than the pointer width δ ≪ w. In this case, the eigenstates of Â are
not resolved by the pointer, so the wavefunction does not collapse. Therefore,
a subsequent measurement performed on the quantum state can be used to
extract further information. If the subsequent measurement is strong, such that
the eigenstates are resolved, we can choose to consider only the statistics of
one particular outcome; this is called post-selection and the chosen outcome of
interest is the post-selected state. The average result of the weak measurement
is called the weak value and is given by

〈Â〉Wφ =
〈φ|Âρ|φ〉

〈φ|ρ|φ〉
, (1)

where ρ is the density operator that describes the initial state and |φ〉 is the
final, post-selected, state20,23. In the case that the initial state is pure and
may be described by the state vector |ψ〉 (i.e., ρ = |ψ〉〈ψ|), the weak value in
equation (1) simplifies to the form first introduced by Aharonov, Albert, and
Vaidman16:

〈Â〉Wφ =
〈φ|Â|ψ〉

〈φ|ψ〉
. (2)

In the case that |ψ〉 = |φ〉, the expectation value of the weak measurement
is equal to the standard expectation value of the operator Â. In general, the
initial and final states may differ, and the weak value can be complex. For the
specific case where the initial and final states are nearly orthogonal, the weak
value can become arbitrarily large, leading to the amplification effect discussed
above. The complex nature of the weak value, combined with the fact that
weak measurement does not significantly disturb the system, enables the direct
measurement of the quantum state via weak measurements.

The complex weak value is determined by characterising the pointer. The
pointer’s position indicates the real part of the weak value Re[〈Â〉Wφ ], and the

pointer’s momentum indicates the imaginary part Im[〈Â〉Wφ ]32.
In the specific case that the weak and final measurements are of mutually

unbiased33 variables (see Supplementary Note 1), the weak values have a direct
relationship to the state description. The coefficients ci of a wavevector |ψ〉 that
describes a pure quantum state can be written in terms of specific weak values:

ci = 〈ai|ψ〉 = ν〈πai
〉Wbj . (3)
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Here the weakly measured observable πai
= |ai〉〈ai| is the projector into the ith

state of the basis A7. The factor ν is a constant of normalisation independent
of i and may be taken to be real. Equation (3) shows that the wavefunction de-
scribing a pure state can be directly measured by scanning weak measurements
in basis A and post-selecting on a fixed state in the mutually unbiased basis B,
then normalising the wavefunction.

The procedure that uses equation (3) can be extended to give a technique
to directly measure the most general description of the quantum state. The
simplest such generalisation entails measuring weakly in basis A, followed by
recording the results of all outcomes of the strong measurement in basis B. In
terms of the density operator ρ, the elements of the Dirac distribution9, which
describes a general quantum state, can be written in terms of specific weak
values:

Sij =〈bj |ai〉〈ai|ρ|bj〉 = pbj 〈πai
〉Wbj . (4)

That is to say, the (i, j)th element of the Dirac distribution is equal to the result
of the weak measurement of πai

followed by post-selection on state bj , multiplied
by the probability of successful post-selection pbj = 〈bj |ρ|bj〉

8. Importantly,
one can always invert equation (4) and calculate the density matrix ρ from the
measured Dirac distribution S. For further details on equations (3) and (4), see
Supplementary Notes 2 and 3.

The Dirac distribution is an underused but elegant way to describe a gen-
eral quantum state. In particular, it is very useful for visualising discrete sys-
tems. In our work, we use Chaturvedi et al.’s10 “left” phase-space representative
throughout, and discuss only the discrete (i.e., N -level) Hilbert space version.
The connection between Dirac distribution, joint probabilities and the weak
value was also explored by Hofmann11.

An important result is that a single weak value completely determines the
wavefunction of a qubit (see Supplementary Note 2). For a single photon, the
weak measurement has very large uncertainty; thus, the above procedure must
be repeated on many photons, or equivalently on a classical light beam, to
establish the weak value with a high degree of confidence.

Experiment.− We perform two experiments. First, we implement the tech-
nique encapsulated by equation (3) to measure a variety of pure polarisation
wavefunctions. Second, we apply the technique encapsulated by equation (4)
to measure the Dirac distribution of a variety of states. The only difference
between the two experiments is in the nature of the strong measurement: in the
first experiment, a single strong measurement outcome is required; whereas in
the second experiment, all eigenstates of the strong measurement are recorded.

A brief summary of the experimental procedures is as follows; see Fig. 1 for
a schematic. First, the probe (polarisation) and pointer (spatial mode) states
are prepared (a). Second, the weak measurement is performed by a quartz
plate, which slightly displaces the two orthogonal polarisation components |H〉
and |V 〉 of the probe laterally (b). Third, the strong measurement in the D/A
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basis is performed (c). To measure the wavefunction, we post-select the final
state by projecting the polarisation into the diagonal state |D〉 using a linear
polariser (LP) oriented to transmit diagonally polarised light. To measure the
Dirac distribution, a calcite crystal separates the components |D〉 and |A〉 so
that they do not overlap. Finally, the wavefunction or Dirac distribution is
read out by imaging the near- and far-fields of the plane immediately after the
quartz onto separate regions of interest of a CCD camera (d). Two regions are
used to read out the wavefunction and four are needed to read out the Dirac
distribution.

In order to demonstrate our ability to perform the direct measurement of the
polarisation state, we measure the probability amplitudes of three sets of input
polarisation states, each corresponding to a different great circle on the Poincaré
sphere. The states are created by appropriate orientation of a half-wave plate
and, optionally, a quarter-wave plate. In the second experiment, we create a
number of states in the same fashion and measure their Dirac distributions,
then calculate the associated density matrix.

Results.− Figure 2 shows the measured weak values and corresponding polari-
sation probability amplitudes as a function of input polarisation angle. Figure 3
shows the calculated Stokes parameters for each measured |ψ〉 in Figure 2 (blue
points). We also show calculated Stokes parameters for two additional paths
around the Poincaré sphere. Measured weak values and probability amplitudes
are included in Supplementary Figures S1 and S2 for all these states.

Figure 4 shows directly measured Dirac distributions and the corresponding
density matrices of different polarisation states. A variety of states are created
for calibration as in the first experiment, but here all outcomes of the strong
measurement are considered.

Discussion.− Figure 2 shows that the largest divergence between theory and re-
sult in experiment 1 occurs when the initial state is anti-diagonal and therefore
orthogonal to the post-selected state of diagonal. In this limit, the weak value
is undefined, whereas the pointer reaches a maximum displacement (see16,34).
This difficulty is overcome by the full state characterisation technique performed
in experiment 2. Recalling equation (4), it is precisely in this regime where pbj
goes to zero, cancelling the effect of the breakdown of the weak-value approxi-
mation.

We note that density matrices determined by the technique demonstrated
herein are not guaranteed to be precisely Hermitian due to measurement noise.
For example, the density matrices shown in Figure 4 have small imaginary
components along the diagonal, of magnitude on the order of the measurement
uncertainty (≈ 3%).

The similarity between equations (3) and (4) suggests a simple connection
between the coefficients of the wavefunction and the entries of its Dirac distri-
bution. In the case that the state is pure, we may combine the two equations
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Figure 2: Results of experiment 1 with linearly polarised probe states.
a, Measured average weak values plotted as a function of input polarisation
angle, 0◦ is defined as parallel to the optical table. Error bars are shown only
for the red points for clarity, and indicate the standard deviation of 100 inde-
pendently measured weak values. b, Real and imaginary components of the
probability amplitudes determined by normalising the weak values of each test
state, where |ψ〉 = α|H〉+β|V 〉. For both panels, the solid lines are the theoret-
ical predictions of the real components, and the dotted lines are the theoretical
predictions of the imaginary components. Inset: A Poincaré sphere with the
path taken indicated by the blue line.

7



1.0

0.5

0.0

-0.5

-1.0

0.0
-0.5

0.5
1.0 1.0

0.5
0.0

-0.5
-1.0

Figure 3: Measured states on the Poincaré sphere. Here we show a Poincaré
sphere with the set of directly measured states, indicated by their calculated
Stokes parameters 〈σx〉 = 〈ψ|(πD − πA)|ψ〉, 〈σy〉 = 〈ψ|(πR − πL)|ψ〉, 〈σz〉 =
〈ψ|(πH − πV )|ψ〉. The blue points indicate states created by rotating the half-
wave plate. The red (green) points indicate calculated Stokes parameters for
states created by rotating the half-wave plate, followed by a quarter-wave plate
at fixed angle 0◦ (45◦). The solid lines indicate the paths taken for each data
set.
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Figure 4: Results of experiment 2. The directly measured Dirac distribu-
tions and corresponding density matrices for the horizontal linear polarisation
state |H〉 a and left-hand circular polarisation state |L〉 = 1/2((1+ i)|H〉+(1−
i)|V 〉) b. The axes of the Dirac distribution are the mutually unbiased bases
H/V and D/A; the density matrix describes the state in terms of only one basis
H/V . Red towers indicate negative values.
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to determine the real constant of proportionality that relates the two:

ci =
ν

pbj
Sij . (5)

We see that there is a column j of the Dirac distribution that is proportional to
the wavefunction ci. It is, in particular, the column corresponding to the choice
of post-selection in equation (3) that renders ν independent of i (and hence ν
can be taken to be real).

Equation (5) has particular relevance to our experiment for the states that
have a constant of normalisation ν equal to unity and a probability of post-
selection equal to one half. These states lie on the great circle of the Poincaré
sphere that includes {|H〉, |R〉, |V 〉, |L〉} (red points in Figure 3, weak values and
probability amplitudes in Supplementary Figure S1). Each state on this circle is
from a basis that is mutually unbiased with respect to the strong measurement
π

D
. For these states, we see that ci = 2Sij and hence the wavefunction is twice

a column of the Dirac distribution. See Figure 4 for two examples.
The technique we demonstrate compares favourably with quantum tomog-

raphy with regards to inferring the density matrix from measurement results.
Tomography via maximum likelihood estimation or least-squares fitting, which
is an example of an inverse problem, becomes prohibitively difficult as the di-
mension of the state or number of particles in a multipartite state increases.
The difficulty arises from the computational requirements of varying the vast
number of fit parameters needed to estimate the state6,35. In contrast, no fitting
is required to determine the density matrix from the directly measured Dirac
distribution because it is calculated analytically. Hence, we anticipate that for
high-dimensional quantum systems especially, direct measurement will become
a widely used technique for quantum state determination.

The technique we present has several logical extensions, such as directly mea-
suring polarisation of single photons or multipartite states. Since, for the case
of coherent states, the photon detection amplitude is analogous to the classical
Maxwell field, the main difference between our experiment and the single-photon
experiment is one of a technical nature. One possibility is to measure the spatial
distribution of the single photons with a cooled CCD28 or electron-multiplying
CCD31. In order to measure the Dirac distribution describing polarisation-
entangled photons, our weak and strong measurement schemes would be dupli-
cated for the signal and idler photons, together with a multiplexed coincident
measurement scheme. The required sixteen post-selection probabilities and joint
weak values32 can be established by measuring all four combinations of position
and momentum of both pointers, for each of the four post-selection outcomes.
This could be achieved with presently available technology using screening slits
in the appropriate planes, and triggered bucket detectors.

Direct measurement can also be extended to study other discrete systems,
such as the coupled spin qubits that exist in solid-state implementations of
quantum information experiments36,37. The entire direct measurement process
can be viewed as a quantum circuit, where the weak interaction is viewed as an
entangling operation between the pointer and probe (see, for example, Ref.38).
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This means the complex-valued description of an unknown state can be deter-
mined and used within the context of a larger quantum algorithm. Additionally,
the relationship between the number of photons and the associated uncertainty
of the measured state is an open question, and this is an area of current inves-
tigation.

Conclusion.− In conclusion, we have performed the first direct measurements
of general polarisation states of light. We obtain our results through parallel
measurements of the real and imaginary components of the weak value of po-
larisation. An important result is that a single weak value, corresponding to
the weak measurement of only one observable, determines both complex co-
efficients of the pure state of a qubit. We provide some ideas for plausible
extensions to this work. Direct measurement using weak values is poised to be
a very promising alternative to quantum tomography. This is especially the case
in discrete high-dimensional systems or experiments where the quantum state
must be recorded directly by the apparatus.

Methods

A near-Gaussian pointer state is prepared by passing HeNe laser light through
a single mode fiber (SMF). The probe is then prepared by polarising the light
with a polarising beam splitter (PBS) then rotating the angle of polarisation
with a half-wave plate (λ/2) and/or quarter-wave plate (λ/4).

The weak measurement is performed by coupling polarisation information
to the spatial degree of freedom of the light. Light incident at an oblique
angle on an X-cut quartz crystal undergoes a polarisation-dependent parallel
displacement. By aligning the extraordinary axis with the x-axis and rotating
the crystal about the y-axis, horizontal and vertical polarisations become slightly
separated in x. We take the z-axis to be the direction of propagation of the
light, x to be the transverse direction parallel to the optical table, and y to
be the transverse direction perpendicular to the table. The angle of incidence
was adjusted to ∼ 40◦ to ensure the two optical paths through the crystal are
equal, mod 2π, through the ordinary and extraordinary axes (based on crystal
thickness of 700 µm).

It is important that the pointer state be a Gaussian with a flat phase-front.
We collect the SMF output with a microscope objective (10×), and focus the
light onto the quartz crystal (≈ 45 cm away). This ensures the phase-front is
approximately flat over the region of interaction with the quartz.

After strong measurement, the real part of the weak value is proportional to
the average position 〈x〉 of the post-selected intensity distribution immediately
behind the quartz. The quartz plane is imaged onto the camera by two sets
of relay optics. The first set images (2f1-2f2 imaging system, f1 = 100 mm,
f2 = 125 mm) to a spatial filter (adjustable iris) that allows us to eliminate
back-reflections created in the quartz crystal; the second set images (2f1-2f2
imaging system, f1 = 75 mm, f2 = 250 mm) the iris plane onto the camera.
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The imaginary part of the weak value is proportional to the average position
of the intensity distribution in the far-field 〈px〉 of the quartz plane. A Fourier
transform lens (f = 300 mm) maps the far-field distribution of the iris plane
onto the camera.

We establish the expectation value of each pointer by first integrating each
intensity distribution I(x, y) along y to find I(x) =

∑
y pixels I(x, y)∆y, followed

by finding the average 〈x〉 =
∑

x pixels xI(x)∆x/
∑

x pixels I(x)∆x. This proce-
dure is repeated with the image of the far-field to establish 〈px〉, and for each
strong measurement outcome.

The expectation values 〈x〉 and 〈px〉 of the pointer, and their corresponding
standard deviations, are established by averaging 100 CCD images, each with a
2000-µs exposure time. The only exception is for the data used to calibrate the
weak values for Figure 4b, where we averaged over 50 CCD images, each with a
500-µs exposure time. This was to reduce the effect of spot drift over the course
of the calibration run where many states are measured sequentially.

A simple background subtraction is performed before calculating the pointer’s
position and momentum. We subtract the value of the minimum pixel from all
pixels on each exposure, to reduce the effect that the background has on cal-
culating the average. For the post-selection probability measurements used to
determine the Dirac distribution, background subtraction is performed for each
region of interest by subtracting the recorded intensity when the laser is blocked.
The intensity after background subtraction of the near-field image corresponding
to the outcome |D〉 is ID and of |A〉 is IA. Thus the probabilities are calculated
according to pD = ID/(ID + IA) and pA = IA/(ID + IA).

The weak value is obtained from average pixel number by

〈π
H
〉WD = a〈x〉 − b+ i(c〈px〉 − d), (6)

where a, b, c, d are constants that must be determined by calibrating the mea-
surement apparatus. Another set of calibration constants a′, b′, c′, d′ must be
determined for the post-selection of |A〉 to convert average pixel to 〈π

H
〉WA . We

perform calibrations of the measurement apparatus by measuring the wavefunc-
tions and Dirac distributions of known pure states and comparing 〈x〉 and 〈px〉
to theoretically calculated weak values.
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