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THE FULL DECOMPOSITION OF SEQUENTIAL MACHINES
WITH
THE OUTPUT BEHAVIOUR REALIZATION

L.ech Jé2wiak

Group Digital Systems, Faculty of Electrical Engineering,
Eindhoven University of Technology (The Netherlands)

Abstract-The control units of large digital systems can use up to
80% of the entire hardware implementing the system . Therefore, it
is very important to reduce the amount of hardware taken by the
control unit and to simplify the design, implementation and
verification process. In most cases, the contrel unit can be
constructed as a sequential machine. So, the design of control
units for digital systems leads to the fololowing practical
problem:

How to decompose a complex sequential machine into a number of
simpler submachines 1in order to : simplify the design,
implementation and verification process; make it possible to
optimize separate sumachines, whereas it may be impossible to
optimize directly the whole machine; make possible to implement
the machine with existing building blocks.

The decomposition theory of sequential machines aims to find
answers to this question. For many years, decomposition of
internal states of sequential machines was considered. However,
together with the progress in LSI technology and the introduction
of array logic into the design of sequential circuits, a real need
arose for decomposition of not only the states of sequential
machines but of inputs and outputs too, i.e. for full-
decomposition.

In this work, a general and unified classification of full-
decompositions and formal definitions of different sorts of full-
decompositions for Mealy and Moore machines are presented and
some theorems about the existence of full-decompositions with the
output behaviour realization are formulated and proved. This
theorems constitute a theoretical basis for the practical
decomposition algorithms and for the software system calculating
different sorts of decomposition for sequential machines.
Similar theorems for the case of full-decompositions with the
state and output behaviour realization are available in [16].

Index Terms~Automata theory, decomposition, logic system design,
sequential machines.

Acknowledgements—-The author is indebted to Prof. ir. A. Heetman
and Prof. ir. M. P. J. Stevens for making it possible to perform
this work and to Dr. P. R. Attwood for making corrections to the
English text.



1.Introduction.

Most of the architectures of todays composed digital systems
implement Glushkov's model of the information processing system.
In these architectures, it is possible to distinguish two basic
parts:

- an operative unit, implementing tools for performing operations
with the data,

- a control unit, implementing contreol algorithms of a given
information processing system.

A control unit, based on the status of the operative part and
certain external signals, generates and sends the control signals
to the operative unit in order to perform the given sequences of
operations with the data in the operative part (Fig. 1.1).

data in data out
OPERATIVE UNIT

o

status signals control signals

contrel in control out
- CONTROL UNIT

Fig. 1.1 The basic architecture of a composed digital system.

The control units of large digital systems can angage up to 80%
of the entire hardware implementing the system and, therefore, it
is very important to reduce the amount of hardware used by the
control unit and to simplify the design, implementation and
verification process.

In most cases, the control unit can be constructed as a
sequential machine (a finite automaton).

Reducing the amount of hardware neded for implementing a
sequential machine is a very complicated process which can be
carry into effect in a number of steps implementing some
optimization algorithms.This steps include:



the optimal state reduction,

the optimal state assignment,

the optimal choice of flip-fops,

minimization of the Boolean functions representing the next-
state and output functions of a sequential machine.

However, the efficiency of these optimization algorithms
(understood to be a function of such parameters as: the quality of
the result, the computation time, the memory space used)
decreases rapidly with the dimensions of a sequential machine.

So, the design of control units for large digital systems can
lead to the fololowing practical problem:

How to decompose a complex sequential machine into a number of
simpler submachines in order to obtain:

- the better organization of the system and of the design,
implementation and verification process,

- the possibility of optimizing of the separate submachines,
whereas it may be impossible to optimize the whole machine
directly,

- the possibility of implementing the machine with existing
building blocks.

The decomposition theory of sequential machines aims to find
answers to this question.

Research in the above mentioned field was started in the early
Sixties [8][9][10][20][21]. For many years, decomposition on
internal states of sequential machines has been considered
[4][2121(217](181[19][20][21). |However, +together with the
progress in LSI technology and the introduction of array logic
(PAL, PGA, PLA, PLS) into the design of sequential circuits, a
real need has arisen for decompositions not only of states of
sequential machines, but of inputs and outputs too, i.e. for full-
decompositions.

An approach to the full-decomposition of sequential machines
has been presented in [14] and [15]. Among other things, the
definitions and theorems concerning one parallel and two serial
types of full-decompositions for Mealy machines were introduced.

In [16], a general and unified classification of full-
decompositions is presented, formal definitions of different
sorts of full-decompositions for Mealy and Moore machines were
introduced and theorems about the existence of full-
decompositions with the state and ocutput behaviour realization
were formulated and proved.



In this work, theorems about the existence of full-decompositions
with the output behaviour realization will be formulated and
proved. These theorems constitute the theoretical basis of the
practical decomposition algorithms and the software system for
calculating different sorts of decompositions of segquential
machines.

2. Full-decompositions and their sorts.

DEFINITION 2.1 A sequential machine M is an algebraic system
defined as follows:
M= (I, 5, 0, &, \) ,
where:
I - a finite nonempty set of inputs,
- a finite nonempty set of internal states,
- a finite set of outputs,
- the next state function, §: SxI — S,
— the output function, \: SxI — O (a Mealy machine),
or \: S =} 0 (a Moore machine).

If the output set 0 and the output function ) are not defined,
the sequential machine M = (I, 8§, i) is called a state machine.

The machine functions & and ) can be considered to be sets of
functions created for each input:

3 {6, 8,2 8 — S and xeI}
and

Y= {dy]| Ag: S == O and xeI},
where §,:5 — S and ),:S — O are defined by:

YXel VseS 8,(8) = 3(8,X),

Ax(8) = M(s,X).

5, and ), , respectively, are called the next-state function

and the output function with respect to the input x.

In the next sections for §,(s) and ),(s) the notations s, and
$i, will be used.

For xe¢I and Q ¢ S two partial functions:

3, 2% — 2% and 1,: 2% — 2° are defineq,
where:

Vxel ¥VQeS Q3, = (88,] S€Q}, Q) = {(sk,| seQ}.



For XsI and QcS the following two partial functions are also
defined:

By 28 — 2% and Yy: 2% — 29,
where:

Qb = (83,] S€Q A XeX),

Qhy = {8hy] S€Q A XeX)}.

In this work, only simple decompositions (i.e., decompositions
with two component machines) will be taken into account and,
therefore, the term "decomposition" is assumed to mean "simple
decomposition"”.

Let M = (I, S, 0, 3§, )} be the machine to be decomposed and

M= (I,, S, O,, &;, },;} and M,= {I,, S,, O,, ¥,, )y} be two
partial machines.

In a full-decomposition, it is necessary to find the partial
machines M, and M, each having fewer states and/or outputs than
machine M and/or each calculating its next states and outputs
using only the part of information about the input of machine M
and, in combination, forming a machine M'which imitate M from the
input-output point of view.

In a state-decomposition, it was necessary to find the
machines M; and M, having only fewer internal states. Inputs and
outputs needed not be decomposed.

Before considering the different sorts of full-
decomposition, the definition of realization from [12} will be
presented.

DEFINITION 2.2 Machine M' = (I',S',0',§',)\') realizes (is
realization of) machine M = (I1,8,0,8,)) if and only if the
following relations exist:
¢y: I — I' (a function),
$: s — 2%' (a function into nonvoid subsets of S!'),
8: 0'=—3 O (a surjective partial function)
and this relations satisfy the following conditions:
¢‘(5)5'¢(x) c ¢(58x)

and

’

Shy = 8(s"2'y(xy) (for a Mealy machine)
or
s) = 8(s")r') (for a Moore machine)
for all seS, s'ep(s) and xeI.
Let I* be a set of all the input sequences x;X;...X,
(n=0,1,...), let x=x'x for x' eI* and x¢I and let ) and 3 be the two



functions calculating the final output and the final state
reached by a machine from the state s under the input sequence Xt
3: SxI* — S, 8(s,%) = 8(8(s,%x'),X),
i SXI* — 0, i(s,X)

1(3(5,?{'),:() {Mealy case),

-}'\(s,;c) = x(i(s,x)) (Moore case).
It can be proved that if M' is a realization of M in the sense of
definition 2.1 then VseS V¥s'ed(s) and V¥xeI* : (s, %) =

9(3'(3',‘&(:{)), i.e. for all possible input sequences outputs
reached by machine M and its imitation M' are, after a renaming,
identical. Due to this fact, a realization in the sense of
definition 2.1 will be called by us: realization of the output
behaviour.

In some cases, not only the output changes of the machine are
concerned but also the state changes. The full-decompositions
with the realization of the state and output behaviour of
sequential machines has been considered in [16] and their
definition is only presented below:

DEFINITION 2.3 Machine M!' = (1I', 8', O', §', ') , realizes the
state and output behaviour of machineM = (I, S, O, &, \) if and
only if the following relations exist:

¢: I — I' (a function),

¢: S'— S (a surjective partial function)

0: 0'— O (a surjective partial function)
such that:

b(s*) e, = ¢(5'5'¢(xl)
and

d(s")rg = 8(s5' 2 yixy) (for a Mealy machine)
or

P(s'))r = @(s')") (for a Moore machine).

The realization of state and output behaviour is a special case
of the realization of output behaviour. If function ¢ in
definition 2.2 maps each state of M onto a single state of M' and ¢
is a one-to-one function then definition 2.2 is equivalent to
definition 2.3.

Since, the partition concept has to be used for analyzing the
information streams in a machine, a special case of realization
will be considered for which function ¢ maps each state of M onto a
single state of M',i.e. ¢:5 — S'.



DEFINITION 2.4 Machine M' = (I',S',0',8',)') is a single-state
output behaviour realization of machine M = (1,5,0,%,)) if and
only if the following relations exist:
¢: I — I' (a function),
¢: S — S' (a function),
8: 0'— O (a surjective partial function) ,
and this relations satisfy the following conditions:
b (s) lyixy = d(sdy)
and
Sk, = e(¢(s)x'¢,x,) (for a Mealy machine)
or
sy = 8(¢(=s))") (for a Moore machine)
for all s¢5 and xeI.

Since in this work only the single-state output behaviour
realizations are considered, they will be called simply output
behaviour realizations,

In a full-decomposition with the output behaviour
realization of sequential machine M, we have to find the partial
machines M, and M, as well as the mappings:

¢: I — I,xI, ,

¢: s — s,x8, ,

8: 0,x0, — O ,
that the machines M; and M, together with the mappings ¢, ¢, o
realize the behaviour of a machine M.

We will say that a full-decomposition is nontrivial if and only
if:

[Ty [<|T] A [I,]<|I] v [syl<|s] A |s,l<|s] v [o,|<[o] &
|o,|<|0], where |Z| — number of elements in the set 2.

Decompositions can be classified according to the kind of
connections between the component machines.

In ¢general, each of the component machines can use the
information about the state or output of the other component
machine in order to compute its own next state and output
(Fig.3.1).



r-=--—-=--mm==-=-=-=-===-=-=-== 1
| 1, 0, |
( M1 \
| |
| 0,/8, 1 |
I I { lo,ss, | o

0,

| 1, . M, } }

| — |

L o e e e e e e e e e e e - - - J

Fig 3.1 The information flow between the component machines in
full-decomposition.

From the point of view of the strength of the connections between
the component machines, the following sorts of full~
decompositions can be distinguished:

(1) a parallel full-decomposition - each of the component
machines c¢an calculate its own next states and outputs
independently of the other component machine, based only on
information about its own internal state and partial information
about the inputs (Fig.3.2),

(i) a serial full-decomposition - one of the component
machines, called the tail or dependent machine (M,), uses the
information about the outputs or states of the second machine,
called the head or independent machine (M;), plus partial
information about the inputs in order to calculate its own next
states and outputs (Fig.3.3),

(iii) a general full-decomposition - each of the component
machines uses information about the outputs or states of the other
component machine and partial information about the inputs in
order to calculate its own next states and outputs (Fig.3.4).

The parallel full-decomposition and the serial full-
decomposition can be treated as special cases of a general full-
decomposition with zero information about one submachine used by
another submachine.

From the point of view of the sort of information about a given



submachine used by ancther submachine in order to calculate its
next states and outputs, the following two types of full-
decomposition can be distinguished:

(i) a decomposition with information about the outputs, called
type O,

(1i) a decomposition with information about the internal states,
called type S.

A given submachine can use the information about the "present"
or the "next" state or output of the other submachine. So, the
following two classes of full-decomposition occur:

(i) class P - a decompositionwith information about the present
state or output,
(ii) class N - a decomposition with information about the next
state or output.

From the classification above, it immediately follows that the

following cases of full-decomposition are feasible:
- one sort of parallel full-decomposition:;
- four sorts of serial full decomposition: PS, NS, PO, and NO ;
- two sorts of general full-decomposition: PS, PO.

r-r—-—-—-==-=-=-=-=-=-"===-==== T
| I, " 0, |
} 1
| I
| v = |
I--—-——I-)- - - ._T—-.__qo
I, 0,

i } M, |
| |
M
L o e e e e e e e e e e e e e - - d

o

ig 3.2 The parallel full-decomposition of a machine M into
component machines M, and M,.
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| e h |

| I, " 0, |
? 1

| |

| ¢ I §,/0, - ¢ |

I_I)- B v m -I_—-)O
I, 0,

| M, |

[ |
M

fh o e e e e o e e e e e oEm e e - — d

Fig 3.3 The serial full-decomposition of a machine M into
component machines M; and M,.

r—-=""=="=-=-=-="===-"=-"===== I
| I, N 0, |
} 1
| |
| ¥ 0,/8, 1 K |
] ———— - v 02/52 r— -I—) (]
|
I, 0,

I > M, |
| |
M
L e e e e e e e e e e e e e e mm e e A

Fig 3.4 The general full-decomposition of a machine M into

component machines M; and M, .
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For a general full-decomposition, it is possible to have both
the "pure" cases PS and PO and the "mixture" of types S and O and
classes Pand N {the first submachine can use the information
about the state of the second and the second about the output of
the first and vice versa ; the first submachine can use the
information about the present state/output of the second
submachine and the second can use the information about the next
state/output of the first). In this report, "mixed" types are not
considered because the definitions and theorems for them can be
formulated easily as "mixtures" of the adequate definitions and
theorems for the "pure" cases considered here.

From the considerations above, it follows that full-
decomposition can be characterized by the type of connection
between the component machines. The formal definitions of all
connection types considered in this work are given below.

DEFINITION 2.5 A parallel connection of two machines:
M, = (I, S8;, 0y, &', 1)
and
M, = (I,, S;, Oy, 82, 2%)
is the machine:
M,|[M, = (Iisz,Slxsz’olxoz,a*,;*)
where:
¥ ((s,t), (%,,%,))
and

(81 (s,%;),8%(t,x,))

YV (s, t), (%1,%,))
(for Mealy machine)

(O (s,%.) 0 23(t,x,))

or
MV ((s,1)) = (A1 (s),)2(Y))
(for Moore machine)

DEFINITION 2.6 A serial connection of type PS of two machines:

M, = (I,, S;, 0, 8%, 1)
and , ,
. My = (I, S5, 0y 3%, 0%,
for which I, = §,xI,

. . PS
is the machine M,— M, = (I;xI,,S,XS,,0,%0,,8%1%) ,

where:
¥ ((s,t), (%,,%;))

r

(31 (s,%,),82(t,(s,%,;)))
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and

M ((s,t), (%,,%,)) = (M (s,%,),22(t, (8,%,)))
(for a Mealy machine)
or

MV ((s,8)) = (A(s), 2P (L))
(for a Moore machine).

DEFINITION 2.7 A serial connection of type NS of two machines:

Ml = (Ilf Sl' 01: 511 l")
and

r Mz = (I;' SZ' 02! 82, kz)r
for which I, = 8,xI, ,
XS
is the machine M,— M, = (I,xI,,S,xS,,0,x0,,3%,*) ,
where:
3*((s:t), (%1,%,;))
and

(3l (s,%,),82(%, (81 (s,%,),%,))

VR((s, 1), (%4.%,5)) = (1 (s,x0) 2 (L, (81 (5,%) ,%,))
(for a Mealy machine)
or
M ((s,8)) = (A (s), 2P (L))
(for a Moore machine)

DEFINITION 2.8 A serial connection of type PO of two machines:

Ml = (I1t S1f 01: 51: Xl)
and

¥
M, = (I;, S;. O,, 3%, 2% ,

2
for which I, = O,xI, ,

is the machine Mlig M, = (I,XI,,S,;%S5,,0,%0,,5%)%) ,
where:
8% ((s,t), (Xy,%;)) = (8%(s,%;),82%(, (¥;,%X,)))
W (s,t), (%1,%,5)) = OO1(s,%,) (L, (¥y,%2)))
and y, €0, : y; is the present output of M,

(the output of M, contemporary with the state s of M,;)
(for a Mealy machine)
or

X ((s,t), (Xy,%,)) = (81(s,%,),82(t, (11 (8),%,))))
VE((s,8)) = (Z1(s), 0 (E))
(for a Moore machine)
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DEFINITION 2.9 A serial connection of type NO of two machines:
M1 = (Ill Sll 01.! all‘ l1)
and ) ’
\ ’ Mz = (Izr szl 02: 8, k2)1
for which I, = OxI,
Ko
is the machine M,— M, = (I,xI,,S,x5,,0,x0,,8*,)%),
where:
3¥((s,t), (%,%,)) (31 (s,%,),8%(t, (Z 1 (s,%,),%,)))
M ((8,8), (%y,%5)) = (W1(s,x1) A28, (A1 (8,%X1) %))
{for a Mealy machine)

or
3¥((s,1), (%y,%,)) = (3% (s,x;),82%(t, (W' (81 (s,%)),%;)))
V((s,t)) = (A (s),E(E))
{for a Moore machine)

DEFINITION 2.10 A general connection of type PS of two
machines

M, = (I, , S,, Oy, 8%, 1)
and ,
M, = (I, , S, Oy, 3%, 2%)
where: ,
I, = S,xI, ,
is the machine: .
M,—= M, = (I,XI,,S,%5,,0,x0,,8%,)%) ,

I, = 8;xI, ,

where:

¥ ((s,t), (Xy,%,))
and

(8 (s, (t,x;)),8%(t, (s,%,))

M((s,8), (x,%,)) = (W1(s,(t,%)) (L, (8,%;))
(for a Mealy machine)
or
Vi ((s,t)) = (A1 (s) (L))
(for a Moore machine)

DEFINITION 2.11 A general connection of type PO of two
machines:

M, = (I,, S;, 0,, 8!, \})
and ,
M, = (I,, Sz, Op, 8%, 2\¥) ,
where: , ,
Il = OZXII ’ 12 = 01}{12
is the machine: ,,
M= M, = (I,xI,,5,X5,,0,%x0,,8*,)*) ,

where:
¥ ((s,t), (%,,%,))
V¥ ((s,t), (3,,X%,))

(31(s, (¥2.%,)),82(, (¥;1,%3)))
(A (s, (Yo, %)) 22t (Ye,%)))
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and y,¢0, , y,¢0, (present outputs of M; and M,)
(for a Mealy machine)
or
3¥((s,t), (%1,%,)) = (8% (s, (02(£),x,)),3823(t, (W (8),%,)))
W ((s,t)) = (ZP(s), A 2(E))
(for a Moore machine)

DEFINITION 2.12 The machine M;<> M, is a full decomposition of
type <> of machineM if and only if the connection of a given type
<> of machines M, and M, realizes M,

where: PS NS PO NO PS PO
=], =,=,=,=, 4, .

Each of the types of a full-decomposition defined above can be
considered to be a full~decomposition with the realization of the
output behaviour or a full~decomposition with the realization of
the state and output behaviour. Full-decompositions with the
state and output behaviour realization have been considered in
[16]. In the next paragraphs, the theorems concerning the
existence of different types of a full- decomposition with the
output behaviour realization will be formulated and proved. Only
the proves for a Mealy machine are presented in the report,
because those for a Moore machine are analogous.

3. Partitiong, partition pairs and partition trinities.

The concepts of partitions and partition pairs introduced by
Hartmanis [11][12] and partition trinities introduced by Hou
[14][15] are useful tools for analyzing the information flow in
machines or between machines; therefore they were used in this
work.

Let S be any set of elements.

DEFINITION 3.1 Partition © on S is defined as follows:
% = {B;| B;sS and B; n B; = 0 for i#j and v B; = S},

i.e. a partition v on S is a set of disjoint subsets of S whose set
union is S.

For a given se¢S, the block of a partition = containing s is
denoted as {s]w and [s]x = [t]7 is written to denote that s and t



are in the same block of n. Similarly, the block of a partition x
containing S',where S'c S , is denoted by [S']w.

A partition containing only one element of S in each block is
called a zero partition and denoted by =ng(0). A partition
containing all the elements of S in one block is called an identity
or one partition and is denoted by 7#,(I).

Let 7; and w, be two partitions on S.

DEFINITION 3.2 Partition product n,+n, is the partitionon § such
that [s]n,*w, = [t]®,*7m, If and only if [s]m, = (t]w; and [s]n' =
[tlm,.

DEFINITION 3.3 Partition sum n;+n, is the partition on S such that

(s]my+w, = [tiw,+%, if and only if a sequence: s=s,, 8;,...,5,~t,

s;€S for i=1l..n , exists for which either

[silny = [S{41]7; either [s;]ln; = [5;,1]%,, 0 ¢ i € n-1.

From the above definitions, it follows that the blocks of =, * 7,

are obtained by intersecting the blocks of 7, and x,, while the

blocks of n,+n, are obtained by uniting all the blocks of 7, and =,

which contain common elements.

only if each block of =n; is included in a block of =,

DEFINITION 3.4 n, is greater than or equal to ny: ©, < w, if and

Thus 7, < %, if and only if w,+%, = %, if and only if w;+7w, = 7,.

Let 55 be the set of all partitions on S.Since the relation < is
a relation of partial ordering (i.e. it is reflexive,
antisymmetric and transitive), (S;, <) is a partially ordered
set.

Let (Z, ¢) be a partially ordered set and T be a subset of Z.

DEFINITION 3.5 z, z¢Z, is the least upper bound (LUB) of T if and
only if :
{i) VvteT: 2 = t ,
(i1i) VteT: if z' 2 t then z' 2 z.
Z2, z€¢Z, is the greatest lower bound (GLB) of T if and only if:
(i) VteT: z = t,
(ii) VYteT: if z' < t then z' < z.

DEFINITION 3.6 A partially ordered set L= (Z, £), which has a LUB
and a GLB for every pair of elements, is called a lattice.
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It is evident that the set of all partitions on S together with
the relation of a partial ordering < form a lattice with
GLB(7®,,T4) = ®y*T, and LUB(w,,7,) = ®,+7,

Let ®g, Tg, %y, My be the partitions on M=(I, S, O, 5, )}, in
particular: ng, 73 on S, ©®; on I, 7wy on O.

DEFINITION 3.7

(i) (fg,73) is an S-S partition pair if and only if
VBewg Vxel : Bé, s B', B'etg .

(ii) {m;,7mg) is an I-8S partition pair if and only if
VAen; VseS : s8, ¢ B, Bemg .

(iii) (wg,my) is an S-O partition pair if and only if
VBemg Vxel : BTx € C, Ceny (Mealy case)
or

¥Bemg @ Bl s C, Cexyg (Moore case).

(iv) (m;,my) is an I-0 partition pair if and only if
YAeT; ¥Yse¢S : STA € C, Cemy (Mealy case)
or

YAerm; VseS @ 8) ¢ C , Ceny (Moore case).

The practical meaning of the notions introduced above is as
follows:

(Rg,7g) is an S-S partitionpair if and only if the blocks of =g
are mapped by M into the blocks of 1. Thus, if the block of =g
which contains the present state of the machine M is known and the
present input of M too, it is possible to compute unambiguously
the block of 13 which contains the next state of M for the states
from a given block of 7y and a given input. The interpretation of
the notions of I-S, 8-0 and I-0 partition pairs is similar.

In the case of a Moore machine, the definition of an I-0 pair is
trivial, because each (w;,ng) satisfies it ( the output of M is
defined by the state of M unambiguously).

DEFINITION 3.8 Partition n; has a substitution property (it is an
SP-partition) if and only if (=®g,7ng) is an S-S pair.

DEFINITION 3.9 Partition trinity T= (n;,ng,7,y) on the machine M=

(I, S, O, 8§, )) is an ordered triple of partitions on sets I, S and

O, respectively, which satisfies the following conditions:
VAem, YBemg : B, s B', B'eny and B, s C , Cenp .
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Thus, if (7;,ng, %) is a partitiontrinity onM and the block B
of m; which contains the present state of M is known and the block A
of w; which contains the present input of M is known too, it is
possible to compute unambiguously block B! of n; that contains the
next state of M and block C of n, that contains the output of M for
the states from block B and inputs from block A.

For completely spacified machines, it has been proved that
(wy,mg, o) is apartition trinityonMif andonly if (wg,ng) is an
S-S pair, (w;,7mg) is an I-S pair , (mg,7y) is an S-0 pair and
(ny,7y) is an I-0 pair on M [14](15].

It was shown in [14] that the set of trinities on a machine M
forms a finite trinity lattice with

GLB(T,,T,) = T,eT, and LUB(T,,T,) = T,eT, ,
where 0 and @ are defined as a collection of pairwise operations
Ye' and "+'" for partitions of the same type (input,state,ocutput)
of trinities of T, and T, .

4. Parallel full-decomposgition.

THEOREM 4.1 A machine M = (I,S8,0,3,)) has a nontrivial parallel
full-decomposition with the realization of the output behaviour
if two partition trinities on M: (w;,7mg,7y) and (t1y, 14, Ty) exist
and they satisfy the following conditions:

(1) Woe19 = Wp(0) ,

(ii) [npl<[x]aleg]<]T|v]mgl<is|a]rsl<|sS]v]mol<lo|a]lTol<]O] .

Proof (for the case of a Mealy machine)

Let M, = (%;,%g, Mo, 8%,2') and M, = (7;,75,70,5%,1%) be two

sequential machines satisfying the following conditions:
(1) (7p,mg,my) and (T;,174, 7o) satisfy the conditions of theorem
4.1,
(2) VBlemg VAlem;: Bls',, = [Bla,,lng ,
Bl)!,, = [Blh,,]%; ,
(3) ¥B2eTy VA2eT,: B23%,, = [B23,,]1g ,
B2)2,, = [B2h;,]1; .

Since (n;,ng,my) is a partition trinity (1), Bl?l y is placed in
just one block of ©g and BlTA , in only one block of 7y . This means,
that B13!,, and B1)!,, are defined unambiguously. Similarly,
since (1y,1g,7) is a partition trinity (1), B23?,, and B2)%,,

]
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are defined unambiguously. So, each of the partial machines M, and
M, can calculate its next states and outputs unambiguously.
Let ¢y: I— w;x7; be an injective function,
¢: s— myxty be an injective function,
6: ®yXTp— O be a surjective partial function
and
(4) ¥ (x) ([xImp, [x]111),
(5) b (s) ([(s]lng,[s)tg),
(6) 6(C1,C2) = ClnC2 if ClnC2 # O
It is proved below that the parallel connection of the machines
M, and M, defined above realizes a machine M.

Since mg*15 = WH(0) (1) , & is a one-to-one function and for
C1nC2#0 :

(7) (C1,C2) €0 .
Therefore, VYse¢S VYxel :

b(s)s*,xy =
= ([SJWSf[S]TS)a*([xlﬂl,[xlrxi ((4), (5))
= ([s]wsal[x,“I,[s]tssztx,,I) (definition 2.5)
= ([[8)ms8rqrn 175, (08175851 1) ((2), (3))
= ([(sdylng,[88,]15) ((1))
= ¢(s3y) ((5))

and similary:

9(¢(5)l*¢¢x)) =

= 0(([s)7g, [8)Te) N (rximy, tx17,0) ((4), (5))
= 9([5]“s\1tx1w1:[S]Tslztxlrl) (definition 2.5)
= [S]"slltxlwI n [SlTslztxltI ((6))
= [[s1mhxan 1% 0 [[817shixig 17g ((2), (3))
= [sh,]7g N [8X 1Ty ((1))
= S, ( Mget1o=mg(0) )

From the above calculations and definitions 2.4, 2.5 and 2.12,
it follows immediately that the parallel connection of machines
M, and M, realizes M, i.e. M has a parallel full-decomposition
with the output behaviour realization. If condition (ii) of
theorem 4.1 is satisfied, then the decomposition is nontrivial. O
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Theorem 4.1 has the following interpretation:

Since (w;,ng,ny) is a partition trinity, based only on the
information about the block of 7; containing the input of M and the
block of 7y containing the present state of M (i.e information
about the input and present state of M,) machine M, can calculate
unambiguously the block of #¢ in which the next state of M is
contained , as well as, the block of n, that contains the output of
M for the input from a given block of n; and the present state from
a given block of 7 (i.e. M; can calculate its next state and
output). Similarly, since (1;,1g,To) is a partition trinity,
machine M,, based only on the information about its input and
present state (i.e. knowledge of the adequate block of 7; and
block of 14), can calculate its next state and output (i.e. the
adequate blocks of 13 and 1,).

Since wy+ 14 = 7y (0), the knowledge of of the block of 7y and the
block of 14 in which the output of M is contained makes it possible
to calculate this output. So, the machines M, and M, together can
calculate the output of M unambiguously.

A special case of theorem 4.1 for:

[myl<ITlaleg I<ITlaCIngb=IS|alnl=[0)v]Ts|=]s|al to]l=[0])

expresses, in fact, the input redundancy. In this case, machine M
should be replaced with machine M; or M,, having fewer inputs and
realizing M, instead of being decomposed. Similar special cases

exist for all the other theorems presented in this report.

5. Serial full-decomposition of type PS.

Let 7;, 13, To be partitions on a machine Mon I, § and ©
respectively.

DEFINITION 5.1 (7,,7g,Tg) is a present-state-dependent trinity
for an independent state partition f; if and only if t;, 14 and 14
satisfy the following conditions:
(i) (1;,7g) is an I-s partition pair,
(ii) (tg+tg,15) is a s-8 partition pair,
(iii) (t1g4+f¢,10) is a S-0 partition pair
and
(T7,Ty) is an I-0 partition pair (for a Mealy machine),
or

(T4,Tp) is a S-0 partition pair (for a Moore machine)
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In other words, (rty,73,7p) is a present-state-dependent
trinity if and only if, based only on the knowledge of the block of
a partition 1; containing the input of M and the knowledge of the
blocks of partitions 74 and {; containing the present state of M,
it is possible to calculate the block of 1 in which the next state
of Mwill be contained. In the case of a Mealy machine, based on the
same information, it is possible to calculate the block of 1, in
which the output of M will be contained for the given input and
state. While, in the case of Moore machine, based on the knowledge
of the block of a partition 75 in which the state of M is contained,
it is possible to calculate the block of 14 in which the output of M
will be contained for the state from a given block of 14,

THEQREM 5.1 A machine M has a nontrivial serial full-

decomposition of type PS with the realization of the output

behaviour if a partition trinity (w,,n;,n,) and a present-state-

dependent partition trinity (r;,14,7() for §{; = n; exist and they

satisfy the following conditions:

(1) Tge1p = W (0) ,

(i) |xpl<izlalwgl«leil<lTlvingl<s|alrsl<[s|v]ng]<lo]A
altol<lo] .

Proof (for the case of a Mealy machine)

Let M, = (%y,Wg, Mg, 8!,21) and M, = (wgxt;,15,74,32,12) be two
machines that satisfy the following conditions:

(1) (my,wg,mg) and (1;,7s,79) satisfy the conditions of the
theorem 6.1 ,
(2) VBlemg VAlem; : Bla',, = {Bls,,}ng , BLal,, = [Bl),,]17, ,
(3) VBlemg VB2e¢tTg VA2eT;

B25% 5y, a2,=[(B1NB2)8,,]11;, B2l2‘Bl,,2,=[(?}nB2)Tl2]to

Since (m;,mg,my) is a partition trinity (1), B13,, is placed in
just one block of ng and Bl1,, in only one block of ®, . This means,
that B1s',, and Bl)!,, are defined unambiguously.

Since (1;,Tg,79) is a present-state-dependent trinity (1),
(BlnBz)?lz is placed in just one block of 71 and (BlnBZ)Tli is
placed in only one block of 1, . This means, that 8252(31,A2, and
BZRZ'BI’AZ, are defined unambiguously.
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Let ¢y: I 7w x1; be an injective function,
$: s— m;x1ty be an injective function,
8: mgxT1¢o— O be a surjective partial function

and
(4) v(x) = ({(x]In;,([(X]17y),
(5) d(s) = ([s)ng,[s]11g),
(6) 8(Cl,C2) = ClnC2 if CinC2 # O .

It is proved below that the serial connection of type PS of the
machines M, and M, defined above realizes the output behaviour of
machine M.

Since mwgetg = Mg(0) (1) , @ is a one-to-one function and for
ClnC2#0 :

(7) (C1,C2) €0

Therefore, ¥se¢S ¥YxXel

d(s) 8%y x)
= ([s17s, (81T} 8% cuxam , tx17y) ((4), (5))
= ([s1ms 8 pxam, 1817682 Crarmg, tx1 1)) (definition 2.6)
= ([[81mgdopan I, [([S)T4N[SITG) B xy e 174} ((2), (3))
= ([88,]%5,[83,115) ((1))
= ¢(s3y) ((5))

and similary:
0 (h(s) ¥ yixy) =

= 0(([s]7s, (81Te) M cixam, ix17p)) ((4), (5))

= 8([sIms) txan /(81163 (raim,1x17,y)  (definition 2.6)
= (817  xam, N [S]Ts)‘zlts]ﬂs,lxl‘rll ((6})
= 817 h rxan ITo 0 {([S1TsNISIT) Vg, 0T0  ((2), (3))
= [S)x]mp 0 [S)]7y ((1))
= S), ( wor1o=mp(0) )

From the above calculations and definitions 2.4, 2.6 and 2.12,
it follows immediately that the serial connection of type PS of
machines M; and M, realizes M, i.e. M has a serial full-
decomposition of type PS with the output behaviour realization.
If condition (ii)} of theorem 5.1 is satisfied, the decomposition
is nontrivial. 0O
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Theorem 5.1 has a straightforward interpretation.

Since (m;,m;,%,) is a partition trinity, based only on the
information about the block of a partition n; containing the input
and the block of a partition =n; containing the present state of
machine M (i.e. information about the input and present state of
M,;), machine M; can calculate unambiguously the block of 7¢ in
which the next state of M is contained and the block of 7, in which
the output of M is contained for the given input and present state
(i.e M, is able to calculate its next state and output).

Since (1;,14,74) is a present-state-dependent trinity, based
only on the information about the block of a partition r1;
containing the input and the blocks of partitions 1y and =
containing the present state of the machine M (i.e. information
about the primary input and the present state of M, and about the
present state of M, being a part if the input to M,), machine VM, is
able to calculate unambiguously the block of t; inwhich the next
state of M is contained and, in the case of a Mealy machine, the
block of 1, in which the output of M is contained for the given
input and present state (i.e. M, can calculate its next state and
output). In the case of a Moore machine, M, is able to calculate
the block of 14 in which the output of M is contained, based only on
information about the block of 13 in which the state of M is
contained.

Since wy* 15 = 7y (0), with information about the blocks of w,
calculated by M, and the blocks of 1, calculated by M, (i.e.
information about the outputs of M; and M,;), it is possible to
calculate unambigucusly the outputs of machine M.

6. Serial full-decomposition of type NS.

Let 1;, 713, Tp be partitions on machine M, on I, § and O
respectiviely, and §{; be another partition on S.
DEFINITION 6.1 (7;,%g, 7o) 1S a next-state-dependent trinity for
an independent state partition iy if andonly if 14, Ty, 7o satisfy
one of the following conditions for a given §;:

(1) V¥s,teS ¥x;,x,¢l:
if [s]1g=[t]ltg A [X;]T1=[%X,]1T; A [Sax1]£s=[tax2]Es
then [sax1]15=[t§x2)rs A [slxl]t°=[txx2]to

(for a Mealy machine),
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(ii) Vs,teS vx;,x,€l:
if [8lte=[tlts A [X;]T={%,]7; A [55x1]Es=[t5x2]53

then [55x1]Ts=[t3x2]Ts A [(saxl)x]ro=[(t8x2)L]to

(for a Moore machine).

In other words, (t;,7;,7g) is a next-state-dependent trinity
for an independent state partition ¢ if and only if, based only on
the knowledge of the block of a partition 1; containing the input
of machine M , knowledge of the block of a partition 14 containing
the present state of M and knowledge of the block of a partition §q
in which the next state of M is contained for a given input and
state, it is possible to calculate the block of 74 in which the
next state of M will be contained and the block of 14 in which the
output of M will be contained.

THEQREM 6.1 A machine M has a nontrivial serial full-
decomposition of type NS with the realization of the output
behaviour if such a partition trinity (n;,ng,n,) and such a next-
state-dependent trinity (t;,7g,7¢) for f;=n; exist that the
following conditions are satisfied:
(i) nge13 = wg(0) and wy+Ty = Wy{(0) ,
(ii) Inl<lz], Ingl<Isl, Iwol<liol, Imgl-lrcl<lT]/[25]<IS],

| tol<lo]

Proof (for the case of a Mealy machine)
Let M, = (®;,%g,%g,8%,2) and M, = (7 gXT;,Tg,79,3°,1%) be two
machines for which the following conditions are satisfied:

(1) (my,mg,mp) and (1;,74,7p) satisfy the conditions of the
theorem 6.1

r

(2) VBlemg WAlem;: Bls',, = [Bléz,)mg , Blal,, = [Blig,]n, ,

(3) VBZETS VAszI VBl'Eﬂsf
B23% 5y ,a2) = [{83,] seB2, xeA2, ss,eBl'}]ty ,
B2)? 51,02y = [{8)y] s€B2, xeA2, s5,¢Bl'}]1, .

Since (w;,ng,ny) is apartition trinity (1), Bl?n y is placed in
just one block of mg and Bl},, is placed in only one block of 7,.
This means that Bls!,, and B11i!,, are defined unambiguously.
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Since (1;,15,1p) is a next-state-dependent trinity for fg=n,
(1), the following condition is satisfied:
(4) Vs,teS ¥x,,x,el:

if [s]ltg=[t)tg A [X,]7¢=[X,]T1 A [saxl]ﬂsﬂ[taxz]ﬂs

then [s3y JTs=[t3y 175 A [8)y 17o=[tdy 11, .

From (4), it follows that B23%,p,.,,,, and B2)? 4,. ,,, are
defined unambiguously because {saxl seB2, xeA2, si,e¢Bl'} is
located in only one block of 1; and
{s\,| seB2, xeA2, s5,¢Bl') is in just one block of t,.

Let ¢: I— 7;Xx7; be an injective function,
¢: s— wgxty; be an injective function,

8: TWyXTo=— O be a surjective partial function

and
(5) $(x) = ([x]7;,[x])71),
(6) ¢(S) = ([s]lng,[8]Tg),
(7) 8(C1l,C2) = ClnC2 if C1nC2 # O .

It will be proved below that the serial connection of type NS of
defined above machines M, and M, realizes the cutput behaviour of
machine M.

Since w15 = ®(0) (1) , & is a one~to-one function and for
C1nC2#0 :

(8) (C1,C2) €0

S0, V¥seS Vxel

¢(5)8*¢(x))

([817s, [S1T) 8% (rxam , tx1 7y ((5), (6))

2 s
([s]nsa1lx]ﬂl,[s]rsa (tssamg,tx17,) (definition 2.7)

(L1817 g1, 175, [{SBy| [8)TgAlS, IngALX]T1) ]I 1)
((2), (3))
([88,17¢, [88,]75) ((1))

i

|

b(s8y) ((6))
and similary:
0 (d(s) 2"y (xy)

O(([8)7e, [81T5) Y (rxamy,tx12)) ((5), (6))

I

e([s]nsx‘[x,ﬂl,[s]rsxz([B,*,“S,EX,TI,) (definition 2.7)
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1 2
(sImgdTpxam, 0 [S1Ted cres amg, tx12p) ((7))

[[S]“sitxlwI]“o no{{siy| fs]TsA[55x]"sA[X]T1}]Eg) (
[sxgl™g N [S),]To "

]

I

= gy ( My To=Ng(0) )

From the above calculations and definitions 2.4, 2.7 and 2.12,
it follows that the serial connection of type NS of machines M; and
M, realizes M, i.e. M has a serial full-decomposition of type NS
with the output behaviour realization. If condition (ii) of
theorem 6.1 is satisfied, the decomposition is nontrivial. O

Theorem 6.1 has a straightforward interpretation.

Since (my,7g,m,) is a partition trinity, based only on the
information about its own input and present state (i.e. knowledge
of the adequate block of 7, and block of n¢), machine M, is able to
calculate its next state and output (i.e. the adequate blocks of
*g and wg).

Since (1;,14,19) is a next-state-dependent partition trinity
for f¢=7%;, based only on information about the block of 1,
containing the input, the block of 14 containing the present state
of M and the block of ng containing the next state of M for the
given input and present state (i.e. information about the primary
input and present state of M, and the next state of M; which is part
of the input of M, )}, machine M, is able to calculate unambiguously
the block of 1 in which the next state of M is contained and the
block of 14 in which the output of M is contained for the given
input and present state (i.e. M, is able to calculate its next
state and output).

Since t4+my = TWe(0) , with information about blocks of =,
calculated by M, and blocks of 1, calculated by M, , it is possible
to calculate unambiguously the outputs of machine M.
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7. Serial full-decomposition of type PO.
Let wn}{ and {, be partitions on M on S and O respectively.

DEFINITION 7.1 w} 1is a state partition induced by an output
partition {, if and only if one of the following conditions is
satisfied:
(i) Vs,teS ¥x,yel : 1If [s),1fq = [t)Y]Eo
then [sd, )7} = [tay]ng

(for a Mealy machine),

(ii) vs,tes : [s]ln} = [t]ln¢ if and only if
[s 1Eg = [EX]E,
(for a Moore machine) .

In other words, if 7} is a state partition induced by an cutput
partition {, and, if it is known that the present ocutput yof Mis
contained in a block C: Ce¢f, , then, it is known that the present
state s of M is contained in a block B: Bew}, where block B is
indicated unambiguously by block C. It can be said, that block B of
n$ is induced by block C of {, and denoted by: B = ind{(C).

Let 1y, T4, 1o be partitions on a machine M, on I, S and O
respectively, and {,; be the other partition on O.

DEFINITION 7.2 (1;,75,1g) is a partition trinity induced by an
output partition t, if and only if such a state partition =}
induced by f, exists, that 1;, t; and 71, satisfy the following
conditions for this ={:

(i) (t;,7g) is an I-5 partition pair,

(ii) (tge*mg',7y) is a S-S partition pair,

(iii) (tgemg',1y) is a -0 partition pair,
and
(t7,79) is an I-0 partition pair (for a Mealy machine),
or

(t3,70) is a S-0 partition pair (for a Moore machine).

In other words, (1;,Tg,Tg) is a trinity induced by an output
partition {, if and only if, based on the knowledge of the block of
a partition 1; containing the input of M and the knowledge of the
block of a partition 1ty and the block of an induced partition =}
containing the present state of M, it is possible to calculate the
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block of 15 in which the next state of M will be contained. In the
case of a Mealy machine, based on the same information it is
possible to calculate the block of 14 in which the output of Mwill
be contained for the given input and state. While, in the case of a
Moore machine, based on the knowledge of the blocks of partitions
1¢ and 7' containing the state of M, it is possible to calculate
the block of 15 containing the output of M for the given state.

THEOREM 7.1 A machine M has a nontrivial serial full-

decomposition of type PO with the realization of the output

behaviour if such a partition trinity (=n,,w;,7,;) and such a

partition trinity (t,,14,1ts) induced by f{, = 7, exist that the

following conditions are satisfied:

(i) mg=19 = W (0) ,

(11) Iwl<|z]al w1 l<|zlvngi<is|alrgl<|s|v]mo|<|O]A
rltol<lol .

Proof (for the case of a Mealy machine)

Let M, = (%, Mg, %o, 8%,2) and M, = (woXT{,T5,70,32,)%) be the
two machines for which the following conditions are satisfied:
(1) (wy,mg,mg) and (15,1t4,Tq) satisfy the conditions of the
theorem 7.1 ,

(2) VBlewg VA,em; : Bld',, = [Bld,,]m , Blal,, = [Bli,,17, ,
(3) YClemw, VB2etTg VA2eT,
B25% ¢, ,22)=[{s8,| SeB2 A seind(C1l) A xeA2}]1;,
B2)% ¢y, 02)=[{8)y| S€B2 A seind(Cl) A xeA2}]1,.

Since {%;,%g,%,) isa partition trinity (1), B13!,, and B1)!,,
are defined unambiguously.

Since (t;,75,7p) is a trinity induced by §,=m, (1), the
following conditions are satisfied:

(4) (tg*mg',15) is a S-S pair,
(5) (tg-mg',15) 1is a S-0 pair,
(6) (t;,1g) is an I-S pair,
(7) (1;,1y5) is an I-O pair.

From (4) and (6), it follows that {s3,| seB2Aseind(Cl)AxeA2} is
located in just one block of 74. From (5) and (7), it follows that
{s),| seB2Aseind(Cl) AxeA2) is located in just one block of 1,.
This means, that B2s?(;,,;,, and B2)?((,, ;,, are defined
unambigously
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Let ¢: I— w;X7; be an injective function,
$: s— mwgxty be an injective function,
8: mMyxTy— O be a surjective partial function
and
(8) (%) = ([x)my,Ix]T),
(9)  6(s) = ([s)ng,[s]1s),
(10) 8(C1,C2) = C1lnC2 if Cc1nC2 # o0 .
It will be proved below that the serial connection of type PO of
the machines M; and M, defined above realizes the output behaviour
of machine M.

Since Ty+1g = M(0) (1) , 6 is a one-to-one function and for
ClnC2#0 :

(11) (C1,C2)¢0 .
Therefore, Vse¢S Vxel :
d(s)e*,(xy =

([S]"s:[S]Ts)a*ltxlﬂl,txlrli ((8), (9))

([s]nsal,x,ﬂl,[s]r,a’,Is,ﬂé,,x,fl,) (definition 2.8)

([0S1Wg8xrn 175, [(ISITaNISINg )30y 7 175)  ((2), (3))
= ([S3,17s, [S3,1T5) ((1))
= d(s3y) ((5))
and similary:

0(d(s)2*y(xy) =

= 0(([s)ns, [S1T) M (rxamy, tx17,1) ((8), (9))

= e([s]nsml,x,ﬂl,[s]r,xz,[s,ﬂé,[x,rl,) (definition 2.8)
= [simgM rxam, 0 I81T6)0 Craamy, tx17 ) ((10})
= [[8)7drxan 170 N [([S114n{817" )N aag 170 ((2), (3))
= [sixlmy 0 [8)dx]7g ((1))
= 8l ( o 1p=%p(0) )

From the above calculations and definitions 2.4, 2.8 and 2.12,
it follows immediately that the serial connection of type PO of
machines M, and M, realizes M, i.e. M has a serial full-
decomposition of type PO with the output behaviour realization.
If condition (ii) of theorem 5.1 is satisfied, the decomposition
is nontrivial. O
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The interpretation of theorem 7.1 is as follows:

Since (w;,%g,ny) is a partition trinity, based only on the
information about its own input and present state (i.e. knowledge
of the adequate block of 7, and block of #;), machine M,; is able to
calculate its next state and output (i.e. the appropriate blocks
of ny and w,).

Since (1;,Ts,Ty) is a partition trinity induced by n,, based
only on the information about the block of a partition 7,
containing the input, the block of a partition ry containing the
present state and the block of a partition n, containing the
output of machine M (i.e. information about the primary input and
the present state of M, and about the present output of M, which is
a part of the input of M,}, machine M, is able to calculate
unambjiguously the block of t; in which the next state of M will be
contained. In the case of Mealy machine, based on the same
information M, is able to calculate the block of 14 in which the
output cf Mwill be contained for the given input and present state
In the case of Moore machine, M, is able to calculate the block of
Tg in which the output of M will be contained using only
information about the block of 1¢ in which the state of M is
contained. So, M, is able to calculate its next state and output.

Since wy+19 = my(0), with information about blocks of =,
calculated by M; and blocks of 15 calculated by M, , it is possible
to calculate unambiguously the outputs of machine M.

8. Serial full-decomposition of type NO.

Let 7;, Tg, Ty be partitions on a machine M, on I, 8§, ©
respectiviely, and ¥, be the other partition on 0.

DEFINITION 8.1 (t;,7s,7To) is a (next) output-dependent trinity
for the independent output partition {, if and only if 1;, 14 and
1, satisfy one of the following conditions for a given §{,:

(1) vs,tes ¥x,,x,¢l:
if [s)tg=[t]lts A [X,]1T1=[Xx,]T; A [S\x1]50=[tlx2]£0
then [S5x1]Ts=[t5x2]Ts A [slxl]to=[thzjto

(for a Mealy machine),
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(ii) vs,tes vxx;x,eI:
ir [S]fg’:[t}'tg A [x’.]f1=[x2]f1 A [(saxl)\]E°=[(t8x2)l]Eo

then [s3y 1tg=[t3, 1ts A [(S3y )3)7o=[(t3y )11,

(for a Moore machine).

In other words, (t;,ts,7To) is an output-dependent trinity for
the independent output partition {, if and only if, based on the
knowledge of the block of a partition r; in which the input of a
machine M is contained, the block of a partition t; in which the
present state of M is contained and the block of a partition §, in
which the outputs of M are contained for inputs froma given block
of 1; and states from a given block of 1y, it is possible to
calculate the block of 1¢ in which the next state of M is contained
and the block of 7, in which the output of M is contained for the

present state from a given block of t; and input from a given block
of t I

THEOREM 8.1 A machine M has a nontrivial serial full-
decomposition of type NO with the realization of the output
‘behaviour if such a partition trinity (my,%5,7y) and such an
output-dependent trinity (7t ,7g,7o) for f,=w, exist that the
following conditions are satisfied:
(1) mpe19 = Wy(0) ,
(ii) |=pl<|T]alwol -l l<lTlving|<is|alrsl<Is|vIng|<|o]a
altol<]ol .

Proof (for the case of Mealy machine)
- Let M, = (my, Mg, My, 8%,01) and M, = (myXTy, T, To,82,)2) be two
machines for which the following conditions are satisfied:

(1) (my,7m5,%p) and (74,74, 7o) satisfy the conditions of theorem
9.1 ,

(2) VBlemg VAlemy: B1lsl,, = [Bls,,Imy A BlA},, = [Bli,,]1n, ,
(3) VB2etrgy VYA2et; VClemy:
B23% ¢y, a2y = [{(S8,] s€B2, xeA2, s),eCl }17g ,
B20? ¢y, a21 = [{8),] se€B2, xeA2, s),eCl }11, -

Since (m;,7;,%,) is a partition trinity (1), B13,, is placed in
just one block of n; and Bll,, is placed in just one block of 7,.
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This means that Bl3!,, and Bl)!,,; are unambiguously defined.
Since (1;,74,13) is an output dependent trinity for f,=n,
(1), the following condition is satisfied:

(4) ¥s,teS ¥x,,X,el:
if [s}tg=[tlty A [X,]71={%X;]17T; A [sxxl]wo={tlxz]wo

then [saxl]ts=[tax2]rs A [sxxl]to=[t)x2]to

From (4), it follows that B2s2 ., ,,, and B2)? ., ,,, are
defined unambiguously, because (s3,| s¢B2, xe¢A2, s),€Cl) is
located in just one block of 1¢ and
{s),| seB2, xeA2, s),¢Cl} is in just one block of f1,.

Let y: I— w;xt; be an injective function,
¢: S— myxt; be an injective function,
8: MyxXTe—+ O be a surjective partial function

and
(5) ¥(x) = ([x]mg, [x]11¢),
(6) ¢(S) = ([5]“51[5173)1
(7) 8(C1,C2) = C1lnc2 if Clnc2 # O .

It will be proved below that the serial connection of type NS of
the machines M, and M, defined above realizes the output behaviour
of machine M.

Since mge1o = Wo(0) (1) , 6 is a one-to-one function and for
C1lNnC2#0 :

(8) (C1,C2)¢0 .

S0, VseS ¥Yxel

d(s)s*y(xy =
([s]"s:[S]Ts)5*c:xlwl,txlfl) ((5), (6))

([S]ﬂsaltx]ﬂr,[S]Tsaz([skxlﬂo'[xlrl,) (definition 2-9)

Il

([[SImg3ryrn Mg, [{83x] [81T5AI8  ImoAlX]T ) ]1T5)

((2), (3))
([s8,1mg, [S8,]1) ((1))
d(=3y) ((6))
and similary:
9(¢(S)X*¢(X,)
0 (([s)mg, [81Ts) 2 (raam,, tx17,)) ((5), (6))

B(ES]ﬂslllx]ﬂI,[S]Tsxz([sxx]wo’[xlrl’) (definition 2-9)
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0l

1
[s]ng) [x1 ™, n [S]fslzctskx]ﬂo,txlrll ((7))

(17X (xam, ITo N [(She| [S1T3AlS),IMoAIXIT1}]To
((2), (3))
[sh,Ing N [s),11g ((1))

= Sk, ( To*To=To(0) )

From the above calculations and definitions 2.4, 2.9 and 2.12,
it follows that the serial connection of type NO of machines M, and
M, realizes M, i.e. M has a serial full-decomposition of type NO
with the output behaviour realization. If condition (ii) of
theorem 8.1 is satisfied, the decomposition is nontrivial. O

Theorem 8.1 has the following interpretation:

Since (wy,mg,7ny) is a partition trinity, machine M,, based
only on the information about its input and present state (i.e.
knowledge of the adequate block of n; and block of 7n;), is able to
calculate its next state and output (i.e. the appropriate blocks
of g and m,).

Since (1y,1¢,1p) is an output-dependent partition trinity for
fo=7g, based only on information about the block of 1; containing
the input, the block of 7; containing the present state of M and
the block of 7, containing the output of M for the given input and
present state (i.e. information about the primary input and
present state of M, and the cutput of M; which is a part of the
input of M,), machine M, is able to calculate unambiguously the
block of T4 inwhich the next state of M is contained and the block
of 14 in which the cutput of M is contained for the given input and
present state (i.e. M, is able to calculate its next state and
output) .

Since t14y°my = wo(0) , with information about blocks of =,
calculated by M, and blocks of 1, calculated by M, , it is possible
to calculate unambiguously the next states and outputs of machine
M.
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9. General full-decomposition of type PS

THEOREM 9.1 A machine M has a nontrivial general full-

decomposition of type PS with the realization of the output

behaviour if two present-state-dependent partition trinities:

(®y,Tg,%g) and (7,75, 7To) exist and they satisfy the following

conditions:

(i) mge19 = Wo(0) ,

(i1) |rgl-Iml<lzlalngl I l<lTiving|<[s|alts|<IS|vIngl<|O|A
Altol<lo] .

Proof (for the case of a Mealy machine)

Let M, = (T¢X™W;, %y, Mg, 52,2}) and M, = (mgxT;,75,174,82,)%) be
the two machines for which the following conditions are
satisfied:

(1) (wy,mg,mg) and (1;,15,7) satisfy the conditions of theorem
9.1 ,
(2) VBlewg V¥B2et1g VA em; :

B13! 5,,21)=[(B1NB2) 3, 175 , BL)! 5, 21,=[(B1NB2)},,17, ,
(3) VBlemg VB2etg YA2et1;

B285% 5y, 32)=0(B1nB2) 3,,115, B2)% 5, 24,=[(B1NB2) 1,11,

Since (w;,%g,%y) and (T;,7T¢,T9) are the present-state-
dependent trinities (1), (BlnBZ)El , is placed in just one block of
ms, (B1NB2) is placed in just one block of 1y, (B1NB2)3,, is placed
in only cne block of 14 and (BlnBZ)—x_n , is placed in only one block
of 1, . This means, that B1s' (5, 01, +» B13 (55,21) , B232 (51, 22y
and B2)? (g, 57, are defined unambiguously.

Let ¢y: I— wm;xXt; be an injective function,
$: s— T¢X7g be an injective function,
8: mMyXTo— O be a surjective partial function

and
(4) $(x) = ([x]Ix;,[x]117),
(5) ¢(S) = ({S]"sr[slts)r
(6) 8(Cl1,C2) = Clnc2 if CinC2 # O .

It will be proved below that the general connection of type PS
of the machines M; and M, defined above realizes the output
behaviour of machine M.
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Since 7myv 19 = Wy (0) (1) , & is a one-to-one function and for
Ci1nCcz#0 :
(7) (C1,C2)¢0 .

Therefore, V¥seS ¥Yiel :

¢(5)8*¢(x} =

([S]"sr[S]Ts)a*l:xlwI,txlrI: ((4), (5))

1 2
([83Rs3  crsrrg, txrm 7 (81783 craam, tx1e )

— (definition 2.10)
([([S]"sﬂ[S]T;)G[xlﬂllﬂs:[({S]Tsﬂ[S]“s)5rx1TI]Ts)

((2), (3))
([séylng, [S3,]1g) ((1))

d(s3sy) ((5))

and similary:

0(d(s) 2 yx)) =
= 0(([s1mg, [81Te)\ (1xgm , tx17)) ((4), (5))
9([5]“3*1(tslfs,:xlﬂI)r[SJTsxzttslws,{xlrln)

. \ (definition 2.10)
(SI%g 2 cearrg,txampy M IS1Te ) crarmy, tarrp ((6))

= [([S]“sn[S]Ts)T[x]nI]“O n {([S]Tsn[s]“s)itxlrllfo

((2), (3))
= [8),]Ts N [8A, 1T, ((1))

= s\, ( %o-To=To(0) )

From the above calculations and definitions 2.4, 2.10 and
2.12, it follows that the general connection of type PS of
machines M, and M, realizes M, i.e. M has a general full-
decomposition of type PS with the output behaviour realization.
If condition (ii) of theorem 9.1 is satisfied, the decomposition

is nontrivial. 0O

The interpretation of theorem 9.1 is similar to the
interpretation of theorem 5.1.
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10. General full-decomposition of type PO

THEOREM 10.1 A machine M has a nontrivial general full-

decomposition of type PO with the realization of the output

behaviour if two partition trinities (=n;,7ng,ny) induced by §4, =

To and (1;,75,7T9) induced by f,, = 7y exist and they satisfy the

following conditions:

(1) mye19 = Wo(0) ,

(11) lrol=Iml<ITIngl-leI<IT]vIngl<|S|Altg]<iS|v]mol<|0]A
altol<]ol .

Proof (for the case of a Mealy machine)

Let M, = (1oX%;,Tg,Mp,8 ,2) and M, = (MoXTy,Tg,To,82,)2) be
the two machines for which the following conditions are
satisfied:

(1) (my,mg,mg) and (1;,75,7p) satisfy the conditions of theorem
10.1 ,
(2} VC2¢e1y YBlemg VA, em;

B18' ¢y, a1y = [{S8,]| seBl A seind(C2) A xeAllrmg ,

Bl ! (¢p,a1) = [{8)\x] S€Bl A seind(C2) A XeAl]m, ,
(3) ¥Clenmy ¥YB2etg VYA2eT; @

B23% ¢y, 02y = [{S8,] SeB2 A seind(Cl) A xeA2)]tg,

B23? (¢y,a2) = [{S);] SeB2 A seind(Cl) A xeA2}]11,4.

Since (m;,%g,Ty) is a partition trinity induced by Eg2=7p and
(t1,15:7T¢) is a partition trinity induced by {,,;=7, (1), the
following conditicons are satisfied:

(4) (mg'etg,15) is a 8-S pair,
(5) (mg+14',mg) is a S-S pair,
(6) (mg'+14,19) is a S-0 pair,
(7) (mge14',7p) is a S-0 pair,
(8) (w;,mg) is an I-s pair,
(9) (%w;,7my) is an I-0O pair,
(10) (t;,14) is an I-S pair,
(11) (t;,7¢) is an I-0 pair.

From (5) and (8), it follows that ({s3,] seBlaseind(C2)AxeAl)

is located in just one block of 7g. From (7) and (9), it follows
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that {s),| seBlaseind(C2)AxeAl} is located in only one block of
mo. This means, that Bld'(¢,,5;, and Bl !'(.,, ,,, are
unambiguously defined.

Similarly, from (4) and (10), it follows that (s3]
Se¢B2Ase€ind(Cl) AxeA2)} is located in just one block of 14 and, from
(6) and (11), it follows that
{s),| seB2Aseind(Cl)AxeA2)} is located in just one block of To9- SO,
Bzaztc1’,2, and Bzxz‘c1,,2, are unambigously defined.

Let ¢: I— n;Xt; be an injective function,
¢: S— myxt; be an injective function,
6: TeXTo— O be a surjective partial function

and
(12) $(x) = ([x)7y,[x]11;),
(13)  ¢(s) = ([s)ng,[8]114),

(14) 8(C1,C2) = CI1nC2 if C1nC2 # O .

It will be proved below that the general connection of type PO
of the machines M, and M, defined above realizes the output
behaviour of machine M.

Since mgye1y = n(0) (1) , 8 is a one-to-one function and for
CinC24#0 :

(11) {Cl,C2)¢e0 .

Therefore, ¥s¢S Vxel :

¢(S)5*¢(x)

([S]“S![S]Ts)a*{[x]ﬂl'[x]TI) ((12), (13))

il

1 2
([s)wgd (telry, txam s [S]Tg3 ltslﬂé,lxl?x))

3 (definition 2.11)
([([s]ﬂsn[slfs')5[x1wI]“sr[([S]Tsn[s]“s')5liTI]Ts)

It

((2), (3))
= ([Sax]‘“s:[saxlts) ((1))
= ¢(s3y) ((13))

and similary:
8 (d(s)2 "y k)
= o (([s1mg, [s1ts) M (rximy, ix1t))) ((12), (13))

1’)

, {(definition 2.11)
[S]"s\ltrslrg,:xlwli N [SITsd crsamy, tx11)0 ((14))

1 2
9([s]ng) I:slré,:xlwln:[slfs* ttslmy, Ixle
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= [([SIMgn[S1Ts" ) hgx1x. 1Mo N [([S1TNISITg* ) Nix17.1%0
1 1

((2), (3)
[s),1me N [S) 11T, {((1)

)
)
= s), ( mor1o=7p(0) )

From the above calculations and definitions 2.4, 2.11 and
2.12, it follows immediately that the general connection of type
PO of machines M; and M, realizes M, i.e. M has a general full-
decomposition of type PO with the output behaviour realization.
If condition (ii) of theorem 10.1 is satisfied, the decomposition
is nontrivial. O

The interpretation of theorem 10.1 is similar to the
interpretation of theorem 7.1.

11. Conclusion.

The notions and theorems presented in the previous sections
have straightforward practical interpretations and they
constitute the theoretical basis for practical algorithms and for
a system of programs for computing the different sorts of
decompositions. These algorithms and some practical conclusions
will be presented in a separate report.

The results presented in this report can be extended easily in
order to cover the case of incompletely specified sequential
machines. This can be done by using the concepts of the weak
partition pairs or extended partition pairs introduced by
Hartmanis [12].

From Chapter 2, it follows that a full-decomposition with the
state and output behaviour realization is such a special case of
the full-decomposition with the output behaviour realization
that the partial machines M, and M, imitate a given machine M not
only from the input-output point of view but also from the input-
state point of view. It is easy to observe that if the condition:
Tg*Tg = Mg(0) is added to the assumptions of the theorems
formulated in this work, the theorems proved in {16] are obtained
concerning the existence of full-decompositions with the state
and output behaviour realization. So, the theorems proved in [16]
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are special cases of the appriopriate theorems proved here for
Tg*Tg = W (0) -

Similarly, considering a state machine M = (I, S, §) to be a
Moore machine M'= (I, 8, 0, 8, )) where 0 =S and ) is an identity
function or a Mealy machine M" = (I, S, 0, 3, )) where 0O=Sand )=
8, the appriopriate theorems 12.1 - 12.4 from [16] concerning the
existence of full-decompositions for state machines can be
obtained directly from the theorems 4.1, 5.1, 6.1 and 10.1 proved
in this work.

In some practical cases, it is more economical to consider
separately the realization of the next-state function 3 and the
output function )} rather than to consider them simultanecusly. It
is possible to abstract from the output function )} and to
decompose first the state machine defined by the next-state
function §. Then, it is passible to realize the output function ),
where ) is treated as a function of inputs (in the Mealy case) and
states of the partial state machines obtained in a full-
decomposition of the state machine defined by 3.

From the practical point of view, full-decompositions of type
N are not so attractive as decompositions of type P, because
decompositions of type N introduce timing problems. In
decompositions of type N, one of the component machines has to be
able to compute its next state or output, before the second
component machine, using the information about the computed next
state or output of the first submachine, can compute its own next
state or output. If it is assumed that computing the next-state
and output for one component machine requires one time interval, a
valid next-state and output for the whole machine will appear
after two such time intervals. In this situation, the frequency of
input signals need to be limited and a two-phase clock is
required.

Solving the practical cases starts with trying to £find a
parallel full-decomposition which satisfies the given
requirements and, only in the case of failure, is there need to
look for a serial decomposition or, in the case of failure, for a
general decomposition. In the case of the serial and general
decompositions, the connections between the partial machines
have to be implemented and the functional dependences between the
input, state and output variables of the partial machines are in
most cases decrising from a parallel through serial to a general
decomposition, i.e. the complexity of the combinational logic of
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each of the component machines is usually least for parallel
decompositions and greatest for general decompositions.

The practical decomposition algorithms should implement some
optimization criteria. The full-decomposition of sequential
machines can be a tool for making it possible to implement the
machine with existing building blocks , to design, implement and
verify the machine more easily or to optimize the separate
submachines, whereas, it may be impossible or very difficult to
optimize the whole machine directly. However, it may be a suitable
optimization tool itself.
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