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Full counting statistics of charge transfer in Coulomb blockade systems
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Full counting statistics~FCS! of charge transfer in mesoscopic systems has recently become a subject of
significant interest, since it proves to reveal an important information about the system which can be hardly
assessed by other means. While the previous research mostly addressed the FCS of noninteracting systems, the
present paper deals with the FCS in the limit of strong interaction. In this Coulomb blockade limit the electron
dynamics is known to be governed by a master equation. We develop a general scheme to evaluate the FCS in
such case, this being the main result of the work presented. We illustrate the scheme, by applying it to concrete
systems. For generic case of a single resonant level we establish the equivalence of scattering and master
equation approach to FCS. Further we study a single Coulomb blockade island with two and three leads
attached and compare the FCS in this case with our recent results concerning an open dot either with two and
three terminals. We demonstrate that Coulomb interaction suppresses the relative probabilities of large current
fluctuations.

DOI: 10.1103/PhysRevB.67.085316 PACS number~s!: 73.23.Hk, 05.40.2a, 72.70.1m
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I. INTRODUCTION

The current fluctuations in the various mesoscopic s
tems have been the subject of both theoretical and exp
mental research in the last two decades. Traditionally,
attention was focused on the shot noise phenomenon.
shot noise is the main fundamental source of current nois
low temperatures. In classical systems shot noise unamb
ously related to the discreteness of the electron charge
quantum system the shot noise can be used as unique to
reveal the information about the electron correlations a
entanglement of different kind. The investigation of t
quantum shot-noise cross-correlations in the multiterm
mesoscopic devices is the new trend in this field, which
attracted much attention as well. The most achievement
the study of the shot-noise phenomena have been sum
rized in the recent review article.1

Alternative way to investigate the current correlations
the mesoscopic systems has proposed in the pioneering
by Levitov et al.2 This new fascinating theoretical approac
known as thefull counting statistics~FCS!, yields not only
shot-noise power but also all possible correlations and
menta of charge transfer. The essence of this method i
evaluation of the probability distribution function of th
numbers of electrons transferred to the given terminals d
ing the given period of time. The first and the second m
ments of this distribution correspond to the average curre
and the shot-noise correlations, respectively. The probab
distribution also contains the fundamental information ab
large current fluctuations in the system.

Initially, FCS method2 made use of the scattering a
proach to mesoscopic transport. It was assumed that the
soscopic system was completely characterized by its sca
ing matrix. This method enabled to study the statistics of
transport through the disordered metallic conductor3 and the
two-terminal chaotic cavity.4 Muzykantskii and Khmelnitskii
generalized the original approach to the case of the nor
0163-1829/2003/67~8!/085316~16!/$20.00 67 0853
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metal/superconducting contacts. The very recent deve
ment in this field is the counting statistics of the char
pumping in the open quantum dots.5–7

The use of multichannel scattering matrix of the syst
was crucial to obtain the results of the above mention
works. However, such approach leads to the difficulties
case of practical layouts, where the scattering matrix is r
dom and cumbersome. They become apparent especial
case of multiterminal geometry. To circumvent these diffic
ties one evaluates the FCS with the semiclassical Keld
Green’s function method8 or with its simplification called the
circuit theory of mesoscopic transport.9 The Keldysh method
to FCS was first proposed by one of the authors in orde
treat the effects of the weak localization corrections onto
FCS in the disordered metallic wires. The method proves
be very flexible and has been recently applied to the FCS
superconducting heterostructures,10 multiterminal normal
metal systems11 as well as in the three-terminal superco
ducting beam splitter.12

The above research addressed the FCS of nonintera
electrons. Since the interaction may bring correlations a
entanglement of electron states the study of FCS of inter
ing electrons is both challenging and interesting. In this
per we present an extensive theory of FCS in mesosc
systems placed in a strong Coulomb blockade limit.

The FCS statistics of electron pumping of interacti
electrons has been considered by Andreev a
Mishchenko.13 However, they treated this problem with ver
specific assumptions. Namely, they considered quantum
with almost open contacts,R;RQ, RQ being a resistance
quantum. The Coulomb blockade effect in these circu
stances is very week. Our paper concerns conventional l
of highly resistive contacts,R@RQ.

Note, that the shot noise in the Coulomb blockade devi
has attracted the significant attention. Korotkov14 and Hersh-
field et al.15 presented the first theory in the framework
‘‘orthodox’’ approach to single electron transport. Later o
©2003 The American Physical Society16-1
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Korotkov also studied the frequency dependence of the
noise by means of Langevin approach both in low-~classi-
cal! and very high-~quantum! frequency limits. The fre-
quency dependence of the shot noise in the single elec
transistor was also investigated in Refs. 16 and 17. The
romagnetic single electron transistor was considered
Bulka et. al.18 The shot-noise experiments were perform
by Birk, Jong, and Scho¨nenberger.19 In this work, the nano-
particle in between the scanning tunneling microscope
and the metallic electrode was used to form the Coulo
blockade island and the quantitative agreement with
theory of Hershfieldet al. was found.

The electrons dynamics in Coulomb blockade limit is fo
tunately relatively simple. When the cotunneling phenome
is disregarded, the evolution of the system is governed b
master equation. The charge transfer is thus a classical
chastic process rather than the quantum mechanical
Nevertheless the FCS is by no means trivial and has not b
studied yet. In the present work we have developed the g
eral approach to FCS in the Coulomb blockade regime. T
is the central result of the paper. Our method turns out to
an elegant extension of the usual master equation appro

We apply the developed scheme to study the FCS in v
ous Coulomb blockade systems. We present the numbe
different results as well as reestablish some old ones. F
generic model of a single resonance level we establish
equivalence of the new master equation approach to the
with the well-known scattering approach by Levitovet al.
This equivalence holds under assumption of noninterac
particles, when both descriptions becomes applicable.

Further the scheme is used to study the FCS of cha
transfer and shot-noise correlations in the two- and thr
terminal Coulomb blockade island. Our consideration is li
ited to the temperature regimekBT@DE, DE being the level
spacing in the dot. We compare the results, obtained in C
lomb blockade limit with our previous study of noninterac
ing electrons in chaotic quantum dots.11 Surprisingly, we
found, that the FCS has a similar qualitative features bot
weakly and strongly interacting regimes. We show that C
lomb interaction suppresses the relative probabilities of
current fluctuations. The previous results for the ze
frequency shot-noise power in the conventional single e
tron transistor can be evaluated in our approach as the se
moment of charge-transfer probability distribution functio
Regarding the Coulomb blockade island with three leads
tached we show that the auto- and cross-shot-noise cor
tions exhibit the characteristic Coulomb blockade osci
tions as functions of the applied voltages and offset char

The paper is organized as follows. In the Sec. II we s
by presenting the two physical systems to be treated wi
the master equation. Based on these prototypes we form
the general model. We derive our approach to the FCS in
Sec. III. In the Sec. IV we applied the method to study t
FCS of the single resonant level and consider its relation
the scattering approach. Two- and three-terminal single e
tron transistors are considered in Sec. V. We also comp
their FCS in the Coulomb blockade limit with that of noni
teracting electrons.11 We summarize the results in Sec. VI.
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II. SYSTEMS UNDER CONSIDERATION

The dynamics of various systems can be described
master equation. For our purposes it is convenient to writ
down in the matrix form

]

]t
up,t&52L̂up~ t !&, ~1!

where each elementpn(t) of the vectorup(t)& corresponds to
the probability to find the system in the staten. The matrix
elements of operatorL̂ are given by

Lmn5dnmgn2Gm←n , gn5 (
mÞn

Gm←n . ~2!

HereGn←m stands for the transition rate from the statem to
the staten, gn presents the total transition rate from the sta
n. Thus defined operatorL̂ always has a zero eigenvalue, th
corresponding eigenvector being the stationary solution
the master equation.

Coulomb blockade mesoscopic systems always obey
~1!. The main advantage of the master equation approach
possibility of nonpertubative treatment of the interaction
fects. In what follows, we first remind the master equati
description of two simple systems: single resonant level
many-terminal Coulomb blockade island. On the basis
these examples we will sketch the master equation for
general Coulomb blockade system. This will prepare us
the following section, where we derive the FCS method.

A. Resonant-level model

An elaborated model of the resonant center was prese
in Ref. 20. It was subsequently improved in the work21 to
include the Coulomb interaction. One of the physical reali
tion is disordered tunneling barrier which is placed betwe
two leads.22 At sufficiently low temperatures the mai
mechanism of transport in this system is the resonant tun
ing via localized states formed by impurity centers. Anoth
physical realization is the Coulomb blockade island in t
low-temperature regimekBT!DE, where DE is a mean
separation between the energy levels in the dot.23 By apply-
ing the gate voltage, one can tune the given level to be
tween the chemical potentials of the leads.~See Fig. 1.! We
consider below two limiting cases where one disregards
ther double occupancy of the level or on-cite Coulomb int
action.

In the strongly interacting case the double occupancy
the resonant level is entirely excluded due to the Coulo
repulsionU. Then the system can be found only in two d
ferent microscopic states: one with no electrons, and ano
with a single electron. The transport through the level can
described by master equation approach, provided the app
voltage or the temperature are not too low, i.
max$eV,kBT%@\GL(R) . Here GL(R) are the quantum-
mechanical tunneling rates from the left~right! electrode
onto the resonant level. We will also assume that at the
evant energy scale, given by max$eV,kBT%, the ratesGL(R) are
energy independent.
6-2
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Under above assumptions the transition rates in Eq.~1!
are given by

G1←052GL f L~e i !12 GRf R~e i !,
~3!

G0←15GL@12 f L~e i !#1GR@12 f R~e i !#.

The microscopic states$0% and$1% denote the situation with
no and one electron, respectively. Fermi functionf L(R)(e)
5$11exp@(e2mL(R))/kT#%21 accounts for the filling in the
left ~right! lead ande i is the position of the resonant leve
The factor 2 in the rateG1←0 stems from the fact that two
quantum states, with spin up and down, are available
tunneling. The description in terms of rates~3! is correct
when the Coulomb repulsion is strong enough,U
@max$eV,kBT%.

The opposite limit is the case of vanishing Coulomb
teraction. In this case the spin-up and spin-down chan
can be treated independently. Each of them can be desc
by the master equation, provided the same condition as
fore is fulfilled: max$eV,kBT%@\GL(R) . For both spin direc-
tions the rates are written as

G1←05GL f L~e i !1GRf R~e i !,
~4!

G0←15GL@12 f L~e i !#1GR@12 f R~e i !#.

Here the indices$0% and$1% denote the filling factor of the
level by electon with a chosen spin.

Disregarding of Coulomb interaction is not adequate fo
realistic system. However, the latter model is worth to co
sider as well. The point is that the statistics of the cha
transfer in this case can be also evaluated in the framew
of the noninteracting scattering approach,2 thus providing the
way to establish the consistency of two approaches to F

B. Many-terminal Coulomb blockade island

The electrical circuit incorporating the Coulomb blocka
island with several terminals is shown in Fig. 2. This circ
is an extension of the usual single electron transistor.24 At the
present stage of nanotechnology the mesoscopic system
sociated with this circuit, can be realized with the use
two-dimensional~2D! electron gas in the GaAs/AlGaAs he
erostructures.

FIG. 1. The single resonant-level system, formed by the t
tunnel barriers. The resonant level in the quantum well is shown
the dashed line.
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The essential elements of the circuit shown in Fig. 2
the resistancesRk of the contacts, the mutual capacitanc
Ck between the leads and the island and the externa
voltage sourcesVk . Correspondingly,Cg andVg denote the
gate capacitance and gate voltage, which is used to vary
offset change on the island. We assume that the islan
placed in the Coulomb blockade regime,Rk@RQ
52p\/e2. In order the Coulomb blockade effect will b
observable the conditionkBT!Ec5e2/2CS is also required.
Here Ec is a charging energy of the island,CS5( i 51

N Ck

1Cg is a sum capacitance of the system andN>2 is a
number of leads attached to the dot. We also assume
temperature to be rather high,kBT@DE, with DE being the
mean level spacing in the dot, so that the discreteness o
energy spectrum in the island is not important. The poss
effects of cotunneling will not be discussed in the pap
Therefore, the characteristic scale of applied voltageeV is
assumed to be greater than the Coulomb blockade thresh
eV>Ec .

Under the above conditions the multiterminal Coulom
blockade island is fairly well described by the ‘‘orthodox
Coulomb blockade theory. One can consider the excess n
ber of electrons on the island (2n) as a good quantum num
ber, corresponding to the macroscopic state of the sys
The tunneling of electrons will occur one by one, increas
or decreasing the chargeQ05ne on the island by6e. The
corresponding tunneling rateGn61←n

(k) across the junctionk is
expressed via the electrostatic energy differenceDEn61←n

(k)

between the initial~n! and final (n61) configurations

Gn61←n
(k) 5

1

e2Rk

DEn61←n
(k)

12exp@2DEn61←n
(k) /kBT#

. ~5!

The evaluation ofDEn61←n
(k) can be done along the sam

lines as in the case of single electron transistor.24 The result
reads

DEn61←n
(k) 56e@Vk2V0~n!#2

e2

2CS
, ~6!

whereV0(n) is the electrostatic potential on the island. It
written as

o
y

FIG. 2. The equivalent circuit of theN-terminal Coulomb block-
ade island. Each junctionk is biased by the external voltage sour
Vk . The island is also capacitatively coupled with the gate volta
Vg .
6-3
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V0~n!5
1

CS
~en1CgVg!1

1

CS
(
i 51

N

C̃iVi . ~7!

Here C̃i[Ci1Cg /N and we also assumed that the dot
biased in such a way, that external voltages are subjecte
the condition( i 51

N Vi50. In this case the gate voltageVg

can be used to influence the offset chargeq5CgVg on the
island in a controlled way.

Neglecting the quantum correlations between differ
tunneling processes, we may write down the master equa
~1!. It connects the states with different island charge,
total transition rate from the staten to n61 being the sum of
tunneling rates over all junctions:Gn61←n5(k51

N Gn61←n
(k) .

C. General model

We now outline the general model which is an extens
of the preceding two. The possible physical realization
this model includes an array of Coulomb blockade quant
dots and a mesoscopic system with a number of reso
levels. We assume that all the relevant conditions, mentio
previously, are satisfied and therefore the description
terms of master equation is valid. It is convenient schem
cally to represent the system as a graph~see Fig. 3!, with
each nodea corresponding either to the single dot, the sing
resonant level or the external terminal. The linek5(a,b),
connecting the nodesa andb is associated with the possib
electron transfer. LetM be the total number of nodes in th
graph andL is a total number of lines. For a many-dot sy
tem each linek corresponds to the tunnel junction. For sy
tems with many resonant levels it corresponds to the poss
transition between different levels, so that it does not nec
sary correspond to electron transfer in space. The lines
assumed to be directed, thus specifying the sign conven
for a current I k through the linek. There areN external
junction k51, . . . ,N, (N<L), connecting the terminals
with the system. The currents through these junctions
directly measurable and hence are of our interest.

The macroscopic or microscopic state of the gene
model is given by a set of occupation numbersun&
5un1 , . . . ,nM&; na is equal to any integer for the array o
quantum dots and refers to the excess charge on the islana;

FIG. 3. The graph of general model~see the main text!. The
terminals are connected with the system via external junctions
and 3. The nodesa, b, and g are either resonant levels or dot
linked with each other by internal junctionsk’s. The arrows denote
the conventional direction of a current through each junction.
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in case of many resonant-levels systemna denotes the occu
pation number of the given level.

We now consider the general properties of the mas
equation~1! describing the above model. Owing to the fa
(nLnm50, the L̂ operator has the right,up0&, and the left,
^q0u, eigenvectors corresponding to zero eigenvalue

L̂up0&50, ^q0uL̂50. ~8!

We assume that they are unique. This means that the sy
does not get stuck in any metastable state. The vectorup0&
gives the steady probability distribution and̂q0u
5(1,1, . . . ,1).Since we are interested, in general, only
the permanent, but not the transient processes in the syst
is naturally to restrict the consideration only to absorbi
statesn. Thus we will exclude all the transient onesn8, for
which Gnn8.0 but at the same timeGn8n50. We assume
that theL̂ operator, bounded to the absorbing states, ha
complete set of left and write eigenvectors

L̂upk&5upk&lk , lk^qku5^qkuL̂, (
k

upk&^qku5 Î ,

~9!

where Î is a unitary operator in the absorbing subspace.
any physically reasonableL̂ operatorl050 and Relk.0
for kÞ0.

For the following it is also useful to representL̂ operator
in the form

L̂5ĝ2Ĝ, Ĝ5 (
k51

L

~ Ĝk
(1)1Ĝk

(2)!, ~10!

whereĝ is the diagonal operator in the basisun& of the sys-
tem configuration andĜk

(6) are associated with the tunnelin
transitions through the ‘‘junction’’k5(a,b):

ĝ5(
$n%

un&g~n!^nu, Ĝk
(6)5(

$n%
un8&Gk

(6)~n!^nu. ~11!

The stateun8&5un1 , . . . ,na8 , . . . ,nb8 , . . . ,nM& results from
the stateun& by appropriate changing the corresponding o
cupation numbers:na85na2sk , nb85nb1sk , where sk

561 denotes the direction of the transition.

III. THE FCS IN THE MASTER EQUATION

In this section we derive the central result for the FCS
the charge transfer in the system, which dynamics obeys
master equation. We will solve this problem by making u
of the property of the system, that its random evolution
time is the Markov stochastic process.

In what follows we will partially use notations of th
book.25 Let us consider the time interval@2T/2,T/2#. Sup-
pose the system undergoess transitions at random time mo
mentst i , so that

1T/2.t1.t2.•••.ts21.ts.2T/2. ~12!

2,
6-4
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This gives an elementary random samplezs
5(t1 ,k1 ,s1 , . . . ,ts ,ks ,ss). It corresponds to the set o
subsequent events, when at timet i the tunneling happens vi
the junctionki , s i561 being the direction of the transition
The sampleszs constitute the setV of all possible random
samples.

Then one defines the measure~or the probability! dm(z)
at the setV. For this purpose we may very generally intr
duce the sequence of non-negative probabilit
Qs($t i ,ki ,s i%)[Q(t1 ,k1 ,s1 , . . . ,ts ,ks ,ss)>0 defined in
V so that

dm~z!5Q01(
s51

1`

(
$ki , s i %

Qs~$t i ,ki ,s i%!dt1•••dts .

~13!

The functionsQ are normalized according to the condition

E
V

dm~z![Q01(
s51

1`

(
$ki , s i %

E •••E
T/2.t1. . . . .ts.2T/2

3Qs~$t i ,ki ,s i%!)
i 51

s

dt i51. ~14!

Each term in Eq.~13! corresponds to the probability of a
elementary samplezs .

To accomplish the preliminaries, we remind the conc
of a stochastic process. Mathematically speaking, it can
any integrable functionǍ(t)[A(t,z) defined at the setV
and parametrically depending on time. It is sometimes c
venient to omit the explicitz dependence. We will use
‘‘check’’ in this case to stress that the quantity in question
a random variable. Each stochastic processA(t,z) generates
the sequence of time-dependent functio
$A0(t),A1(t,t1 ,k1 ,s1), . . . ,As(t,$t i ,ki ,s i%)%. Its average

^Ǎ(t)&V over the spaceV is defined as

^Ǎ~ t !&V5E
V

A~ t,z!dm~z![A0~ t !Q0

1(
s51

1`

(
$ki , s i %

E •••E
T/2.t1. . . . .ts.2T/2

3As~ t,$t i ,ki ,s i%!Qs~$t i ,ki ,s i%!)
i 51

s

dt i .

~15!

The analogous expression should be used, for instanc
define the correlationŝǍ(t1)B̌(t2)&V between any two sto
chastic processes.

For the subsequent analysis we define the random pro
Ǐ (k)(t), corresponding to the classical current through
external junctionk<N:

I (k)~ t,zs!5(
i 51

s

es id~ t2t i !d~k2ki !. ~16!
08531
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Heresm is included to take into account the direction of th
jump andd(k2ki)[dk,ki

is the Kroneckerd symbol. Given
this definition at hand, we introduce the generating fun
tional S@$x i(t)%# depending onN counting fieldsx i(t), each
of them associated with a given terminali:

exp~2S@$x i~ t !%#!5K expH i (
n51

N E
2`

1`

dtxn~t! Ǐ (n)~t!/eJ L
V

~17!

with the average defined by Eq.~15!. We will refer to
S@$x i(t)%# as the action. Its evaluation is the main goal
this section. Them-order functional derivatives ofS@$x i(t)%#
with respect tox i give the irreduciblem-order current corre-
lations. First derivatives correspond to the average curre
through terminals; the second derivatives give the shot n
and noise correlations. In the low-frequency limit of curre
correlations one may use the time-independent coun
fields x i . In this case the actionS@$x i%# allows to express
the probability ofNi electrons to be transferred through th
terminal i during the time intervalT

P~$Ni%!5E
2p

p

)
i 51

N
dx i

2p
e2S($x i %)2 i ( iNix i. ~18!

The above definitions were rather general than const
tive, since the probabilitiesQ have not been specified so fa
To proceed, one has to relate them to transition rates of
master equation. We assume that at initial timet52T/2 the
system was in the state$n(s)%. Then random samplezs de-
termines the evolution of charge configuration$n(s)%
→$n(s21)%•••$n(1)%→$n(0)% for subsequent moments o
time. The choice ofzs specifies that the transition betwee
neighboring charge states$n( i )% and $n( i 21)% occurs at time
t i via the junction ki5(a i ,b i). Therefore, the sequenc
$n( i )% is given by the relationna i

( i 21)5na i

( i )2ski
, nb i

( i 21)

5nb i

( i )1ski
, andng

( i 21)5ng
( i ) for all gÞa i andb i . To deter-

mine the probabilityQs($t i ,ki ,s i%) we note that~i! the
samplezs constitutes the Markov chain~ii ! the conditional
probability of the system to remain at staten( i ) between the
times t i 11 and t i is proportional to exp@2g(n(i))(ti2ti11)#;
~iii ! the probability that the transition occurs via the juncti
ki during the time intervaldt i at the momentt i is given by
Gki

(s i )(n( i ))dt i . These arguments suggest thatQ’s have the

form

Q05Z0
21exp@2g~n(s)!T#

Qs~$t i ,ki ,s i%!5Z0
21exp@2g~n(0)!~T/22t1!#

3Gk1

(s1)
~n(1)!exp@2g~n(1)!~t12t2!#

3Gk2

(s2)
~n(2)!•••exp@2g~n(s21)!

3~ts212ts!#Gks

(ss)~n(s)!exp@2g~n(s)!

3~ts1T/2!#, ~19!
6-5
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where the constantZ0 should be found from the normaliza
tion condition Eq.~14!. As we will see below,Z051.

The above correspondence between the random Ma
chain zs and the probabilitiesQ’s, Eq. ~19!, allows one to
evaluate the generating function Eq.~17!. By definition Eq.
~16! for any givenzs we have

expH i (
n51

N E
2`

1`

dtxn~t!I (n)~t,zs!/eJ
5)

i 51

s

exp$ is i xki
~t i !%.

It is assumed here thatxki
50 if the transition occurs via

internal junction,ki.N, thus no physically measurable cu
rent is generated in this case. The averaging of the la
expression over all possible configurationsV with the
weight dm(z) yields

Z@$x i~t!%#[exp~2S@$x i~t!%#!5Q0

1(
s51

1`

(
$ki , s i %

E •••E
T/2.t1. . . . .ts.2T/2

3Qs
x~$t i ,ki ,s i%!)

i 51

s

dt i . ~20!

The resulting expression resembles the normalization co
tion ~14!. Here thex-dependent functionsQs

x($t i ,ki ,s i%)
are defined similar to probabilities~19! with the only crucial
difference that the ratesGk

(s)(n) should be replaced by
Gk

(s)(n)exp$isk xk(tk)% if k<N.
Expression~20! can be written in the more compact an

elegant way. For that, we introduce thex-dependent linear
operatorL̂x defined as

L̂x~t!5ĝ2Ĝx~t!,
~21!

Ĝx~t!5 (
k51

N

~ Ĝk
(1)eixk(t)1Ĝk

(2)e2 ixk(t)!

1 (
k5N11

L

~ Ĝk
(1)1Ĝk

(2)!.

In line with consideration above we multiplied each opera
Ĝk

(6) (k51, . . . ,N), that corresponds to the transitio
through the external junction, by an extrax-dependent factor
eixk(t). The diagonal part and internal transition operat
Ĝk

(6) with k.N remained unchanged. Then we consider

evolution operatorÛx(t1 ,t2) associated with Eq.~21!. Since
L̂x(t) is in general time-dependent,Ûx(t1 ,t2) is given by
the time-ordered exponent

Ûx~ t1 ,t2!5Tt expH 2E
t2

t1
@ ĝ~t!2Ĝx~t!#dtJ . ~22!

The similar construction is widely used in quantum statisti
The difference in the present case is that the oper
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Ûx(t1 ,t2) at x50 gives the evolution of probability rathe
than the amplitude of probability.

With the use of evolution operator~22! the generating
function Eq.~20! can be cast into the form

Z@$x i~t!%#5^q0uÛx~T/2,2T/2!uns&. ~23!

To prove it we argue as follows. We exploit the fact thatĝ(t)
and Ĝ(t) commute under the sign of time ordering in E
~22! and regardĜ(t) as a perturbation. This gives the matr
element̂ q0uÛx(T/2,2T/2)uns& in the form of series

^q0uÛx~T/2,2T/2!uns&

5^q0ue2ĝTup0&1(
s51

1`

^q0uTt expH 2E
2T/2

T/2

ĝ~t!dtJ
3 (

ksss

E •••E
T/2.t1. . . . .ts.2T/2

Ĝk1

(s1)
~t1!

3eis1xk1
(tk1

)
•••Ĝks

(ss)~ts!e
issxks

(tks
)up0&)

i 51

s

dt i .

~24!

It follows from definition ~19! that each term in this serie
corresponds to the functionQs

x($t i ,ki ,s i%), namely,

Q05^q0ue2gTuns&

Qs
x~$t i ,ki ,s i%!5^q0uTt expH 2E

2T/2

T/2

ĝ~t!dtJ Ĝk1

(s1)
~t1!

3eis1xk1
(tk1

)
•••Ĝks

(ss)~ts!e
issxks

(tks
)uns&.

~25!

Therefore Eqs.~24! and ~23! are reduced to previous resu
~20!. This completes the proof. Note, that owing to the pro
erty Eq. ~8!, Z05^q0uexp(2TL̂)uns&51 identically atx50.
Therefore, probabilities~19! are correctly normalized.

Equation~23! for the generating functionZ@$x i(t)%# de-
pends on the initial-stateuns& of the system. It can be show
that the choice ofuns& does not affect the final results. W
assume thatxk(t)→0 when t→2T/2. Physically, it means
that the measurement is limited in time. To be specific o
may assume thatxk(t)50 when2T/2,t,2T/21Dt and
xk(t)Þ0 if t.2T/21Dt. If the time intervalDt is suffi-
ciently large as compared with the typical transition tim
G21, then the system will reach the steady state during
period of time. The latter follows from the fact tha
exp(2L̂ Dt)uns&→up0& when Dt@G21. Thus one can substi
tute uns& to up0& in Eq. ~23!. Assuming also the limitT
→`, we arrive to the main result of this section

exp~2S@$x i~ t !%#!5^q0uTt expH 2E
2`

1`

L̂x~t!dtJ up0&.

~26!
6-6
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We see that the generating function can be written in
form of the averaged evolution operator. This operator c
responds to master equation with the rates modified by
counting fieldsx i(t).

Further simplification is valid in the low-frequency lim
of the current correlations,v!G. ~HereG is a typical tran-
sition rate in the system.! In this situation one can assum
that the counting fieldsxk(t) are turned on and switched o
adiabatically. Then, ift0@G21 is the time of measuremen
the action@Eq. ~26!# reduces to

S~$x i%!5t0Lmin~$x i%!, ~27!

whereLmin($xi%) is a minimal eigenvalue of the operatorL̂x .
As one can see the problem of statistics in question, provi
the transition rates in the system are known, is merel
problem of the linear algebra. The probabilityP($Ni%) of Ni
electrons to be transferred through the corresponding te
nal during the timet0 is then expressed viaS($x i%) with the
use of relation~18!.

It is worth to mention that the another definition of FC
different from that given by Eq.~27!, is widely used in quan-
tum optics.27–29 The definition of FCS in quantum optic
makes use of the sudden turning on of counting fieldsxk(t)
at time zero and subsequent abrupt switching them of a
time t0. Under this assumption the action~26! becomes

exp$2S~$x i%!%5^q0upx
(n)&exp~2t0Ln~$x i%!^qx

(n)up0&.

Here^qx
(n)u and upx

(n)& denote the eigenvectors of theL̂x op-
erator, and Ln($x i%) is its spectrum. The probability
P($Ni%,t0) can be found as before via relation~18!. Then so
defined FCS can be used to find different two-point corre
tion functions of two photoelectrons.28,29 Note, that above
relations holds at time scalest0 of the order of average wait
ing time between two successive photocount events. C
trary to that, definition~27! of FCS, accepted in mesoscopi
physics makes sense at time scale, which greatly exceed
average time between two successive events of charge t
fer.

Consider now the question of the current conservation
the nodes. For this purpose we associate the counting fi
xk with each linek5$a,b% of the graph and in the appro
priate way modify theLx operator. Then we define the cla
sical current operatorĴx

(k)[ Ĵx
$a, b% through each line by

means of the relation

Ĵx
(k)5 ie

]L̂x

]xk
[e~ Ĝk

(1)eixk2Ĝk
(2)e2 ixk!. ~28!

Its average value can be found via relation

I k~$x i%!5
ie

t0

]S

]xk
5^qx

(0)uĴx
(k)upx

(0)&. ~29!

It follows from the Eq. ~27! and the fact thatLmin($xi%)
5^qx

(0)uL̂xupx
(0)& with ^qx

(0)u and upx
(0)& being the eigenvector

of the L̂x operator.
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The average physical currents fork<N are given byĪ k
5I k($x i%)ux50. Expanding the vector notation in Eq.~29!
one gets the usual relation for the current in the master eq
tion method. The current is expressed via transition rates
the steady probability distributionp0($n%).

We also introduce the particle number operatorn̂$a% in
each node, given by a usual formula

n̂$a%5(
$n%

un& na ^nu. ~30!

Then after few algebra one see that the relation

(
b

6 Ĵx
$a, b%52e@ n̂$a%, L̂x# ~31!

always holds at any nodea. Here the summation is going
over all nodesb, connected toa. The choice of the sign in
front of each term under the sum depends on the situa
whether the given directed linek5$a,b% is going out or
coming into the chosen nodea. The Eq. ~31! gives the
charge conservation law in the operator language. Averag
the latter expression over the steady distributio
^q0u•••up0&, and using Eqs.~9! and ~29! we arrive at the
conservation law for thex-dependent currents at each no
a

(
b

6I $a, b%~$x i%!50. ~32!

This also ensures the conservation of the physical curren
the model(kĪ k50, where the sum is extended only to th
external junctionsk. It follows from summing up relations
~32! over all internal nodesa and settingx50 afterwards.

IV. RESONANT-LEVEL MODEL

In this section we consider the current statistics of
resonant-level model. First we focus on the noninteract
case. Then we apply the general result of the Sec. III to
strongly interacting case and compare the statistics in th
two different regimes. In the end of the section we reder
the results of the previous works concerning the shot nois
these systems.

Following definition~21! and the expression for the rate
Eq. ~4!, the L̂x-matrix of the single resonant-level model
the noninteracting regime reads as

L̂x5S G1←0 2G0←1~x!

2G1←0~x! G0←1
D , ~33!

where

G1←0~x!5GL f Le2 ix11GRf Re2 ix2,
~34!

G0←1~x!5GL~12 f L!eix11GR~12 f R!eix2.

Evaluating the minimal eigenvalue of this matrix one obta
the current statistics in the form
6-7
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S~x!5t0$GL1GR2AD~x!%,
~35!

D~x!5~GL1GR!214GLGR@ f (2)~e i !~e2 ix21!

1 f (1)~e i !~eix21!#,

Here f (2)(e i)5 f L(e i)@12 f R(e i)#, f (1)(e i)5 f R(e i)@1
2 f L(e i)#, andx5x12x2. We have also accounted for th
double occupancy of the level by multiplying the result
two.

Since the Coulomb blockade phenomenon is comple
disregarded in this model, one might have come to the s
result in the framework of the pioneering approach by Le
tov and co-workers.2 We will show now that it is indeed the
case.

According to Ref. 2 the general expression for the curr
statistics through a single contact is written as

S~x!52
t0

p (
n
E de ln$11Tn~e!„f L~e!@12 f R~e!#~e2 ix

21!1 f R~e!@12 f L~e!#~eix21!…%. ~36!

It is valid for any two-terminal geometry provided the regio
in between two electrodes can be described by the o
particle scattering approach and the effects of interaction
of no importance.Tn(e) is a set of transmission eigenvalu
that are in general energy-dependent. Fermi functions
clude the effects of applied voltage and the temperature.
a single resonant level there is a single resonant transmis
eigenvalueTr(e), its energy dependence being given by t
Breit-Wigner formula

Tr~e!5
GLGR

~e2e i !
21~GL1GR!2/4

. ~37!

Heree i denotes a position of a resonant level. The result
~36! is more general, than Eq.~35!. When electrons do no
interact Eq.~36! is valid for any temperature. We will show
below that one can reproduce the statistics Eq.~35! on sub-
stituting Tr(e) into Eq. ~36! and assuming the regimekBT
@\G. As it was discussed previously, this is the conditio
when the master equation approach, and hence its co
quence Eq.~35!, are valid.

It is easier to perform the calculation if one first evalua
the x-dependent currentI (x)5( ie/t0)]S/]x. It reads

I ~x!5
1

pE de@ f (1)~e!eix2 f (2)~e!e2 ix#$Tr
21~e!

1@ f (2)~e!~e2 ix21!1 f (1)~e!~eix21!#%. ~38!

In what follows we assume that the resonant level is pla
between the chemical potentialsmL$R% in the leads. Since
kBT@GL(R) , the main contribution comes from the Loren
peak and one can pute5e i in the Fermi functions. There
fore, we left only with the two polese1(2)5e i6 iAD(x)/2
under the integrand Eq.~38!. Closing the integration contou
in the upper or lower half plane we arrive at

I ~x!52e GLGR@ f (1)~e i !e
ix2 f (2)~e i !e

2 ix#/AD~x!.
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On integrating it over x one finds for the S(x)
5(t0 / ie)*0

xI (x8)dx8 the result Eq.~35! obtained by means
of master equation. Thus, we have verified the corresp
dence between two approaches to statistics in the nonin
acting regime.

To proceed we address the strongly interacting regime
this case the (232) L̂x-matrix is formed with the use o
rates Eq.~3!. It has a structure similar to Eq.~34!, provided
the x-dependent rates are written as

G1←0~x!52GL f Le2 ix112GRf Re2 ix2,
~39!

G0←1~x!5GL~12 f L!eix11GR~12 f R!eix2.

Evaluating the corresponding eigenvalueL̂x one can write
down the expression for statistics in the strongly interact
limit

S~x!5~ t0/2!$GL@11 f L~e i !#1GR@11 f R~e i !#2AD~x!%,
~40!

D~x!5$GL@11 f L~e i !#1GR@11 f R~e i !#%
2

18GLGR@ f (2)~e i !~eix21!1 f (1)~e i !~e2 ix21!#.

To proceed we consider the shot-noise regimeeV@kBT
and assume that the voltage is applied to the right electr
as shown in Fig. 2. Then the temperature fluctuations
come nonessential and both statistics~35! and ~40! take a
rather simple form

S~x!uU505t0$GL1GR2A~GR2GL!214GLGR e2 ix%,
~41!

S~x!uU→`5
1

2
t0$2GL1GR2A~2GL2GR!218GLGR e2 ix%.

~42!

Given the latter expressions at hand one can rederive
known result for the average currentI 5( ie/t0)]S/]xux50
and the shot-noise powerSshot5(e2/t0)]2S/]x2ux50 in these
models. It is conventional to representSshot in the form
Sshot5eIF, whereF is the so-called Fano factor. Its impo
tance to the mesocscopic transport has been pointed o
the work.30 Its deviation from the unity indicates to the non
Poissonian type of electron counting statistics. The la
fact, in its turn, reveals the presence of correlations of
successive electron transfer. For the single resonant-l
model one obtainsF5(GL

21GR
2)/(GL1GR)2 in the noninter-

acting regime andF5(GL
214GR

2)/(GL12GR)2 in the Cou-
lomb blockade limit.26

As one can see from the Eq.~41!, at low temperatures, the
difference of statistics in the largeU limit from the one in the
noninteracting case is an effective suppression ofGR rate by
a factor of two. To find the probability distributionP(N,t0)
one can estimate the integral Eq.~18! by means of steepes
descent method. It is applicable in the given case of lo
frequency regimev!G, which we consider, since both th
actionS(x)@1 and the average number of transmitted el
tronsN̄5 Ī t0 /e@1. Then one has to find the saddle-pointx*
of the functionV(x)5S(x)1 ixIt 0 /e, which is defined by
6-8
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the equationI 5( ie/t0)@]S/]x#. It is turned out thatx* al-
ways lies on the imaginary axis. This equation can be
garded as a parametric relation betweenI andx* , and with
the exponential accuracy we obtain the estimation for
probability P(I );exp@2V(x* )#.

The results for statistics~41! are shown in Fig. 4. The
statistics are compared with the Poisson-type statisticsS(x)
52Gt0@exp(ix)21# with the effective rate given byG21

5GL
211GR

21 . Both statistics~41! approach the Poisson on
provided the system is strongly asymmetric,GL@GR .

V. THE FCS IN THE COULOMB BLOCKADE QUANTUM
DOTS

In this section we discuss the application of the method
the many-terminal Coulomb blockade island. The consid
ation will be limited to the two- and three-terminal layout
Our treatment will be mainly numerical, though some an
lytical results in the two-terminal setup are also plausible
the beginning of the Sec. a few technical details, which
common for both cases, are given. In particular, we estab
the relation of the FCS approach with the preceding pap
concerning the shot noise in the conventional single elec
transistor. In the following we consider the FCS, first f
two-terminal, and then for three-terminal configurations. W
will also compare the FCS in the strongly Coulomb blocka
limit with our recent results, concerning the FCS in man
terminal chaotic quantum dot with contacts being the tun
junctions.

A. General remarks

In the framework of the ‘‘orthodox theory’’ the macro
scopic state of Coulomb blockade island is characterized
the excess chargeQ5ne, which is quantized in terms o
electron charge (2e). This chargeQ can be changed only b
6e in course of one tunneling event. Therefore, the ma
equation connects the given macroscopic staten with only
the neighboring statesn61. The corresponding rate

FIG. 4. The current statistics through the single resonant leve
and 4, noninteracting model; 2, interacting model; 4, Poisson st
tics.
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Gn61←n of these transitions are equal to the sum ofN52 or
3 independent probabilitiesGn61←n

(k) through the different
junctions, those are given by Eqs.~5! and~6!. Along with the
lines of Sec. III we have to modify the ratesGn61←n into
x-dependent quantitiesGn61←n

x in accordance with the rule
Eq. ~21!. After that, in order to find the FCS of the charg
transfer through the island, one has to evaluate the mini

eigenvalueLmin of the three-diagonal matrixL̂x . In the
given case it is convenient to write down the latter proble
as the eigenvalue problem for the following set of line
equations

~L2gn!pn1Gn←n11
x pn111Gn←n21

x pn2150, ~43!

where gn5Gn←n211Gn←n11, and Gn←n61
x

5(k51
N Gn61←n

(k) e6 ixk. The index1(2) corresponds to elec
tron transition from~to! the island.

In general, we have treated the problem Eq.~43! numeri-
cally. At sufficiently low temperatureskBT!Ec , which is
mainly the case of the following discussion, the temperat
dependence in rates Eq.~5! is nonessential. Then one can s
Gk

(6)(n)5DEn61←n
(k) /(e2Rk) whenDEn61←n

(k) /(e2Rk)>0 and
Gk

(6)(n)50 otherwise. Thus defined rates are linear fun
tions in n. The possible set of$n%, corresponding to nonva
nishing rates, is limited to some intervalnmin<n<nmax.
Hence Eq.~43! becomes a finite linear problem. At highe
temperatureskBT<Ec we have found that the increase~de-
crease! of both nmin and nmax to extra 7/8 states gives th
results up to 10215 degree of accuracy in course of the n
merical procedure.

The matrixL̂x of Eq. ~43! is non-Hermitian. This fact may
cause an instability in the numerical algorithm when t
range@nmin ,nmax# is large. However, in most practical case
this problem can be circumvented by transformingL̂x to
Hermitian form. First we note, that one only needs to wo
with pure imaginary counting fieldsxk , as long as the prob
ability P($Ni%,t0) is estimated in the saddle-point approx
mation.~See the discussion in the end of the Sec. III.! Hence
the ratesGn←n61

x become the positive real numbers. Then w
can apply the linear transformationpn85Anpn . It leads to the
rates in the new gaugeG8n←n61

x 5An11Gn←n61
x An

21 . The
unknownAn’s may be chosen in a way that the symme
relationG8n←n61

x 5G8n61←n
x would hold. This gives the re-

current relationAn11 /An5(Gn←n11
x /Gn11←n

x )1/2. With the
use of latter the Eq.~43! takes the Hermitian form when it is
written in terms of pn8 and transformed ratesG8n←n61

x

5(Gn←n61
x Gn61←n

x )1/2. The diagonal termgn is not affected
under this transformation.

Let us also discuss a useful relation for the shot-no
correlationsSkm5(e2/t0)]2S/]xk]xmux50. One can use the
identity Lmin($xi%)5^qx

(0)uL̂xupx
(0)& in order to express them in

terms of eigenvectorsupn&, ^qnu and eigenvaluesln of the
matrix L̂. With the use of standard algebra and assuming
normalization^qnupn8&5dn,n8 we can castSkm in the form

1
s-
6-9
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Skm5e2^q0uŜ(k,m)up0&1e2(
l .0

1

l l
$^q0uĴkupl&^ql uĴl up0&

1^q0uĴmupl&^ql uĴkup0&%, ~44!

where theĴk operator was defined by Eq.~28! and Ŝ(k,m)

5]2L̂x /]xk]xmux50. Note, that relation~44! holds in any
basis. One may, in particular, use it for the basispn8 discussed

above. In this case one must define the matrix elements oĴk

as@ Ĵk#n61,n5( i ]/]xk)G8n←n61
x and to evaluateŜ(k,m) in the

same manner.
It follows from relation ~44! that the shot-noise correla

tions are defined by the whole spectrum of the relaxati
timestk

215lk in the system. In case of two-terminal geom
etry it coincides with preceding results of Refs. 14 and 1

B. Two-terminal Coulomb blockade island

The electrical circuit with a two-terminal Coulomb block
ade island is shown in Fig. 5. The dot is biased in suc
way, that V252V15V/2. At low-temperatures kBT
!e2/CS the x-dependent ratesGn←n61

x reads as

Gn11←n
x 5F C̃1V

e
2S n1

CgVg

e
1

1

2D G eix2

R2 CS
,

~45!

Gn21←n
x 5F C̃2V

e
1S n1

CgVg

e
2

1

2D G e2 ix1

R1 CS
,

where C̃1(2)5C1(2)1Cg/2 are effective capacitances. Th
gate voltageVg can be used to control the offset chargeq0
5CgVg on the dot. It can be varied continuously in the ran
2e/2<q0<e/2. The resulting dimension of the matrixL̂x is
given by the number of absorbing statesnmax2nmin , where
nmin (nmax) is the maximal~minimal! integer closest to the
pointsn1,2 where the ratesGn71←n

x vanish.
First, we briefly consider the voltage dependence of

shot noise in the system.14,15It was calculated with the use o
Eq. ~44!. The results for the noise-to-current ratio~Fano fac-
tor! are presented in Figs. 6–8. The Coulomb blockade
tures are strongly pronounced in case of asymmetric ju
tions only. The resistances of the contacts are much easi
vary than the mutual capacitances in the experimental si
tion, when the dot is made up with the use of 2D-electron
in the semiconducting heterostructure. Therefore, we h

FIG. 5. The equivalent circuit of the two-terminal Coulom
blockade island.
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chosenC̃15C̃2 and plotted the Fano factor for different va
ues of ratioR2 /R1 and offset chargeq0. The curves are
truncated below the Coulomb blockade threshold, where
considered ‘‘orthodox’’ theory is not applicable. At high va
ues of the ratioR2 /R1 they exhibit the strong characterist
Coulomb blockade oscillations. The special points at
voltage dependences occur when eithernmin or nmax are
changed by 1. At high bias voltages the noise-to-current r
saturates to the valueF5(R1

21R2
2)/(R11R2)2 indepen-

dently of the capacitancesCk and the offset chargeq0. ~See
the discussion below as well.! An increase of a temperatur
leads to the smearing of oscillations due to the additio
thermal noise. The above results coincide with those,
tained previously by Hershfiledet al.15

To proceed we turn to the question of the FCS. For
sake of clarity we first present our recent analytical resu

FIG. 6. The Fano factor versus the offset charge in the tw
terminal Coulomb blockade island. The parameters are:C15C2 ,
R1510R2 , T50.01e2/2CS . ~1! V51.5e/CS , ~2! V52.0e/CS ,
~3! V54.0e/CS , ~4! V56.0e/CS .

FIG. 7. The Fano factor versus the applied voltage in the tw
terminal Coulomb blockade island. The parameters are:C15C2 ,
kBT!e2/2CS , q050. ~1! R1 /R251, ~2! R1 /R252, ~3! R1 /R2

54, ~4! R1 /R2510.
6-10
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FULL COUNTING STATISTICS OF CHARGE TRANSFER . . . PHYSICAL REVIEW B 67, 085316 ~2003!
for the FCS of the chaotic quantum dot with two tunn
junctions, when their resistancesRk!p\/e2. In this case the
effects of Coulomb interaction are negligible. Then we tra
the differences in the FCS, when the dot is placed in
strongly interacting regimeRk@p\/e2.

In the noninteracting limit the actionS(x) is expressed
via the voltageV and the resistancesRk only.11 At low-
temperatureskBT!eV it has a form similar to Eq.~41!

S~x!5
Vt0
2e

$R1
211R2

21

2A~R1
212R2

21!214~R1R2!21ei (x22x1)%. ~46!

It would be completely equivalent to the statistics of t
charge transfer by noninteracting particles through the re
nant level if one regards the ratiosGL,R5V/(eR1,2) as the
effective tunneling rates. The generating function Eq.~46!
gives the above mentioned valueF5(R1

21R2
2)/(R11R2)2

for the Fano factor.
In the strongly Coulomb blockade limit the actionS(x),

in general, remarkably deviates from Eq.~46!. Still, there are
two exceptions, whenS(x) resembles the statistics~41! and
~46!.

The first case occurs at low voltages, slightly above
Coulomb blockade threshold value, when only one charg
state is available for tunneling. This situation can be ea
realized in the asymmetric dot withR2ÞR1. Then mere two
states withn50 andn51 are involved andL̂x is reduced to
the 232 matrix Eq.~33!. The only difference is that the rate
GL,R contain the voltage dependence as given by Eq.~45!.
Thus the actionS(x) reproduces the result Eq.~41!, where
the ratesGL,R are assumed to be voltage dependent.

To proceed we describe the second exceptional situa
when the actionS(x) can be found analytically. Letn1,2 be
zeros of rates~45!, i.e.,Gn61←n

x (n1,2)50. We now interested
in the situation when both zeroesn1,2 simultaneously become
integers. This situation may occur at the limited number

FIG. 8. The Fano factor versus the applied voltage at differ
temperatures. Parameters are shown on the plot. Temperatu
given in terms of charging energy.
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special pointsVk at the Coulomb blockade staircase wh
the ratioC̃1 /C̃2 is close to a rational along with the speci
choice of the offset chargeq0. ~E.g., for the configuration
C̃15C̃2, shown in Figs. 6 and 8, this is the case when~i!
q050, Vk5(2k11)e/CS and ~ii ! q056e/2, Vk
52k(e/CS) with k being integer.! In this situation we may
show analytically~see Appendix B for the proof!, that the
actionS(x) at pointsVk takes the form similar to the statis
tics in the noninteracting regime~46!. The only difference is
that the voltageV has to be substituted to (uVku2e/CS). The
reduction ofV by the amount of the threshold voltage valu
e/CS is thus the manifestation of the Coulomb interactio
The given statistics is also valid as a limit at high voltag
V@e/CS . One may conclude it from the physically reaso
able arguments that the result for the action in this lim
should be linear function in voltage and must not depend
the capacitance ratioC̃1 /C̃2. Hence, the statistics is insens
tive to the fact, whethern1,2 are integers or not. This als
explains the saturation of the Fano factor at Figs. 6–8 to
noninteracting current-to-noise ratio.

To access the general situation, the whole problem
been treated numerically. We have evaluated the probab
Eq. ~18! in the saddle-point approximation along with th
same lines as it was done for the resonant-level model.
Eq. ~29! was used as the parametric relation between
current I and the counting fieldx5x22x1 in the saddle-
point x* . In Fig. 9 we give the example of the logarithm o
probability distributionP(I ) for the number of different volt-
agesV and offset chargeq050. All curves are normalized by
the reduced value of the voltage (V2e/CS). For the value
V53e/CS the renormalized logarithm of probability coin
cides with the one, obtained from the noninteracting lim
~46!. We have also plotted the same statistics in Fig. 4 in
resonant-level model for the ratio of ratesGL /GR510, when
the interaction effects are disregarded. We see, that in gen
the probability distribution is strongly affected by the Co
lomb blockade phenomenon, as compared to the noninte

t
is

FIG. 9. The current statistics in the two-terminal quantum d
Parameters are shown on the plot. Curves 3 and 5 coincide
correspond to different axes.~1! V51.5e/CS , ~2! V52.0e/CS ,
~3! V53.0e/CS , ~4! V54.0e/CS , ~5! noninteracting regime.
6-11
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D. A. BAGRETS AND YU. V. NAZAROV PHYSICAL REVIEW B 67, 085316 ~2003!
ing regime. It approaches to the noninteracting limit only
rather high-voltagesV@e/CS .

C. Three-terminal Coulomb blockade island

The electrical circuit with a three-terminal Coulom
blockade island is presented in Fig. 10. It is biased by th
external voltage sources so that the current, flowing thro
the third terminal, would split into the first and the seco
ones. As in the preceding section we discuss the only l
temperature regimekBT!e2/CS . In what follows it is as-
sumed thatU2.U1. Then, according to Eqs.~5!–~7! and
~21! the x-dependent rates of the system are written as
lows:

Gn11←n
x 5G3

(1)~n!eix31G1
(1)~n! u~m21/22n!eix1,

~47!
Gn21←n

x 5G2
(2)~n!e2 ix21G1

(2)~n! u~n2m21/2!e2 ix1,

where

Gk
(6)~n!5ak

(6)7S n1
CgVg

e
6

1

2D 1

Rk CS
~48!

and

a3
(1)5

C̃1U11C̃2U2

eR3 CS
, a2

(2)5
~C̃11C̃3!U22C̃1U1

eR2 CS
,

a1
(6)56

C̃2U22~C̃31C̃2!U1

eR1 CS
.

The effective capacitancesCk are defined asC̃k5Ck1Cg/3
and the pointq is determined by the relation

q~U1 ,U2 ,Vg!5
1

e
$C̃2U22~C̃31C̃2!U12CgVg%.

~49!

FIG. 10. The equivalent circuit of the three-terminal Coulom
blockade island. The voltagesU1(2) are used to control the bia
between the third and the first~the second! terminals,U1(2)5V3

2V1(2) . The third terminal is biased at voltageV35(U11U2)/3
with respect to the ground. This setup assures the conditionV1

1V21V350. Then gate voltageVg can be used to control th
offset chargeq05CgVg on the island.
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The valueq is noninteger in general. It satisfies the conditi
G1

(2)(q11/2)5G1
(1)(q21/2)50. The dimension of theL̂x

matrix is equal tonmax2nmin , wherenmax(nmin) can be found
from the conditionsG3

(2)(n)>0 (G1
(1)(n)>0). The value

e nmax, (e nmin) gives the maximum~minimum! charge that
can be in the island for a given voltagesU1 , U2, andVg .

We can see from Eq.~47! that there are four elementar
processes of charge transfer in the system at low temp
tures, each of them is being associated with the prefa
e6 ixk. The presence of the exponentseix3 and e2 ix2 corre-
sponds to the charge transfer from the third terminal into
island and from the island into the second terminal, resp
tively. Hence, the random current through the third~second!
junctions always has the positive~negative! sign. Two factors
e6x1 stems from the charge transfer through the first junct
in the direction either from the island into the first contact
vice versa. Therefore, the random currentI 1 is able to fluc-
tuate in both directions.

Consider first the shot-noise correlations in the syste
For that it is useful to introduce the (333) matrix F with
elementsFkm5Skm /eIS , where the current correlationsSkm

are given by Eq.~44! and I S5( i 51
3 uI i u. The matrixF is a

generalization of the Fano factor for the multiterminal sy
tem. It is symmetric and obeys the relation( i 51

3 Fik50. It
follows from the general law of the current conservation
the system. For the considered three-terminal dot we h
found that the cross-correlationsFkm (kÞm) are always
negative for any set of parameters.

In Fig. 11 we give the illustrative example of the voltag
dependence of the shot-noise correlationsFkm for the certain
choice of parameters. As in the two-terminal case the C
lomb blockade features are strongly pronounced only for
asymmetric setup. The results in Fig. 10 corresponds toR1

5R35R2/10, C̃15C̃25C̃3, andU2 /U154. The latter ratio
of voltages has been chosen on the basis of arguments
for a given value of resistancesRk it would split the average
current I 3 into two equal currentsuI 1u5uI 2u5I 3/2 provided

FIG. 11. The matrixF of auto- and cross-shot-noise correlatio
versus voltageU1 for the three-terminal quantum dot setup. Para
eters are shown on the plot.~1! F11, ~2! uF12u, ~3! uF13u, ~4! F22,
~5! uF23u, ~6! F33.
6-12
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FULL COUNTING STATISTICS OF CHARGE TRANSFER . . . PHYSICAL REVIEW B 67, 085316 ~2003!
one could apply the usual linear Kirchgoff rules to this c
cuit. In Fig. 12 the dependence of the shot noise correlat
on the offset charge is shown for the same set of parame
and the value ofU151.25e/CS . The special points of both
these dependences occur when eithernmin , nmax or the inte-
ger part ofq are changed by61. As the result we observ
multiperiodic Coulomb blockade oscillations in the offs
charge dependences in contrast to the single periodic o
lations in the two-terminal case.

We now proceed with the consideration of the FCS.
before, the actionS($x i%) has been calculated with the use
Eq. ~27!. Afterwards probability~18! has been estimated b

FIG. 12. The matrixF of auto- and cross-shot-noise correlatio
versus the offset charge for the three-terminal quantum dot se
Parameters are the same as on Fig. 11. The voltageU15U2/4
51.25e/CS . ~1! F11, ~2! uF12u, ~3! uF13u, ~4! F22, ~5! uF23u, ~6!
F33.

FIG. 13. The logarithm of current distribution lnP(I1,I2) in the
three-terminal quantum dot as a function of currentI 1, under con-
dition I 25^I 2&. Parameters are shown on the plot.~1! - U1

51.25e/CS , ~2! U152.0e/CS , ~3! U154.0e/CS , ~4! U1

510.0e/CS , and curve~5! corresponds to the noninteracting r
gime.
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means of the steepest descent method. The difference
the two-terminal geometry is that three currentsI k and three
counting fieldsxk are now involved. Due to the current con
servation(kI k50 for any plausible fluctuation, only two
currents are independent. Thus the actionS($x i%) depends
on the differencesx i j 5x i2x j only. In what follows we have
chosenI 1 and I 2 as the independent variables to plot t
logarithm of probability lnP(I1,I2). With the exponential ac-
curacy it is given by lnP(I1,I2);e2V(x* ). Herex* is a saddle
point of the functionV(x)5S(x)1 ix1I 1t0 /e1 ix2I 2t0 /e.
The results for lnP(I1,I2) are shown in Figs. 13–15. From
the contour map on Fig. 15 we see thatP(I 1 ,I 2) is nonzero
in the quarterI 1,0, I 2,0 of a current plain (I 1 ,I 2) and in
the region I 1<uI 2u provided I 1.0, I 2,0. This range of
plausible current fluctuations stems from thex-dependence
of rates Eq. ~47!. Any current fluctuation automatically
satisfies the constrain(kI k50 and conditionsI 2,0 and
I 3.0.

p. FIG. 14. The logarithm of current distribution lnP(I1,I2) in the
three-terminal quantum dot as a function of currentI 2, under con-
dition I 15^I 1&. Parameters are the same as in Fig. 13.~1! U1

51.25e/CS , ~2! U152.0e/CS , ~3! U154.0e/CS , and curve~4!
corresponds to the noninteracting regime.

FIG. 15. The contour maps of the current distributio
log@P(I1,I2)# in the three-terminal Coulomb blockade island. Para
eters are the same as in Fig. 13.U15U2/4.051.25e/CS .
6-13
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Before discussing the above results it is worth to setup
reference point for such discussion. This reference will
our previous results11 for the FCS in the three-terminal cha
otic quantum dot when its contact are tunnel junctions w
resistancesRk

21@e2/p\. In this limit the effects of interac-
tion are negligible and electrons are scattered independe
n
ou
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at different energies. ProvidedU2.U1, the generating func-
tion S($x i%) in the given case is a sum of the two indepe
dent processes

S~x1 ,x2 ,x3!5S1~x1 ,x2 ,x3!1S2~x1 ,x2 ,x3!. ~50!

Here
S1~x1 ,x2 ,x3!5
U1t0

2e
$G11G21G32A~G11G22G3!214G3eix3~G1e2 ix11G2e2 ix2!%,

S2~x1 ,x2 ,x3!5
~U22U1!t0

2e
$G11G21G32A~G11G32G2!214G2e2 ix2~G1eix11G3eix3!%,
ob-
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andGk5Rk
21 are the conductances of the junctions.

The logarithm of probability lnP0(I1,I2), evaluated with
the use of statistics~50!, is shown by the dashed line i
addition to the previous curves in Figs. 13 and 14. Its cont
map for the same values of parameters is also separ
presented in Fig. 16. The maximum of lnP0(I1,I2), as ex-
pected, occur atĪ 15 Ī 25U1/3R1.

We can derive the following conclusions on compari
the FCS in the Coulomb blockade and noninteracting lim
In spite of the different regimes, we see that the qualitat
dependence of probabilities versus the currents is similar
both statistics. The probability distribution in both cases h
a single maximum, corresponding to the average value
currents. The tails of distribution are essentially no
Gaussian both in the weak and strong interacting limit. T
statistics approaches to the Gaussian-type one in the st
Coulomb blockade limit only, when the applied voltage
the system is only few above the Coulomb blockade thre
old. @See curves~1! and ~2! in Fig. 13.# At higher applied
voltages the probability distribution has a tendency to
proach to the current distribution of the noninteracting s
tem. However, they never become identical, even in the li
U1,2@e/CS . @Curves~4! and ~5!.# The same is true for the
shot-noise correlations. Generally, we conclude, that

FIG. 16. The contour maps of the current distributi
log@P(I1,I2)# in the three-terminal chaotic quantum dot with tunn
contacts.U15U2/4.051.25e/CS .
r
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.
e
or
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Coulomb interaction always suppresses the relative pr
abilities of big current fluctuations. This behavior stems fro
the fact, that any big current fluctuation in Coulomb bloc
ade island is related with the large accumulation~or deple-
tion! of the charge on the island. The latter process result
the excess of electrostatic energy. Therefore, the rela
probability of such fluctuation is decreased, as compare
the probability of the similar current fluctuation in the no
interacting regime.

VI. CONCLUSIONS

To conclude, in the present paper we have developed
constructive scheme to evaluate the FCS of charge transf
the Coulomb blockade systems. This scheme is rather g
eral and universal and is applicable to any strongly intera
ing system, provided the latter can be described classical
the framework of the master equation approach. The met
proposed consists in the transformation of the initial line
operator L̂ of the master equation into the auxiliar
x-dependent linear operatorLx . Each nondiagonal term o
this new operator, associated with the particular transition
the system, is modified by the exponential prefactore6 ixk in
order to take into account the electron jump through
junction k during the tunneling event. The generating fun
tion of the charge transfer through the whole system is t
proportional to the minimal eigenvalue of the operatorLx .

We have applied this scheme to study the FCS in t
different Coulomb blockade systems. For a generic case
single resonant-level model we have established the equ
lence of the developed method with the scattering appro
to the FCS, when the particles in the system are noninter
ing.

Afterwards we have considered the FCS and the sh
noise correlations in the two- and three-terminal Coulo
blockade islands. The consideration was limited to the te
perature regimekBT@DE, with DE being the mean leve
spacing in the dot. In this regime we made use of the ‘‘
thodox theory’’ of Coulomb blockade phenomenon. For t
case of two-terminal Coulomb blockade island we have
established all the known results for the shot-noise in t
system. For the Coulomb blockade island with three le

l
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FULL COUNTING STATISTICS OF CHARGE TRANSFER . . . PHYSICAL REVIEW B 67, 085316 ~2003!
attached we have shown that the auto- and cross-shot-n
correlations exhibit the characteristic Coulomb blockade
cillations as the functions of the applied voltages and
offset charge.

We have considered the question of the FCS in the ab
two types of dots as well. In the general situation we eva
ated the probability distribution numerically. However, w
have managed to find FCS analytically in case of tw
terminal Coulomb blockade island at some special value
parameters. In these exceptional cases the FCS resembl
statistics of the charge transfer through the single reso
level. Then we compared the statistics in the Coulomb blo
ade island with our previous results concerning an open c
otic quantum dot with two and three terminals. We found t
the Coulomb interaction suppresses the relative probab
of the big current fluctuations.
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APPENDIX A

In this Appendix we show that the construction of t
probability measure on the basis of Markov chainszs , which
was used to derive the main result of Sec. III, leads to
usual description of the system dynamics in terms of ma
equation. This correspondence is achieved in the stan
way of probability theory by introducing the stochastic pr
cess ň(t) corresponding to the island charge at a giv
time t

n~ t,zs!5ns1(
i 51

s

s i u~ t2t i !. ~A1!

Similarly one can consider the random number of electr
ň(k)(t) transferred through the junctionk after t>2T/2

n(k)~ t,zs!5(
i 51

s

s i u~ t2t i !d~k2ki !. ~A2!

The random variablesň(t) and ň(k)(t) are subjected to the
relations

n~ t,zs!5ns1 (
k51

N

n(k)~ t,zs!,

~A3!

I (k)~ t,zs!5e
]

]t
n(k)~ t,zs!.

After that we can introduce the probability distributio
P(n,t) and the joint probability distributionP(n1 ,t1 ;n2 ,t2)
(t1>t2) of the processň(t)
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P~n,t !5E
V

d~n2n~ t,z!!dm~z!,

~A4!

P~n1 ,t1 ;n2 ,t2!5E
V

d@n12n~ t1 ,z!#d@n22n~ t2 ,z!#dm~z!.

Their ratioP(n1 ,t1u n2 ,t2)5P(n1 ,t1 ;n2 ,t2)/P(n2 ,t2) gives
the conditional probability to find the system at staten1 at
time t1, given that at timet2 it was at staten2. The integrals,
Eq. ~A4!, can be efficiently evaluated along with the sam
reasoning as we have used to prove the normalization c
dition. As the result one ends up with

P~n1 ,t1u n2 ,t2!5^n1uÛ~ t1 ,t2!un2&. ~A5!

The latter expression is the usual way to describe the
tem in terms of master equation. The conditional probabi
P(n1 ,t1u n2 ,t2) regarded as a function ofn1 and t1 obeys
this equation with the initial conditionP(n1 ,t1)5dn1 ,n2

at

t15t2.

APPENDIX B

This appendix contains the derivation of the actionS(x)
at low temperatures at some special pointsVk in the Cou-
lomb blockade staircase in the two-terminal island. We int
duce the notationGx

(6)(n)5Gn6←n
x , that enables to write

down Eq.~43! in the form

~L2gn!pn1Gx
(2)~n11!pn111Gx

(1)~n21!pn2150.
~B1!

If all xk50 then the stationary solution of this equatio
corresponding toL50, satisfies the detailed balance cond
tion pn11G0

(2)(n11)5pnG0
(1)(n). In general situation,

whenxkÞ0, one may try to resolve Eq.~B1! making use of
the substitution

pn11

pn
5

Gx
(1)~n!

y Gx
(2)~n11!

,
pn21

pn
5

y Gx
(2)~n!

Gx
(1)~n21!

~B2!

with unknown constanty to be found. This reduces the dif
ference Eq.~B1! to the relation

~L2gn!1Gx
(2)~n!y1Gx

(1)~n!y2150. ~B3!

Here gn5G0
(2)(n)1G0

(1)(n), and Gx
(6)(n) are linear func-

tions in n, given by Eq.~45!. Then one might find the two
unknowny andLx on comparing the constant and linear inn
terms in relation~B3!. It yields

y5~R1
212R2

211AD~x!!/2R1
21e2 ix1,

L~x!5
1

2e
~V2e/CS!@R1

211R2
212AD~x!#, ~B4!

D~x!5~R1
212R2

21!214~R1R2!21ei (x22x1).

It looks like we have found in such a way the required so
tion. However, it is not valid at all possible values of para
6-15
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eters. The matter is that the expressions@Eq. ~45!# are not
correct at pointsn5nmin and n5nmax in the most genera
case. One has to satisfy the boundary conditionGx

(2)(nmax)
5Gx

(1)(nmin)50. This violates the analyticaln dependence o
Eqs. ~B1! and ~B3! at the boundaries. The only exception
situation, when expressions~B2! and ~B4! solve the Eq.
a

s

08531
l

~B1!, corresponds to the casen15nmin , n25nmax, with n1(2)
being the zeros of functionsGx

(6)(n). In this case the substi
tution Eq. ~B2! gives p(nmax11)5p(nmin21)50 and hence
the actual values ofGx

(2)(nmax11) andGx
(1)(nmin21) in Eq.

~B1! play no role. Then we arrive to the actionS(x)
5t0L(x) in the form which was claimed in Sec. V~b!.
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