Full-Chip Nanometer Routing Techniques

By

TSUNG-YI HO

YAO-WEN CHANG

SAO-JIE CHEN

Graduate Institute of Electronics Engineering and Department of Electrical Engineering National Taiwan University, Taipei, Taiwan, ROC

Contents

List of Figures				
List of Tables				
Preface Acknowledgments				
1	Down	n to the Wire	1	
2	Routi	ng Problems	3	
	2.1	Flat Routing Framework	4	
		2.1.1 Sequential Approach	4	
		2.1.2 Concurrent Approach	6	
	2.2	Hierarchical Routing Framework	8	
		2.2.1 Top-Down Hierarchical Approach	8	
		2.2.2 Bottom-Up Hierarchical Approach	10	
		2.2.3 Hybrid Hierarchical Approach	10	
	2.3	Multilevel Routing Framework	11	
		2.3.1 Previous Multilevel Routing Framework	12	
		2.3.2 Our Multilevel Routing Framework	15	
3	Orga	nization of the Book	17	
	3.1	Multilevel Routing Framework	17	
	3.2	Multilevel Full-Chip Routing Considering Crosstalk		
		and Performance	18	

		3.3 Multilevel Full-Chip Routing Considering Antenna	
		Effect Avoidance	18
		3.4 Multilevel Full-Chip Routing for the X-Based	
		Architecture	19
2.	RC	DUTING CHALLENGES FOR NANOMETER	
		CHNOLOGY	21
	1	Routing Requirement for the Nanometer Era	21
		1.1 Signal-Integrity Problems	22
		1.1.1 Crosstalk Problems	23
		1.1.2 Process Antenna Effects	24
		1.2 Manufacturability Problems	25
		1.2.1 Optical Proximity Correction	26
		1.2.2 Phase Shift Masking	28
		1.2.2 Phase Shift Masking1.2.3 Double Via Insertion	29
		1.2.4 X-Architecture	31
3.	M	ULTILEVEL FULL-CHIP ROUTING	
	C	DNSIDERING CROSSTALK	
	Aľ	ND PERFORMANCE	33
	1	Introduction	33
	2	Elmore Delay Model	36
	3	Multilevel Routing Framework	37
		3.1 Performance-Driven Routing Tree Construction	38
		3.2 Crosstalk-Driven Layer/Track Assignment	43
	4	Experimental Results	47
	5	Summary	51
4.		ULTILEVEL FULL-CHIP ROUTING	
		DNSIDERING ANTENNA EFFECT	
	AV	OIDANCE	53
	1	Introduction	53
	2	Antenna Effect Damage	55
	3	Multilevel Routing Framework	59
		3.1 Bottom-Up Optimal Jumper Prediction	60
		3.2 Multilevel Routing with Antenna Avoidance	64
	4	Experimental Results	67
	5	Summary	68
5.		ULTILEVEL FULL-CHIP ROUTING	
	FC	OR THE X-BASED ARCHITECTURE	71
	1	Introduction	71
	2	Multilevel X-Routing Framework	74

Contents

3	X-Architecture Steiner Tree Construction	76
	3.1 Three-Terminal Net Routing Based on X-Architecture	76
	3.2 X-Steiner Tree Algorithm by Delaunay Triangulation	79
4	Routability-Driven Pattern Routing	80
5	Trapezoid-Shaped Track Assignment	82
6	Experimental Results	86
7	Summary	88
6. CC	DNCLUDING REMARKS AND FUTURE WORK	89
1	Multilevel Routing Framework	89
2	Routing Challenges for Nanometer Technology	90
3	Multilevel Full-Chip Routing Considering Crosstalk and	
	Performance	90
4	Multilevel Full-Chip Routing Considering Antenna Effect	
	Avoidance	91
5	Multilevel Full-Chip Routing for the X-Based Architecture	91
6	Future Research Directions	92
References		