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Abstract 
This paper proposes a new method for analyzing signal and power integrity issues on LSI chips. This 
method can model a full chip power and ground grids considering the effects of transmission line and 
silicon substrate. A full chip layout data is divided into sections, then each section is modeled as SPICE 
transmission lines. N-port parameters of the each section are extracted by newly developed super linear 
solver. The extracted parameters are converted into compact SPICE frequency table. Using this method, 
the impedance of power/ground grids and dynamic IR drop for signal traces considering full 
power/ground grids are analyzed. 
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1. Introduction 
With an increase in operating frequency and complexity of SOC, it becomes important to consider the 
power integrity (PI) as well as signal integrity (SI). Most SI approaches are focusing only on signal 
traces ignoring power and ground grids or assuming silicon substrate as a perfect conductor as shown in 
Figure. 1. However, the power and ground grids and a silicon substrate significantly affect the signal 
quality when the frequency is increased. There are two types of methods for evaluating power and 
ground noise as shown in Table 1. The first method is the frequency dependent impedance between 
power and ground grids which are modeled as transmission lines. It can be calculated by SPICE AC 
Analysis.  Although this method does not directly treat waveforms, the noise voltage levels can be 
estimated by the obtained impedance multiplied by assumed currents at given frequencies. On the 
contrary, the second method can directly show waveforms considering the effect of nonlinear devices in 
time domain. The advantage of the first method is much faster than the second one.  Key issues to 
realize the both analysis for real chips are how to handle such huge data of power and ground grids, 
because they are spreading a whole chip area.   
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                           Table 1.  Two methods for evaluating power and ground noise. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Methodology 
  2.1 Model Order Reduction 
In order to analyze impedance and dynamic IR drop, it is necessary to make a full chip macro model for 
such huge power and ground grids with or without signal traces. It is well-known that a large size circuit 
can be compressed by converting a circuit model into N-port parameters which have less number of 
nodes. This is so called Model Order Reduction (MOR). However, this method has a problem when 
applying it to today’s huge LSIs. With an increase in the number of the nodes of the final circuit model, 
it takes so long time to extract N-port parameters by conventional SPICE. To resolve this issue, we have 
developed a super linear solver (SLS). It can use memory effectively and drastically speed up.  SLS 
consists of parser and solver. Figure 2 indicates no difference between ApsimSPICE and ApsimSLS. 
Table 2 compares the speed and memory between SPICE and SLS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Comparison of accuracy between ApsimSPICE and ApsimSLS. 
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Table 2. Comparison of CPU Time and Memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once we get N-port parameters, we must convert them into SPICE readable elements in frequency and 
time domains. This can be performed by fitting the rational function expansion (Figure 3) or frequency 
table model (Figure 4) [1]. Circuit simulator uses state variable approach and DFFT + Convolution for 
the rational function expansions and frequency table model, respectively. 
 
 
 
 
 

 
 
 
 
 
 
 

 
Figure 3.  Fitting of Rational function in N-port conversion. 
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                                            Figure 4.  Frequency tables in N-port conversion. 
 
Electrically short structures should use rational function approximation. This enables us fast transient 
simulation. On the other hand, electrically long structures should use frequency tables. This is slower 
than rational function, but no need for frequency fitting.  Figure 5 shows an example of the rational 
function for electrically short structure. Figure 6 compares the rational function and the frequency tables 
for electrically long structure.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     Figure 5. Fitting in the rational function for electrically short structure. 
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    Figure 6.  Comparison between r
structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 7.  2-port sub-circuit modele
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  2.2 Silicon Substrate Effect 
 The effect of a silicon substrate on transmission properties was first analyzed in 1960’s [3], [4]. There 
are three dominant propagation modes which are determined by silicon resistivity, dielectric constant 
and frequency as shown in Figure 8 (a).  For the slow wave mode, the silicon substrate approximately 
behaves as a conductor for electric field, but it behaves as an insulator for magnetic field shown in 
Figure 8 (b).  We have implemented these three modes into 2D field solver RLGC[5],  SPICE[6], [7] 
and special linear solver SLS as a new transmission line model. Figure 8 (c) shows per unit length  
model of the transmission lines. The models become matrix for multi-conductors. The power/ground 
grids and signal traces described in the section 2.1 are described in this model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            

 Figure 8.  Three propagation modes of transmission lines over a silicon substrate.  
 
2.3 Simulation Flow 
There are two targets in our simulation.  The first one is to calculate frequency dependent input 
impedance between power and ground grids. The second one is to simulate dynamic IR drop in time 
domain for connecting nonlinear devices to the model.   
Figure 9 shows a fundamental simulation flow. The simulations starts with LSI-CAD data such as LEF  
(Library Exchange Format) and DEF (Design Exchange Format). LFE/DEF are converted into an 
intermediate proprietary format AAIF/AIF.  Since the physical data AAIF/AIF is common to the printed 
circuit boards or IC packages, it is possible to simulate the mixing of LSI, IC package, and PCB layout 
data with common simulators. The AAIF/AIF data is converted into SPICE model by the 2D field solver 
with R, L, G, and C considering the effect of silicon substrate. Coupling levels can be defined for the  
horizontal and vertical distances in this conversion. If look up tables for such RLGC matrix are prepared, 
the SPICE model can be directly made from LEF/DEF files. There are two methods to make SPICE 
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model of the interconnections.  One is to separate power/ground grids and signal traces.  Although this 
model has no coupling between power/ground grids and signal traces, major interactions between 
power/ground and signals are considered at power feeding points of device models. The advantage of 
this method is to perform fast and stable simulation. The second method is that power/ground grids and 
signal traces are modeled considering coupling. This method is more accurate than the first one but slow. 
Once the interconnection model is made, an input impedance between power and ground at any give 
points can be calculated by SLS. For the dynamic IR drop analysis, N-port parameters at I/O pins and 
device connection points are also calculated by SLS.  After getting the interconnection model, the signal 
waveforms and power/ground bounce in time domain can be simulated by SPICE. Since the model of 
the power and ground grids is compressed, the simulation time becomes very fast ever for connecting 
nonlinear device models to the N-port frequency table model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        Figure 9.  Simulation Flow of Input Impedance and Dynamic IR Drop. 
 
Figure 10 shows a more complex simulation flow for much larger chips. A full chip structure is divided 
into sections. Each section of interconnection model can be modeled by using the procedures shown in 
figure 9. Each section can be simultaneously modeled by multi processor. The parallel processing makes 
speed up and treat larger chips. The obtained all the section models can be compressed again by using 
the same method of the N-port extraction and frequency table conversion. If the resultant model is still 
large, the same procedures can be repeated for groups which consist of number of section models. The 
input impedance between power and ground grids and the dynamic IR drop are also calculated by the 
similar procedures. 
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     Figure 10.  Simulation Flow for Input Impedance and Dynamic IR Drop for large Chips. 
 
3. Example 
We applied the proposed method to a real LSI chip shown in Figure 11.  It has three metal layers.                               
                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  An example of L
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3.1 Input Impedance between Power and Ground Grids 
Figure 12 shows an example of a short circuit impedance between power and ground girds. The red and 
purple curves indicate RLGC calculation by look up table and by field solver, respectively. Both curves  
are close. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
                         Figure 12.  Short circuit impedance between power and ground grids. 
 
Figure 13 compares a conventional quasi TEM model assuming silicon substrate as a perfect ground 
metal with the slow wave mode of silicon substrate.  At low frequency, the impedance of the 
conventional model is lower than that of the slow wave mode.  This is because a signal trace is closer to 
the ground and the capacitance value is larger. The inductance effect also can be seen beyond 10GHz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     Figure 13.  Open circuit impedance between power and ground grids. 
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The input impedance shown in Figure 14 can be used for optimizing on chip capacitors to reduce 
simultaneous switching output noise (SSO) and common mode EMI. There are two types of 
implementation of on chip capacitors. One is within a cell, and the other is using special capacitor cells. 
With an  increase in the on chip capacitors, the impedance at the low frequency  will be decreased.  With 
an increase in the number of parallel path of power/ground grids, the impedance at the high frequency 
will be reduced. However, it should be noted that these two increases cost and chip size. There are trade 
offs between the noise reduction  and the cost.  
Figure 15 summarizes typical on chip capacitor strategies. There are two ways to place on chip 
capacitors.  One is within a cell, and the other is using special capacitor cells. Usually capacitors are 
obtained by gate oxide layer of MOS transistors, because the value of MIM capacitors is much smaller. 
These strategies can be evaluated by analyzing the impedance between power/ground grids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  How to reduce impedance between power and ground grids. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                Figure 15.  On chip capacitor strategy. 
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  3.2 Dynamic IR Drop 
To analyze waveforms along signal traces taking care of power/ground grids and silicon substrate in 
time domain, the N-port parameters were extracted by SLS. Then the parameters in frequency domain 
are converted into rational function or frequency table model in time domain analysis. Signal trace 
models and nonlinear transistor models are connected to the power/ground grid model, then signal 
waveforms and power/ground bounce are simulated as shown in Figure 16.  
Figure 17 shows dynamic IR drop along a clock net of chip layout shown in Figure 18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             Figure 16.  Signal and power and ground net simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Figure 17.  Dynamic IR Drops for a clock net and a compressed full chip pow
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                 Figure 18.  An example of clock nets and full chip power/ground grids. 
 
4. Conclusion 
We have developed a new simulation method for the full chip level Signal and Power Integrity. The 
physical CAD layout data is converted into SPICE transmission line models taking care of substrate  
Effects. To compress the model size, the N-port parameters extraction by super linear solver, the 
frequency table conversion, and repeatable sectioning method have been introduced. Using this method, 
input impedance between power and ground grids and dynamic IR drop (power and ground bounce) are 
simulated.  This method can be interfaced with LSI CAD data LEFDEF. The common intermediate 
format of the physical data enables us to use the same simulation tools from LSI, Package through PCB. 
We have also developed another CAD interface GDSII for arbitrary polygon shapes. This uses PEEC 
model instead of transmission line models.  
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