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Considering Within-Die Correlation
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Abstract—We present an efficient technique for finding the
mean and variance of the full-chip leakage of a candidate
design, while considering logic-structures and both die-to-die
and within-die process variations, and taking into account the
spatial correlation due to within-die variations. Our model uses
a “random gate” concept to capture high-level characteristics
of a candidate chip design, which are sufficient to determine
its leakage. These high-level characteristics include information
about the process, the standard cell library, and expected design
characteristics. We show empirically that, for large gate count,
the set of all chip designs that share the same high level
characteristics have approximately the same leakage, with very
small error. Therefore, our model can be used as either an early
or a late estimator of leakage, with high accuracy. In its simplest
form, we show that full-chip leakage estimation reduces to finding
the area under a scaled version of the within-die channel length
auto-correlation function, which can be done in constant time.

Index Terms—Statistical Analysis, Leakage Power, Process
Variations, Within-Die Correlation.

I. INTRODUCTION

AS a result of technology scaling, leakage current is
becoming a major design challenge, affecting both cir-

cuit performance and power. Leakage power is expected
to continue to increase and due to limited power budgets,
it will affect the feasibility of future microprocessor and
ASIC designs [1]. Thus, estimating full-chip leakage becomes
increasingly important. The leakage current of a circuit is
not, however, simply the sum of the leakages of the devices
in the circuit. Not only do logic-gate structures, such as
stacking, affect the device leakage, but process variations make
leakage estimation statistical in nature. Leakage current can be
classified into two main components, namely sub-threshold
leakage and gate tunneling leakage [2], [3]. Over the past few
years, both types of leakage currents have been extensively
studied, particularly sub-threshold leakage. Nevertheless, gate
leakage can be important as noted in [4], although recent
advances in the process, such as the introduction of new high-
k materials and metal gates claim to have reduced gate leakage
substantially.
Full-chip leakage estimation is useful at different points in

the design flow. Towards the end of the design flow (late mode
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Fig. 1. Leakage Estimation Model and the High-level characteristics required

estimation), leakage estimation can be used as a final sign-off
tool, and requires a complete netlist with possibly a circuit
placement. On the other hand, early estimation of leakage
(early mode estimation) provides the full-chip leakage given
limited information about the design, which is very useful to
allow for design planning.
Earlier work on leakage estimation [5], [6], [7], [8] concen-

trated on early mode estimators. However, they either did not
consider logic-gate structures and other transistor topologies,
and/or did not consider the effect of correlation between the
variations on the total leakage, which is important to model.
Narendra et al. [5] estimate the mean of full-chip sub-threshold
leakage; they consider within-die variations, but ignore within-
die correlations and do not take into account the effect of gate
topologies. Furthermore, they do not estimate the standard
deviation of full-chip leakage. Rao et al. [6] estimate sub-
threshold leakage by first finding fitting parameters for the
leakage current for individual gates in the library, and use the
parameters to map the leakage distribution of the gate, due
to within-die variations, to a log-normal distribution. They
compute the total leakage of a circuit block using an ap-
proximation for sums of independent lognormal distributions.
The authors, however, ignore within-die spatial correlations.
Rao et al. have also tackled the problem of estimating full-
chip leakage in another way [7]. They model different types
of leakage separately as a product of a nominal value and a
multiplicative function that represents the deviation from the
nominal value due to variations. While, the authors separate
the variations into global and local variations, the local varia-
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tions are considered to be independent, and thus the effect of
correlation is not factored into the final result; also, they do
not provide an estimate of the standard deviation of full-chip
leakage. Zhang et al. [8] in addition to considering process
variations, also consider temperature and voltage variations.
Instead of fitting the effect of process variations on leakage
into an analytical equation, they use the BSIM model equations
directly. However, just as the other early-estimators, they do
not consider spatial correlations; they also do not consider gate
topologies in their work.
More recent work [9], [3] has taken into consideration both

the effects of gate topologies and within-die spatial correlation.
Chang et al. [9] first precharacterize their library by fitting
the different types of leakage currents to analytical forms. To
model spatial correlation, they use the grid model [10] and
determine the leakage in a grid by summing a set of correlated
lognormal distributions, and then find the full-chip leakage
distribution by summing the leakage distributions for each
grid. Agarwal et al. [3] modeled spatial correlations differently
using a quad-tree die partitioning method. To determine the
final leakage distribution they sum the correlated lognormals
using Wilkinson’s method. Both these methods are late mode
estimators of leakage, requiring minimally the circuit netlist
and possibly a circuit placement to provide a leakage estimate.
Also, since they operate at the level of the netlist, they can
be expensive on large circuits, with a complexity of O(n2)
(some refinements are possible to reduce this cost, but with
some loss of accuracy [9]).
Given the need to budget for power constraints, there is

a need for accurate early mode estimators that take into
consideration both correlation and gate topologies. As for late
mode estimators, more efficient techniques are required. In this
work, we present a new model and methodology for full-chip
leakage estimation, in which certain high-level characteristics
of a candidate chip design are used to determine its leakage
statistics with high accuracy. For late mode estimation, these
characteristics can be extracted from the netlist and/or place-
ment. For early mode estimation, these characteristics can be
simply specified as expected values based on previous design
experience or on decisions made in the floorplanning stage.
Our methodology uses a concept of a “random gate” to capture
these characteristics and considers both correlations and gate
topologies. We show that these high-level characteristics are
sufficient to determine the leakage statistics of a design.
We restrict our analysis to sub-threshold leakage estimation,
although our mathematical framework can be easily extended
to handle gate leakage.
A block diagram of the system is shown in Fig. 1. Given

information about (1) the process, (2) the standard cell library,
and (3) certain high-level design characteristics, we predict
the mean and standard deviation of full-chip leakage. The
process information includes the mean and standard deviation
of the underlying process variations, such as the variations
in transistor length or threshold voltage, and information
regarding the within-die spatial correlation. The standard cell
library information includes the leakage characteristics of the
cell library under process variations; this information can
be obtained by pre-characterizing the cells in the library.

Finally, some information on the candidate design is needed,
including the (extracted or expected) cell usage histogram
(i.e., frequency of use distribution) for cells in the library,
the (extracted or expected) number of cells in the design, and
the dimensions of the layout area. With this, we determine the
full-chip leakage statistics (mean and variance) for the design.
To carry out the estimation, we propose a model which

is generic, in the sense that it is a template for all designs
that share the same values for these high-level characteristics.
We use probability theory as the vehicle to implement this
template, so that all designs that share the same values of
these high-level characteristics will be members or instances
of this probabilistic template model. We introduce the concept
of the Random Gate (RG) which allows us to capture the
characteristics of a candidate design. This allows the leakage
statistics to be obtained in O(n) time, where n is the number
of cells in the design, but we then also show that, for large gate
counts, the statistics of the full-chip leakage can be written in
integral form, allowing for the computational complexity of
our estimator to become O(1) time1. The key point, the thesis
of this work, is that large designs that share the same high-
level characteristics will have approximately the same leakage
statistics and, by leveraging this property, our estimation
engine provides accurate and efficient estimation, either early
or late in the design flow.
The rest of this paper is organized as follows: In Section II,

we show how process parameters are modeled and propose
to use a correlation function to model spatial correlations. In
Section III, we present two flows, namely a Monte Carlo flow
and an analytical flow, to characterize the different gates for
leakage, and we show how to obtain the leakage correlation
from the model. We also discuss some options in the face of
uncertain signal probabilities. Section IV presents the random
gate and the full-chip model, which are used in Section V
to determine the full-chip leakage efficiently. We conclude in
Section VI.

II. MODELING PROCESS VARIATIONS
A. Parameter Model
Variations normally have two components: a Die-to-Die

(D2D) component, and a Within-Die (WID) component. The
D2D component is a variation between different instances of
the die and is shared by all devices on the same die. The WID
component of variation, however, causes different devices on
the same die to have different process parameters; the WID
variations have some correlation across the die. D2D and WID
variations are considered to be (statistically) independent [11]
and thus the total variance of a process parameter, such as
the channel length (L), when both sources of variation are
considered can be written as:

σ2 = σ2
dd + σ2

wd (1)

where σ2
dd is the variance of the D2D variation and σ2

wd is
the variance of the WID variation. We will assume that all
1When used as a late mode estimator, there will be some additional cost to

extract the cell usage histogram from the netlist, but that also can be constant-
time, or linear-time in the worst case.
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process parameters follow a Gaussian distribution, which is in
line with the literature on leakage estimation. The resulting
Random Variable (RV) for channel length (or any process
parameter) can also be written with respect to their D2D and
WID components as:

L(i) = µ + σddZ0 + σwdZ(i) (2)

where i refers to an arbitrary device, µ is the mean of L, Z0

is a zero mean standard normal RV with unit variance repre-
senting the D2D component which is shared by all devices on
the die, and where the WID component is represented by a
zero mean unit variance standard normal RV Z(i), a notation
that emphasizes that it may be different for different devices
on the die. For example, a second device j on the die will
have a channel length with the following RV:

L(j) = µ + σddZ0 + σwdZ(j) (3)

Given that Z(i) and Z(j) may be spatially correlated with
a correlation of ρLwd(i, j), and that Z0 is shared by L(i)
and L(j), then L(i) and L(j) will be correlated as well. We
now show how we can express the total length correlation in
terms of the D2D and WID breakdown, and the WID spatial
correlation. Let us first write (2) and (3) as follows:

L(i) − µ = σddZ0 + σwdZ(i) (4)
L(j) − µ = σddZ0 + σwdZ(j) (5)

Assuming that the correlation between the WID variations
ρLwd(i, j) is available as will be discussed in the next section,
the covariance between the process parameters can then be
written as:

E [(L(i) − µ) (L(j) − µ)] = σ2
dd + σ2

wd ρLwd(i, j) (6)
= σ2ρLtotal(i, j) (7)

where ρLtotal(i, j) is the total channel length correlation be-
tween L(i) and L(j) due to both D2D and WID components.
We can now solve for the correlation between the total
variation that composes both the D2D and WID variation to
be:

ρLtotal(i, j) =
σ2

dd + σ2
wd ρLwd(i, j)
σ2

(8)

The above equation can be simplified if we define α to be a
ratio of the D2D variance to the total variance as:

α =
σ2

dd

σ2
(9)

which allows the total correlation to be written as a function
of the correlation of the WID variation and the ratio of the
D2D variance to the total variance:

ρLtotal(i, j) = α + (1 − α) ρLwd(i, j) (10)

The next section will describe the model that we used to
capture the correlation in process parameters.

0

0.2

0.4

0.6

0.8

1

1.2

Distance

C
or
re
la
tio
n

WID variations only

WID and D2D variations

Fig. 2. Possible Correlation Model considering both WID and D2D variations

B. Correlation Model

Previous work on early-estimators of leakage did not take
into account the spatial correlation that exists between the
WID variations in the process parameters of different cells.
However, in order to accurately estimate leakage, spatial
correlation between variations must be taken into account [ 9],
[3].
To model the WID spatial correlation between variations in

transistor characteristics, we assume the existence of a spatial
correlation function [12] that depends on the distance between
the two transistors. Given the D2D and WID parameter
variances, and the WID correlation, one can easily determine
the total correlation between parameter variations (due to D2D
and WID effects) by a simple normalization as was shown
in (10). Not all functions, however, can be used as a spatial
correlation function [12]; specifically spatial correlation func-
tions are a family of monotonically decreasing non-negative
functions [12]. One example of a spatial correlation function
for WID variations is shown in bold line in Fig. 2; the function
has a correlation of one at a distance of zero since the devices
are in fact the same device [12]; furthermore the sudden drop
from one at distance zero is the cause of a uncorrelated random
variation in the parameter, which exists even in devices that are
very close together [12]. The above spatial correlation function
considers only the correlation in WID variations and therefore
it dies down to zero after a certain distance. If we consider the
D2D variation using (10), the total correlation will decrease
down to α as shown in Fig. 2, where α is set to 0.5 [12].

III. MODELING AT THE CELL LEVEL

While the statistics of the underlying process parameters can
be obtained from the foundry, the leakage statistics of each
cell can not be immediately obtained. Since each cell has a
different topology, with different transistor stacks, the leakage
in each cell is affected differently by the underlying variations
in the transistor length and threshold voltage. Furthermore the
cell’s inputs also affect the leakage distribution of each cell.
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A. Cell Leakage

Leakage current is determined primarily by transistor, not
interconnect, parameters. Of the many transistor parameters
that affect sub-threshold leakage, the truly relevant ones are
channel-length (L) and threshold voltage (V t), as shown
in [13], due to the exponential dependence of sub-threshold
leakage current on these two parameters. Threshold voltage
variations are mainly due to two effects: random dopant
fluctuations in the channel and the Vt roll-off effect whereby
Vt varies in response to variations in L. For this work, when
we refer to Vt variations, we specifically refer to the effect of
random dopant fluctuations. We lump the effect of V t roll-off
on leakage into the L variations, because the two are directly
related. This allows us to make the simple statement that Vt

variations are purely random (independent) across the die [ 14],
while L variations are not [9] (they include some within-
die correlation). This approach is in line with the modern
treatment of leakage in published work [6].
Since Vt variations are independent, while L variations

are not, it follows immediately that, for full-chip leakage
estimation, while Vt variations may be relevant for finding the
mean of the total leakage, they are definitely not relevant for
finding the variance of the total leakage. The reason for this
is simple: the variance of the sum of n independent random
variables is ∼ nσ2, while the variance of the sum of n highly
correlated random variables is ∼ n2σ2. Thus, for large chips
(large n), the variance of chip leakage due to V t variations is
negligible compared to that due to L variations. This too is in
line with the modern published work on leakage [6]. Thus, for
leakage variance estimation, we can focus on L alone. As for
the effect of Vt variations on the mean leakage, that can be
easily determined through a multiplicative term that depends
on the variance of Vt, which is derived from the mean of the
log-normal distribution, similar to [15]. As this is standard
textbook material, it will not be covered here.
To model the distribution of the leakage of each cell, we

use two methods which have different levels of computational
complexity and accuracy. The first method uses a Monte-Carlo
(MC) analysis to obtain the leakage statistics of each cell.
While this technique needs extensive simulations, it does give
us some confidence in the resulting distributions. The second
method, an analytical approach, uses a limited sampling of
the leakage of the cell, and then fits the leakage of the cell
into a functional form, from which we easily compute the
mean and variance of the distribution. These two methods are
discussed below, and we then discuss correlation and circuit
state dependency.
1) Monte-Carlo Technique: We use a commercial 90nm

CMOS technology, along with its associated standard cell
library of which we use 62 cells which include the Static
Random Access Memory (SRAM) cell, various flip flops
and a range of different logic cells. For each cell and input
combination, we perform a MC analysis to determine the
mean and standard deviation of the cell’s leakage. The MC
analysis is done assuming all the variations in the transistor
channel length within the cell are completely correlated, which
is reasonable in practice given that the transistors in each cell

are very close together. This is in line with previous work [9],
where all cells within a grid are assumed to be completely
correlated.
2) Analytical Technique: Rao et al. [6] introduced a math-

ematical model to express the leakage current, X , of a given
cell as a function of channel length, L as:

X = aebL+cL2
(11)

and showed that the analytical BSIM3 models vastly over-
estimated the leakage of devices that had gate lengths that
deviated by more than 5% from their nominal, and that the
fitted model above with the triplet (a, b, c) can accurately
model the leakage of different topologies including individual
transistors and transistor stacks [6].
In our work we first fit each cell’s leakage into (11), and then

use the triplet (a, b, c) to determine analytically the mean and
variance of the underlying leakage distribution. To determine
the triplet for each cell, we first perform a series of seven
SPICE simulations, where the length of the transistors in the
cell are modified from −3σ to 3σ in intervals of σ (where σ
is the standard deviation in the transistor length) and measure
the leakage. We then perform the Levenberg-Marquardt [ 16]
method to fit the data into the above functional form and obtain
(a, b, c). The model in (11) can fit the leakage of most cells
quite well as can be seen in Fig. 3 where the analytical model
is compared to SPICE simulations of a four-input-AND-into-
OR cell. For some cells, however, the analytical model does
not fit quite as well, as can be seen in Fig. 4, for a double-
two-input-AND-into-two-input-NOR cell.
Note that, unlike [6] where numerical integration is used

to approximate the leakage mean and variance, we use the
fitted model with the triplet (a, b, c) to determine analytically
and exactly the mean and variance of the underlying leakage
distribution. The complete derivation, which was moved to
Appendix A, results in the following:

µX = MY(1) (12)
σ2
X = MY(2) − µ2

X (13)

whereMY(t) is the moment-generating function ofY = lnX
which can be shown to be:

MY(t) = (1 − 2K1t)−
1
2 e

[
K2

2K1t

1−2K1t +K3t

]

(14)

by using the moment generating function of the “Non-Central
Chi-square” distribution where K1, K2 and K3 are simple
functions of the regression parameters (a, b, c) and the mean
µ and standard deviation σ of the channel length, as follows:

K1 = cσ2 K2 =
1
σ

(
b

2c
+ µ

)
(15)

K3 = ln a + bµ + c µ2 − c

(
b

2c
+ µ

)2

(16)

To check the accuracy of the analytical model in deter-
mining the mean and standard deviation of cell’s leakage,
we compare the results obtained from the fitted model to the
results obtained through MC analysis for all 62 cells with all
input combinations. For the mean, the analytical method is
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Fig. 3. Comparison of analytical fit with results from SPICE of an AO cell

0.0E+00

5.0E-08

1.0E-07

1.5E-07

2.0E-07

2.5E-07

3.0E-07

0.085 0.09 0.095 0.1 0.105 0.11 0.115

Length (um)

Le
ak

ag
e 

(A
)

Experimental
Empirical Fit

Fig. 4. Comparison of analytical fit with results from SPICE of an double-
two-input-AND-into-two-input-NOR

quite close to the MC results; there is less than a 2% error
for all gates, and the average absolute error is 0.44%. For the
standard deviation, the average absolute error is 3.1%, and
the maximum error is about 10%. The histogram of error in
the mean and standard deviation for all cells and all input
combinations is shown in Appendix A. Note that the error
in the mean and standard deviation is not a result of the
mathematical derivation, but due to the leakage curve not being
exactly mapped to the functional form ae bL+cL2 . Thus, there
is a trade-off between computational complexity and accuracy;
if MC analysis is performed on all gates, then the distribution
models for all gates will have high accuracy; on the other
hand, using the functional form requires minimal simulation
time.

B. Leakage Correlation
As mentioned earlier, we assume the existence of a spa-

tial correlation function which gives the correlation between
process parameters as a function of the distance separating
two locations, but which does not provide the correlation
between the leakages of two cells at these locations. Using
the regressed triplets, (a, b, c), we have developed an analytical
method that determines the leakage correlation between any
pair of gates placed at two arbitrary locations on the die given
the correlation in their channel lengths. In other words, we
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have determined a mapping ρm,n(li, lj) = fm,n (ρL(li, lj))
where ρL(li, lj) is the channel length correlation between two
locations li and lj , fm,n(·) is the derived mapping for gates
m and n and ρm,n(li, lj) is the leakage correlation for gates
m and n placed at locations li and lj respectively. Note that
the mapping depends on the types of gates m and n since a
triplet (a, b, c) is associated with every gate type.
The details of the derivation leading to this mapping were

omitted from this section and moved to Appendix B. Fig. 5
shows the results of the leakage correlation for a pair of gates
given channel length correlation, as determined by the analyt-
ical mapping fm,n(·), compared with the leakage correlation
from MC analysis; note that the analytical technique shows a
good match to the MC results. Also the leakage correlation
is near the y = x line, at which leakage correlation equals
channel length correlation. We have performed the analysis
for all pairs of gates, and shown that the analytical mapping
provides accurate results in all cases. The set of mappings
fm,n(·) for different pairs of gates are slightly different but
they all closely follow the y = x line (refer to Appendix B).
We will use this observation that the leakage correlation is
close to the length correlation in the case where MC analysis
is used to obtain the cell leakage statistics since we do not have
the (a, b, c) triplet to obtain the leakage correlation exactly. We
will discuss this in more details in Section V-A2.

C. Input Combinations
The signal probability (probability that a logic signal is

1) certainly has an effect on leakage. This effect is quite
strong for single logic gates, causing a spread of 10X in
some cases. However, for large circuits, the impact of signal
probability is significantly diminished due to averaging of their
effects (law of large numbers). To study this effect, we have
swept the signal probabilities from 0 to 1 and have found,
as shown in Fig. 6, that the effect on large circuit leakage is
not pronounced and is also dependent on the frequency by
which various cells are employed in the design. The figure
shows the leakage mean, and similar behavior has been found
for the leakage variance. For a practical solution approach,
one has the option of simply setting the signal probabilities at
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some ball-park mid-level value, such as 0.5. A better approach,
which we employ, is to first characterize every cell for all its
input states; then, based on this pre-characterized data, and
for the given frequency of use distribution for cells, find the
signal probability setting which maximizes the mean leakage,
effectively finding the maximum of a plot such as Fig. 6.
Empirically, we find that this setting turns to be very good for
finding the maximum leakage mean for the candidate design,
as well as its maximum leakage variance. This approach
gives a conservative estimate, in the face of uncertainty about
eventual signal probabilities.

IV. FULL-CHIP MODEL
What determines the leakage of a large circuit? We will

demonstrate empirically that certain high-level characteristics
of a candidate design are sufficient to determine its leakage.
In a library-based standard-cell design environment, these
characteristics are:
1) The cell library (characterized for leakage)
2) The (actual or expected) frequency of usage for cells in
the library

3) The (actual or expected) number of cells in the design
4) The dimensions of the layout area
In order to carry out the leakage estimation, we propose

a model for the candidate chip design which is generic, in
the sense that it is a template for all designs that share
the same values for these high-level characteristics. We use
probability theory as the vehicle to construct this template, so
that all designs that share the same values of these high-level
characteristics will be members or instances of this probabilis-
tic template model. After developing our leakage predictor
based on this model, we will then show that the leakages of
all instances of specific designs which are members of this
model converge towards the predicted leakage value as the
circuit size increases; Fig. 9 offers a a “sneak preview” of this
convergence.

A. Model Definition and Suitability
Formally, our full-chip model is a rectangular array of a

number (n) of identical sites, as shown in Fig. 7, where
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2

Fig. 7. Abstract organization of die

every site is occupied by a probabilistic abstraction which
we call a random gate (RG), and such that the dimensions
of the array are equal to the dimensions of the layout area
of the candidate design, and that the number of sites n is
equal to the number of cells in the design. But what is a
RG? Simply put, a RG is similar to a Random Variable
(RV); however, unlike a RV which assumes real numbers as
outcomes or instances, the instances of a RG are gates from
the standard-cell library, with probabilities identical to those
in the frequency of use distribution. In other words, the RG
discrete probability distribution is identical to the frequency
of cell usage of the design.

This full-chip array model is a suitable probabilistic rep-
resentation of all designs having the high-level characteristics
highlighted earlier. On one hand, its dimensions and gate count
match the dimensions of the layout and the number of cells in
the candidate design. On the other hand, the frequency of cell
usage of the design is also matched by the way the RG discrete
probability distribution is defined. Hence, if an instance of the
full-chip model is defined to be n RG instances at every site
in the array, then the frequency of cell usage for that full-
chip model instance will be identical to the frequency of cell
usage of the candidate design, for large n. Therefore, the full-
chip model is a probabilistic representation of a set of designs
with the same high-level characteristics, and those designs are
in fact instances of our model. Using this fact, we will use
the full-chip model to estimate the leakage of the candidate
design.

One possible reaction to this proposal is that all sites in the
full-chip model are of identical size while obviously cells in
the library are of different sizes. Another comment is that the
array seems to leave no room for interconnect routing. Both
these issues do not present a problem. In fact, the size of a site
is really the size of the layout area, divided by the number of
cells, thus it is the average size of a cell and the interconnect
that may be associated with it. Thus, all that is captured by
the notion of a RG site is the idea that the leakage due to
one cell would on average be spread out or “allocated” to the
layout area of a single site.
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B. Leakage Statistics of a Random Gate
As stated earlier, the RG is simply a gate picked at random

from the library, according to a discrete probability distribution
which is identical to the frequency of gate usage. In order
to perform full-chip leakage estimation based on our model,
we need to construct and mathematically define the leakage
statistics of the RG.
Let I be an RV that takes as values the type of a gate picked

from the library at random to be used in the design. This means
that I ε {1, 2, . . . , p}, where p is the total number of gates in
the library, and that the distribution of I is identical to the
frequency of gate usage. Let αi be the frequency of usage of
gate i. Then:

P{I = i} = αi ∀i = 1, 2, . . . , p and
p∑

i=1

αi = 1 (17)

Let XI be an RV that represents the leakage of a gate picked
according to the distribution of I. Then by definition, X I

is the leakage of the RG. Consequently, XI is defined on
two probability spaces; the space of X due to channel length
variations, and the space of I due to the choice of gate type.
Note that for an arbitrary realization of say I = i, XI will
be equal to Xi, that is the RV that represents the leakage of
gate of type i. Recall that the statistics of Xi, i.e., its mean
µi and standard deviation σi, have already been determined
during pre-characterization for all gates i in the library, using
either the MC or the analytical techniques. We can determine
the mean leakage µXI of the RG as follows:

µXI = E [XI] = EI [EX [XI | I = i]] (18)

= EI [EX [Xi]] =
p∑

i=1

αi µi (19)

where EX [·] and EI [·] are the expected values over the spaces
ofX and I, respectively. To determine the variance σ 2

XI
ofXI,

we start by determining its second moment E
[
XI

2] as:

E
[
XI

2] = EI

[
EX

[
XI

2 | I = i
]]

(20)

= EI

[
EX

[
X2

i

]]
=

p∑

i=1

αi (σ2
i + µ2

i ) (21)

Given the second moment and the mean, the variance can be
determined as follows:

σ2
XI

= E
[
XI

2
]
− µ2

XI

=
p∑

i=1

αi (σ2
i + µ2

i ) −
(

p∑

i=1

αi µi

)2 (22)

To account for different input states, the summation in the
above equations for the mean and variance are updated to
account for the different weights of each input state.

C. Random Gate Leakage Correlation
In addition to the RG leakage statistics defined in the

previous section, we need to construct and define the RG
leakage correlation.
Recall that XI is defined as the leakage of a random gate

picked from the library according to the distribution of I, and

placed at some location on the die. Let XI(li) and XI(lj)
be the leakages of the two RGs at two arbitrary locations l i

and lj . It is important to understand that XI(li) and XI(lj)
are identically distributed, and any correlation among these
RVs is only due to the correlation over the space of process
variations and not over the space of gate selection.
Let CXI(li, lj) be the covariance of XI(li) and XI(lj),

which is defined as CXI(li, lj) = E [XI(li)XI(lj)] − µ2
XI
.

It can be shown, using conditional expectation, that this
covariance is given by:

CXI(li, lj) =
p∑

m=1

p∑

n=1

αm αn Cm,n(li, lj) (23)

where Cm,n(li, lj) is the covariance of the leakage of two
gates of types m and n, when placed at locations l i and lj ,
respectively, i.e., Xm(li) andXn(lj). Note that the covariance
of the leakage of the random gate XI is the expected value
over I of the covariances of all pairs of gate types. This result
is somewhat intuitive since the random gate is an abstraction
that embodies all gates in the library. Starting from (23), we
can normalize Cm,n(li, lj) by the standard deviations of gates
m and n to get their leakage correlation ρm,n. Then, we use
the analytical mapping fm,n(·) from Section III-B to relate
the leakage correlation ρm,n to channel length correlation ρL,
as follows:

CXI(li, lj) =
p∑

m=1

p∑

n=1

αm αn [ρm,n(li, lj)σm σn]

=
p∑

m=1

p∑

n=1

αm αn σm σn fm,n(ρL(li, lj)) (24)

Let F (ρL(li, lj)) be equal to the final expression in (24)
above, and notice that this equation assumes that l i and lj
are different. When they are the same, CXI(li, lj) is just the
variance σ2

XI
. Thus:

CXI(li, lj) =
{

F (ρL(li, lj)) for li $= lj
σ2
XI

for li = lj
(25)

By enforcing this correlation structure on our RG array, we
ensure that instances of this array have the same correlation
structure as the candidate design.

V. FULL-CHIP LEAKAGE ESTIMATION
For a specific placed design, based on a pre-characterized

cell library, one can determine the full-chip leakage statistics
using techniques from standard probability theory [ 17] for
finding the sum of a number of correlated RVs (each RV
corresponds to the leakage of one cell instance). This would be
an O(n2) approach, which can be expensive for large circuits
(some refinements are possible to reduce this cost, but with
some loss of accuracy [9]). Throughout this paper, we will
refer to the leakage obtained from such an O(n2) approach as
the true leakage of a given design.
Apart from the issue of computational cost, such an ap-

proach is available only later in the design flow once a netlist
and placement are available; it is useful only as a final check,
and not as a prelude to corrective action. In this section, we
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will first show how we can determine the full-chip leakage
statistics in linear time, O(n), and then show how this can
be improved to obtain the statistics in constant time, O(1).
Importantly, we will also show that, for large gate counts,
the statistics of any specific design that shares the same high-
level characteristics under consideration converge to the values
predicted by our model.

A. Linear-time method
Let IT be an RV that represents the leakage of our full-chip

model, i.e., of the array of n RGs. This means that:

IT =
n∑

i=1

XI(li) (26)

where li is the location of the ith random gate. We are
interested in determining the statistics of IT , namely its mean
µIT and variance σ2

IT
. The mean of IT is equal to:

µIT = E [IT ] =
n∑

i=1

E [XI(li)] =
n∑

i=1

E [XI] = n µXI (27)

The variance of IT can be easily determined using a result
from probability theory that the variance of a sum of correlated
RVs is equal to the sum of pairwise covariances [17]. In other
words:

σ2
IT

=
n∑

a=1

n∑

b=1

CXI(la, lb) (28)

Note that the above double summation accounts also for the
cases where la = lb, for which the covariance is essentially
the variance. Using the fact that any covariance can be written
in terms of the correlation, CXI(la, lb) = ρXI(la, lb)σ2

XI
, we

can write the total leakage variance in its final form:

σ2
IT

= σ2
XI

n∑

a=1

n∑

b=1

ρXI(la, lb) (29)

where the variance of the full-chip leakage is a function of
the variance of the random gate and the extent of leakage
correlation across the chip.
At this point, we have determined the mean of the total leak-

age (in constant time), and have shown that the computation of
the variance of the total leakage requires a double summation
over the number of gates on the chip. This O(n2) complexity
is not practically acceptable, especially knowing that n can
be extremely large, on the order of millions. By taking into
account the shape of the die and the sole dependence of the
leakage correlation on the distance between different locations,
we are able to cut down the complexity of computing the total
leakage variance to O(n), as follows.
Let the RG array consist of k rows and m columns, where

the total number of gates, n, is equal to the product k × m,
as shown in Fig. 7. Each location or “site” on the grid can
be represented by a pair (r, s) where r is the horizontal index
taking values r = 1, . . . , m and s is the vertical index taking
values s = 1, . . . , k. Also, assume that the height H and width
W of the array are known. Let ∆H and ∆W be the height
and width of the site where every gate will be placed.

m

d12

m ik j
k

Fig. 8. Number of occurrences of a certain distance vector

Given the above parameters, the centre to centre distance
dij between any two sites (r1, s1) and (r2, s2) can be easily
determined to be dij=

√
(i·∆W )2+(j·∆H)2 where i is defined as

the algebraic difference in horizontal indices, i.e., (r2 − r1),
and j is defined as the algebraic difference in vertical indices,
i.e., (s2 − s1). Note that i = 0,±1, . . . ,±(m − 1) and j =
0,±1, . . . ,±(k − 1).
Now recall the total leakage variance defined in (29) where

the double summation covers all possible pairs of locations,
and each location is a site on the grid defined by two indices.
Since the correlation depends only on the distance d ij between
the pairs of locations, we can simplify the above expression
greatly by performing the sum over the different distances
rather than the pairs of locations. To do that, however, we need
to determine the number of times each distance d ij occurs.
This is relatively easy for a rectangular k ×m grid, as can be
seen in Fig. 8, where the number of times a distance dij occurs
along the width of the die is m− i and along the height of the
die is k−j. Using these two value, the number of occurrences
nij of dij can be determined to be the following:

nij = (m − |i|) · (k − |j|) (30)

Since the leakage correlation between any two given loca-
tions depends only on the distance between these locations, we
will explicitly highlight this fact, ρXI(la, lb) = ρXI(dij) where
i and j in the above equation are the algebraic differences in
the horizontal and vertical indices of la and lb.
Starting from (29), we will transform the quadratic sum-

mation that runs over all pairs of locations, into a summation
that runs over the set of possible distances induced by the
rectangular shape of the grid. This set will be covered if all
the algebraic differences i and j are covered. After accounting
for the number of times each algebraic difference occurs, n ij ,
we get the following expression for the total leakage variance:

σ2
IT

= σ2
XI

m∑

i=−m

k∑

j=−k

(m − |i|) · (k − |j|) ρXI(dij) (31)

where the double summation runs at most O(k ×m) = O(n)
times, which is linear in circuit size. Note that the expres-
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TABLE I
% ERROR IN FULL-CHIP STANDARD DEVIATION FOR ISCAS85 CIRCUITS

COMPARED TO THE RG ESTIMATES

c499 c1355 c432 c1908 c880 c2670 c5315 c7552 c6288
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Fig. 9. Errors in the estimation of mean and standard deviation of full-chip
leakage

sion in (31) is an exact transformation of (29) without any
approximations, and was possible due to different factors:
1) The concept of random gate which allows us to express
the total leakage as a sum of identically distributed RVs.
This in turn made possible to extract the variance of the
random gate outside the double summation in (29).

2) The sole dependence of the leakage correlation on the
distance between the pair of locations rather on the
location itself.

3) The rectangular shape of the grid which allows for closed
form expression of the number of times each distance
occurs.

Next, we validate our full-chip leakage model, both as an
early and a late estimator of leakage.
1) Validation: Two types of validation tests were run, by

first considering randomly generated circuits, as a way to make
conclusions about the set of all circuits of a given size, and
then by considering specific benchmark circuits.
In the first set of experiments, a large number of circuits

were randomly generated so as to match a frequency of cell
usage that was specified a priori. The circuits were then
placed and routed, and their true leakage statistics (mean and
variance) were found. Fig. 9 shows the maximum positive and
negative difference between the means and standard deviations
of the leakages of these circuits compared to the estimates
provided by our model. It can be seen that as the number of
gates in the circuits increases, the difference approaches zero;
at a circuit size of 11,236 gates, the maximum difference is
2.2%. This small amount of error indicates that the set of
all chip designs that share the same high level characteristics
have approximately the same full chip leakage statistics and
thus these high-level characteristics are sufficient to determine
chip leakage. This first set of experiments serves to justify the

statement that this approach is useful as an early estimator of
full-chip leakage.
In the second set of experiments, we show how the model

can be used as a late estimator of leakage for real (placed and
routed) circuits. In this test, we have extracted the relevant
high-level characteristics from each ISCAS85 circuit, namely
the number of gates used, the histogram of cells used, and the
dimensions of the layout; then with these values, we have
used our model to estimate the leakage statistics of every
circuit. Table I lists the errors in the full-chip leakage standard
deviation, for all ISCAS85 circuits, between our model and
the true leakage of these circuits. The errors are very small
(notice, however, that these do not include any cell leakage
modeling errors, which were discussed earlier in Section III).
We do not show the errors in the mean leakage because they
are truly negligible.
2) Simplified Correlation Assumption: In Section III we

noted that the cell leakage statistics (i.e., the mean and
standard deviation of leakage) can be obtained in two ways;
either (1) a MC analysis would be done or (2) the cell’s
leakage would be fitted into a functional form to get three
fitting parameters (a, b, c). Using these parameters, the leakage
mean and standard deviation were analytically obtained. The
fitted parameters also allowed us to determine the leakage
correlation between any pair of gates, ρm,n, given the channel
length correlation ρL. Using the mapping, fm,n(·), the RG
leakage correlation was determined in (24).
If we, however, choose to obtain the leakage statistics of

each cell through MC analysis, we would not be able to use
fm,n(·) to determine the leakage correlation between pairs of
cells because the correlation mapping depends on the fitting
parameters which are not available in MC mode. Without this
mapping, the RG leakage correlation cannot be determined.
The solution to this problem lies in Fig. 5, where we have
noted that the leakage correlation of any pair of cells is
approximately equal to the correlation in the channel length
of these cells. In other words, ρm,n ≈ ρL, ∀m, n. With
this simplified correlation assumption, (24) can be used to
determine the RG leakage correlation.
To determine the amount of error introduced by this as-

sumption, we have compared the difference between the
standard deviation when assuming ρm,n = ρL compared to the
analytical approach, i.e., when using the true fm,n(·) mapping.
Regardless of whether we assume solely WID variations or
have both WID and D2D variations, the percentage error is
below 2.8%, as shown in Fig. 10.

B. Constant-time method

In this section, we show how, for large values of n, we can
approximate the linear summation in (31) by an integral to
obtain the statistics of full-chip leakage in constant time. This
transformation is possible because the correlation function that
shows up under the integral (as shown next) is a well-behaved
monotonically decreasing function.
1) 2D Integration in Rectangular Coordinates: Starting

from (31), let xi = i·∆W and yj = j·∆H , and by multiplying
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Fig. 10. % Error in leakage standard deviation for ρm,n = ρL compared
to ρm,n = fm,n(ρL)

out ∆W and ∆H we obtain:

σ2
IT

=
σ2
XI

∆W∆H

m∑

i=−m

k∑

j=−k

(W − |xi|) · (H − |yj|) ρXI(dij)

(32)
where W = m · ∆W , H = k · ∆H , and dij =

√
x2

i +y2
j . By

using a double integral to approximate the double summation
over discrete values, we obtain:

σ2
IT

≈
σ2
XI

(∆W∆H)2

∫ W

−W

∫ H

−H
(W−|x|)(H−|y|)ρXI

(√
x2+y2

)
dydx

(33)
Let the area of a RG site beAsite = ∆W∆H and the area of

the die be A = nAsite. Note that the function being integrated
is even, so that we can write:

σ2
IT

≈ 4σ2
XI

n2

A2

∫ W

0

∫ H

0
(W − x)(H − y)ρXI

(√
x2+y2

)
dydx

(34)
The expression in (34) approximates the full-chip leakage

variance for large values of n. Since the number of gates on the
chip is typically in the order of millions, the approximation is
valid in most cases. What is interesting about this expression
is that it only requires the computation of an integral, which
can be performed in constant-time using a good numerical
integration routine; the leakage variance computation does not
depend on the number of gates n, it is O(1).
2) 1D Integration in Polar Coordinates: To make our

computation even more efficient, under certain conditions we
can transform the double integral in (34) into a single integral
in polar coordinates. First we write an exact mapping of (34)
in double-integral form using polar coordinates:

σ2
IT

≈
4σ2

XI
n2

A2

∫ π
2

0

∫ D(θ)

0

(W−r cos θ)(H−r sin θ)ρXI(r) rdrdθ

(35)
where D(θ) is the distance from the origin to the boundary
of the rectangular integration domain, which is less than the
largest distance on the array. If the distance at which the WID
correlation function reaches 0 is less than the minimum of
the height or width of the array, then the double integral in
(35) can be written as a single integral. To derive this single
integral, let us for the moment assume that there are no D2D
variations and that ρXI becomes zero at a distance Dmax. If
Dmax is less than min(W, H) then (34) can be written as:

σ2
IT

≈
4σ2

XI
n2

A2

∫ Dmax

0

∫ π
2

0

(W−r cos θ)(H−r sin θ)ρXI(r) rdθdr

(36)
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Fig. 11. % Error between numerical integration and linear time algorithm

Since the correlation function does not depend on θ, we
can further simplify the above expression by separating the
integrals:

σ2
IT

≈
4σ2

XI
n2

A2

∫ Dmax

0

ρXI(r)r

[∫ π
2

0

(W−r cos θ)(H−r sin θ)dθ

]
dr

(37)
The expression in the brackets can be analytically integrated
and results in the following expression:

g(r) = 0.5r2 − (W + H)r +
π

2
WH (38)

which leads to the final expression for full-chip leakage
variance:

σ2
IT

≈
4σ2

XI
n2

A2

∫ Dmax

0
r · g(r) · ρXI(r)dr (39)

When also considering D2D variations, recall from Section II
that the correlation never reaches zero, and thus the single
integral technique does not immediately apply. However, if
we divide up the correlation function ρXI(r) into a constant
portion, ρc, and a portion that does go to 0 at Dmax, ρ′XI

(r) =
ρXI(r) − ρc, then the single integral can be written as:

σ2
IT

≈
[

4σ2
XI

n2

A2

∫ Dmax

0
r · g(r) · ρ′XI

(r)dr

]
+ ρcσ

2
XI

n2

(40)
3) Validation: The value of the standard deviation of the

full-chip leakage obtained from the numerical integration ( 34)
was compared to the value obtained from the O(n) approach
presented in Section V-A.
As can be seen in Fig. 11, for circuits that have more than

ten thousand gates there is less than 0.01% error between the
numerical integration and that of the linear-time algorithm. For
circuits with a small number of gates (<100) the % error is
more than 1%; this is due to the granularity of the gates being
a significant proportion of the total area of the design causing
the integral to be less accurate than the true sum. For larger
designs, the area of the logic gates compared to the area of the
design approaches zero, allowing the numerical integration to
provide good results, with less than 0.1% error.
Given that the O(n) time algorithm takes less than one

second for circuits with less than 1000 gates, one can use the
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O(n) time algorithm in those cases, and use the numerical
integration for circuits with a much larger number of gates.

VI. CONCLUSION

We presented a probabilistic full-chip model that can be
used to estimate, in constant-time, the leakage statistics of
candidate designs either at an early or a late stage, while
considering within-die correlations. We proposed and verified
that certain high-level characteristics of a candidate chip
design are sufficient to determine its leakage. These high-level
characteristics, shown in Fig. 1, include information about the
process, the standard-cell library, and the design in question.
We showed that, for large gate count, the set of all chip
designs that share the same high level characteristics have
approximately the same full-chip leakage statistics, with very
small error. We capture this set by a full-chip model based on
Random Gates (RGs).

APPENDIX

A. Leakage Statistics - Analytical Method
In this section, we present the mathematical framework

which allows us to analytically determine the mean and
standard deviation of cell leakage, given the fitted functional
form with the triplet (a, b, c). This framework can be applied
for any leakage model that is quadratic exponential (which
includes both sub-threshold and gate leakage). Recall that the
leakage of each cell in the library is modeled as:

X = a ebL+cL2
(41)

We are interested in determining the mean µX and variance
σ2
X of the cell leakage, X, given the mean and variance of
the channel length, L, and the regression parameters (a, b, c).
Assume that L is a normally distributed RV with mean µ and
standard deviation σ. Let Y = lnX; then X = eY. The mean
and variance of X can be written as follows:

µX = E [X] = E
[
eY

]
(42)

σ2
X = E

[
X2

]
− µ2

X = E
[
e2Y

]
− µ2

X (43)

Let MY(t) be the moment-generating function of Y. By
definition, this function is equal to:

MY(t) = E
[
etY

]
(44)

This function has been studied in the literature, and has
a closed form expression for most known distributions [17].
Note that (42) and (43) can be written in terms of the moment-
generating function of Y:

µX = MY(1) (45)
σ2
X = MY(2) − µ2

X (46)

The above result shows that the mean and variance of the
cell leakage can be determined ifMY(t) is known. To do that,

we must determine the distribution of Y. Since Y = lnX, it
follows from (41) that:

Y = ln a + bL + cL2 (47)

where L has a normal distribution. Let L̂ be a normalized
version of L:

L̂ =
L − µ

σ
(48)

This last equation shows that L̂ has a standard normal
distribution with zero mean and unit variance. We can easily
write (47) in the following form:

Y = K1

(
L̂ + K2

)2
+ K3 (49)

where:

K1 = cσ2 (50)

K2 =
(

b
2c + µ

)

σ
(51)

K3 = ln a + bµ + c µ2 − c

(
b

2c
+ µ

)2

(52)

The motivation behind this transformation is to write Y in
terms of an RV with a known distribution. Let W = L̂+K2;
then W2 has a “Non-Central Chi-square” distribution with
ν = 1 degrees of freedom because W is normal with non-
zero mean and unit variance. Therefore we can write ( 49) in
terms of W2:

Y = K1W2 + K3 (53)

This allows to write the moment-generating function of Y
in terms of the moment-generating function ofW 2 as follows:

MY(t) = E
[
etY

]
(54)

= E
[
et(K1W

2+K3)
]

(55)

= etK3E
[
etK1W

2
]

(56)

= etK3MW2(K1t) (57)

Since W2 has a Non-Central Chi-square distribution with
ν = 1 degrees of freedom, then its moment-generating
function is known [17]:

MW2(t) = (1 − 2t)−
1
2 · e

λt
1−2t (58)

where λ = (K2)2 is the non-centrality parameter.
Now by using the above equation for the moment-generating

function of W2, we can determine the moment-generating
function of Y using (57) and get the final expression in (14),
from which the mean and variance of the cell leakage can be
determined as shown in (45) and (46).
To determine the accuracy of this analytical technique, we

have compared its results to MC analysis. Histograms of the
the percent error in the mean and standard deviation are shown
in Fig. 12 and 13 respectively for all 62 cells with all input
combinations. For the mean, the analytical method is quite
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close to the MC results with errors less than a 2% for all
gates. For the standard deviation the error is larger, with an
average absolute error of 3.1% and a maximum error of about
10%. As mentioned in Section III-A2, the error in the mean
and standard deviation is not a result of the mathematical
derivation, but due to the leakage curve not being exactly
mapped to (41).

B. Leakage Correlation - Analytical Mapping
In this section, we present the mathematical framework

that allows us to analytically determine the correlation in the
leakage currents of two cells given the correlation in their
channel length. We also note that leakage correlation turns
out to be very close to channel length correlation, in most
cases.
Let L1 and L2 be two correlated RVs representing channel

length at two arbitrary locations l1 and l2. We will assume that
the correlation in channel length, ρL(l1, l2), can be determined
from the correlation model that we presented in Section II-B.
Recall that L1 and L2 are normally distributed with mean µ
and standard deviation σ.
We are interested in determining ρm,n(l1, l2) defined as the

correlation in the leakage of two gates m and n given the
channel length correlation ρL(l1, l2). Particularly, we will use
the analysis that follows to find a mapping fm,n(·) such that:

ρm,n(l1, l2) = fm,n (ρL(l1, l2)) (59)

Let Xm and Xn be the leakage of two gates of type m and
n from the library; these RVs depend respectively on L1 and
L2 in the following way:

Xm = a1e
b1L1+c1L

2
1 (60)

Xn = a2e
b2L2+c2L

2
2 (61)

It is important to understand that the channel length and
leakage correlations are due to the spatial correlation between
the locations l1 and l2, and depend particularly on the distance
between the two locations. Let Cm,n(l1, l2) be the covariance
of Xm and Xn defined as follows:

Cm,n(l1, l2) = E [XmXn] − µXmµXn (62)

The leakage correlation ρm,n(l1, l2) can be expressed as a
function of the covariance:

ρm,n(l1, l2) =
Cm,n(l1, l2)
σXm · σXn

(63)

where µXm , µXn , σXm , σXn denote the means and standard
deviations of Xm and Xn respectively, as determined in
Section III-A2.
Examining (63) and (62), it is easy to see that the problem of

finding ρm,n(l1, l2) can be solved if E [XmXn] is determined.
By letting Y = ln (XmXn), we can write E [XmXn] as a
function of the moment-generating function of Y:

E [XmXn] = E
[
eY

]
(64)

= MY(1) (65)

since MY(t) = E
[
etY

]
.

In this way, if we are able to determine the moment-
generating function of Y, we can evaluate it at 1 to determine
E [XmXn] using (65). Then, using (62) and (63), we can
determine the leakage correlation ρm,n(l1, l2). Using (60)
and (61), we can write:

Y = ln (XmXn)
= ln a1 + ln a2 + b1L1 + b2L2 + c1L2

1 + c2L2
2

(66)

Assume that the correlation in the channel lengths L1 and
L2 is ρL(l1, l2) = ρ. To model this correlation, we will use the
following transformation; Let Z1 and Z2 be two RVs defined
as follows:

Z1 =
1
2α

(
L1 − µ

σ
+

L2 − µ

σ

)
(67)

Z2 =
1
2β

(
L1 − µ

σ
− L2 − µ

σ

)
(68)

where:

α =
√

1 + ρ

2
(69)

β =
√

1 − α2 =
√

1 − ρ

2
(70)

The way they are defined above, Z1 and Z2 are guaranteed
to have certain properties. First, they are normally distributed
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since L1 and L2 are jointly normally distributed. In addition,
they are guaranteed to have zero-mean, unit variance, and zero
correlation (or covariance). This can be easily shown:

E [Z1] =
1
2α

(
E

[
L1 − µ

σ

]
+ E

[
L2 − µ

σ

])
= 0 (71)

Var(Z1) =
1

4α2

(
Var (L1)

σ2
+
Var (L2)

σ2
+ 2

Cov (L1,L2)

σ2

)

=
2

4(1 + ρ)
(1 + 1 + 2ρ) = 1

(72)

Cov(Z1,Z2) =
1

4αβ
E

[(
L1 − µ

σ
+

L2 − µ
σ

)(
L1 − µ

σ
− L2 − µ

σ

)]

=
1

4αβ

(
E

[(
L1 − µ

σ

)2
]
− E

[(
L2 − µ

σ

)2
])

= 0

(73)

Being normally distributed with zero-mean and unit vari-
ance, and having zero correlation, imply that Z1 and Z2

are independent standard normal RVs. By reordering (67)
and (68), we can express both L1 and L2 as a function of
Z1 and Z2 as follows:

L1 = σ (αZ1 + βZ2) + µ (74)
L2 = σ (αZ1 − βZ2) + µ (75)

By substituting (74) and (75) in (66), we can write Y in the
following matrix form:

Y = K1+K2+
[
K3 K4

] [
Z1

Z2

]
+

[
Z1 Z2

] [
K5 K6

K7 K8

] [
Z1

Z2

]

(76)
where:

K1 = ln a1 + b1µ + c1µ
2 (77)

K2 = ln a2 + b2µ + c2µ
2 (78)

K3 = ασ [(b1 + b2) + 2µ (c1 + c2)] (79)
K4 = βσ [(b1 − b2) + 2µ (c1 − c2)] (80)
K5 = α2σ2(c1 + c2) (81)
K6 = αβσ2(c1 − c2) (82)
K7 = K6 (83)
K8 = β2σ2(c1 + c2) (84)

Generally,K6 andK7 are non-zero, which will lead to cross
terms when performing the matrix multiplication in (76) (i.e.,
terms in Z1Z2). These terms will complicate the determining
of Y and we would ideally like to remove them from the
expression. This can be achieved through matrix diagonaliza-
tion; let’s denote the 2× 2 matrix in (76) by A. Because A is
symmetric, we can diagonalize A in the following way:

A = PDPT (85)

where D is a diagonal matrix having as entries the eigenvalues
of A, i.e.,

[
λ1 0
0 λ2

]
and P is a matrix having as columns the

eigenvectors of A. Since A is symmetric, these eigenvectors
are orthogonal. Moreover, we can choose P in such a way
that its columns are also orthonormal. This decomposition is
a standard practice and we use it here to transform Z1 and Z2

into a new set of RVs V1 and V2 that are also independent
standard normals:

[
V1

V2

]
= PT

[
Z1

Z2

]
(86)

Using the above transformation, (76) is written as follows:

Y = K1+K2+
[
K̂3 K̂4

] [
V1

V2

]
+

[
V1 V2

] [
λ1 0
0 λ2

] [
V1

V2

]

(87)
where: [

K̂3

K̂4

]
= PT

[
K3

K4

]
(88)

Note that both D and P can be easily determined for a 2× 2
symmetric matrix as there is a closed form expression for the
eigenvalues and eigenvectors of A. Note also that since the
off-diagonal entries of D are zero, Y will have no cross terms.
Now that we removed the cross terms, we can write Y into

the following quadratic form:

Y = K1 + K2 + K̂3V1 + K̂4V2 + λ1V2
1 + λ2V2

2

= (K1 + K̂3V1 + λ1V2
1) + (K2 + K̂4V2 + λ2V2

2)
(89)

where V1 and V2 are independent standard normal RVs.
Note that the above equation is essentially two instances

of (47). Using exactly the same analysis that follows (47), we
can write Y in terms of two independent RVs that have a non-
central chi-square distribution; this allows us to determine the
moment generating function of Y, MY(t). Once this is done,
we use (65) to find E [XmXn], and consequently determine
ρm,n(l1, l2) from (62) and (63).
The above analysis, whereby the leakage correlation be-

tween any pair of gates placed at two arbitrary locations can
be determined given the correlation in the channel length at
these two locations, is referred to as the mapping fm,n(·):

ρm,n(l1, l2) = fm,n (ρL(l1, l2)) (90)

We have used this mapping to determine the leakage corre-
lation between the pairs of cells in our library. The results
obtained for all pairs of gates, while being close to each
other, are not exactly the same as can be seen in Fig. 14,
where the correlation of 63 pairs of gates are plotted compared
to the y = x line. The difference can be better seen in a
zoomed version of the plot in Fig. 15. The resulting curves
are convex functions that pass through (0, 0) and (1, 1); they
closely follow the y = x, deviating slightly at ρL(l1, l2) = 0.5.
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