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The cumulative reaction probability (CRP) (the Boltzmann average of which is the thermal 
rate constant) has been calculated for the reaction H,+OH++HzO+H in its full (six) dimen- 
sionality for total angular momentum J=O. The calculation, which should be the (numerically) 
exact result for the assumed potential energy surface, was carried out by a direct procedure that 
avoids having to solve the complete state-to-state reactive scattering problem. Higher angular 
momenta (J> 0) were taken into account approximately to obtain the thermal rate constant 
k(T) over the range 300 < T < 700 K; the result is significantly larger than the experimental 
values (a factor of -4 at 300 K), indicating that a more accurate potential energy surface is 
needed in order to provide a quantitative description of this reaction. 

The Hz+ OH+-+H,O + H reaction is emerging as a 
benchmark for ab initio reaction dynamics studies of sys- 
tems involving more than three atoms (i.e., atom plus di- 
atomic molecule reactions). It is of practical importance 
for modeling combustion and atmospheric processes, and 
the fact that three of the four atoms are hydrogen means 
that there is the possibility of having a high quality poten- 
tial energy surface from ab initio electronic structure cal- 
culations and also of being able to carry out accurate quan- 
tum dynamical calculations for the reaction. 

While much of the recent experimentallA and theoret- 
ica15-’ work on this reaction (and its isotopic variants) has 
focused on various mode-specific effects and product state 
distributions, the present paper is concerned solely with the 
thermal rate constant k( T).9 Specifically, we report the 
results of full (six) dimensional quantum calculations of 
the cumulative reaction probability (CRP) (the Boltz- 
mann average of which gives the thermal rate constant) for 
total angular momentum J=O. These results should be the 
essentially exact (numerical) results for this quantity for 
the assumed potential energy surface (that constructed by 
Schatz and Elgersma” from ab initio calculations by 
Walch and Dunning’ ’ ) . 

We use the theoretical approach of Seideman and 
Miller” and Manthe and Miller.13 Thus, the CRP N(E) is 
calculated directly (i.e., without solving the complete 
state-to-state reactive scattering problem), and the thermal 
rate constant is given by its Boltzmann average 

k(T) = [2m?Q,( T) ] -* j-w dEc==N(E), (1) 
--co 

where Q, is the reactant partition function (per unit vol- 
ume). In Ref. 13 it was shown that the CRP can be written 
as 

NW)=tr[&E)l= ~pkb9, (24 

where P is the reaction probability operator, defined by 

~(E)=42;‘2&E)+~p6(E)~;‘2. (2b) 

Here, &E)=(E+iZ-&)-’ is a modified (in the sense 
that E is coordinate dependent) Green’s function whose 
nature was discussed in Ref. 12. H is the Hamiltonian 
operator and E^zZ~+Z~ an absorbing potential which en- 
forces outgoing wave boundary conditions, cr,( 6$ being the 
part of the absorbing potential in the reactant (product) 
region. l2 Reference 13 Bhowed that a convenient way of 
evaluating the trace of P( E) in Eq. (2a) is by determining 
its eigenvalues Gk( E)}, the eigenreaction probabilities, 
whose values all lie between 0 and 1. 

The Hamiltonian is expressed in terms of the normal 
coordinates of the transition state of the H,OH complex; 
i.e., the Watson Hamiltonian is used, as described for a 
general reaction in Ref. 12(b). (Vibrational angular mo- 
mentum terms have been neglected since they were seen in 
earlier work’2(b) to have negligible effect, which should 
also be the case here.) A discrete variable representationI 
(DVR)-i.e., a basis set of grid points-is used to repre- 
sent the operators in Eq. (2). For the two most strongly 
coupled modes, which predominantly describe the bond 
being broken and the one being formed (i.e., the He* -H 
stretch and the H, * . -0 stretch), a sine-function DVR15 is 
used which allows a maximum kinetic energy of -2.2 eV. 
It consists of -200 grid points for this two-dimensional 
space. The other four less strongly coupled modes are de- 
scribed by a Gauss-Hermite DVR16 of four to seven grid 
points each. The composite grid is then truncated by a 
potential energy cut off ( V-=2.2 eV) and the resulting 
six-dimensional grid consists of - 1 X 10’ to 2X 10’ grid 
points (the more grid points the higher the energy). Con- 
vergence tests were carried out to insure that this basis 
(and the absorbing potentials that were used) is sufficient 
to achieve convergence over$he energy range reported. 

The eigenvalues of the P(E) matrix of Eq. (2) were 
determined by the Lanczos scheme described in Ref. 13, 
requiring 3 to 44 iterations (the more iterations, the higher 
the energy since one typically needs a few more iterations 
than the number of nonzero eigenvalues). The evaluation 
of the Green’s function was carried out via the generalized 
minimum residual (GMRES) algorithm17 using the diag- 
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FIG. 1. Eigen reaction probabilities [the eigenvalues of the operator k’(E) 
of Eq. (2b)] for the HZ+OHctH20+H reaction, as a function of total 
energy E for total angular momentum J=O. The zero of energy is the 
ground state of reactants H,+OH at infinite separation 

onal part of the Hamiltonian as preconditioner; this re- 
quired 50 to 600 iterations (the more iterations, the higher 
the energy). More details of the computational procedures 
will be presented with the full report of this work. 

Figure 1 shows the individual eigenreaction probabili- 
ties (Pk( E) } as a function of energy. They all rise essen- 
tially monotonically from 0 to 1 in transition state-like 
fashion, just as one would expect at low energy for a reac- 
tion like this which has a single saddle point (i.e., transi- 
tion state). Figure 2 shows the CRP [the sum of the 
pdE)‘sl, and h ere the primary qualitative observation is 
that no vestige of the staircase structureI of classical tran- 
sition state theory (TST) survives in the quantum result. 
The reason for this is apparent from Fig. 1: The density of 
states of the activated complex is sufficiently large that 
their individual transmission probabilities [the pk(E)] 
overlap. 

Also shown in Fig. 2 is the approximate N(E) (dashed 
line) obtained from Wang and Bowman’sl’ reduced di- 
mensionality calculation. In their approach the three bend- 
ing modes (in Jacobi coordinates) are treated adiabatically 
within a harmonic approximation, while the three stretch- 
ing modes are dealt with exactly (i.e., via a coupled chan- 
nel scattering calculation). One sees that this approxima- 
tion works quite well at low energies and is only 15%-20% 
too low at the highest energies. 

The quantity we have calculated (and shown in Fig. 2) 
is N(E,J) for J=O. The complete N(E), which gives the 
rate constant via Eq. ( 1 >, is 

N(E) = c (2 J+l)N(E, J). (3) 
J=O 

In lieu of having carried out calculations for J> 0, we in- 
voke the “J-shifting” approximation2’ (essentially a mo- 
lecular version of the modified wave number approxima- 
tion21 of atomic physics), 

N(E, J) z i N(E-/:,O), 
K= -J 

(4) 
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FIG. 2. Cumulative reaction probability N(E) as function of total energy 
(for J=O); solid curves are the present results and the dashed curves the 
approximate results of Bowman and Wang (Ref. 19). (a) Linear scale, 
(b) logarithmic scale. 

where e$ is the rotational energy of the H20H complex. It 
is then easy to show that Eq. ( 1) becomes 

k(T),[2&iQ,(T)]-1&,t~~m dEe-E’kTN(E, J=O), 

(5) 
where &,, is the rotational partition function for the 
H20H complex, 

t&(T)= Jio (2 J+l) i e-fz’kT, (64 
K=-J 

which is well approximated by the classical expression, 

(6b) 

At, Bs,Cf: being the three principal rotation constants (de- 
fined in terms of the three principal moments of inertia as 
AS=fi2/215, etc.) at the transition state geometry. [The 
ratio of transition state to reactant electronic partition 
functions22 also adds the factor ( 1 +e -4JkT) e-1 to the 
right-hand side of Eq. (5), with he,*= 140 cm-‘.] 

The Boltzmann average in Eq. (5) can be obtained 
reliably for the temperature range 300 K < T< 700 K from 
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FIG. 3. Rate constant of H,+OH-H,O+H. Solid curve (present re- 
sults), dotted curve (Ref. 23), long dashed curve [Ref. 6(a)], long-short 
dashed curve (present three-mode approximation), and crosses (experi- 
mental values, Ref. 9). 

the energy range (-0.05-0.50 eV) over which we have 
converged results for N(E) (cf. Fig. 2). Figure 3 shows the 
rate constant given by Eq. (5) (solid line) over this tem- 
perature range, compared to several other results. First, 
the rate obtained by Wang and Bowman23 (dotted line) is 
in close agreement with our result, as it should be, of 
course, since the CRP’s are very similar. Clary6’a) has used 
a simpler (but cruder) reduced dimensionality 
approximately-the OH stretch and the two H, rotational 
degrees of freedom are frozen and the energy shifted by 
their transition state ground state values-and this result 
(long dashed line) is seen to be significantly below ours (a 
factor of -4 at 300 K). We can mimic Clary’s approxi- 
mation by treating the three normal modes that are pre- 
dominantly the ones he has frozen as uncoupled harmonic 
oscillators (with their transition state frequencies), and 
this result (long-short dashed line in Fig. 3) is seen to be 
quite similar to his. [Our approximation is not identical to 
that in Ref. 6(a) because the transition state normal modes 
are not identical to the Jacobi coordinates used there.] Not 
shown in Fig. 3 is a transition state theory calculation by 
Schatz and Walch5’a) that uses a simple one-dimensional 
Wigner tunneling correction factor, and one by Isaacson 
using a multidimensional semiclassical tunneling correc- 
tion; the former is smaller than our result, by a factor of 
-4 at T=.300 K, and the latter larger, by a factor of - 1.2 
at this temperature. Also shown in Fig. 3 is the experimen- 
tal rate constant (the crosses) of Tully and Ravishankara 
and Ravishankara et aL9 

One thus has the awkward (but not uncommon) situ- 
ation that the more rigorous theoretical treatments (the 
present work, and that of Refs. 23 and 24) agree less well 
with experiment (the crosses in Fig. 3) than more approx- 
imate calculations! 5(a)t6(a) We feel that one must regard 
this latter good agreement with experiment as fortuitous, 
the conclusion being that a more accurate potential energy 
surface is needed to describe the rate of this reaction quan- 
titatively. It is hoped that the present work, which shows 
that the reaction dynamics for this reaction can now be 

treated accurately in its full dimensionality, will serve as a 
motivation for producing a more accurate potential sur- 
face. 

Note added to prooJ We have received a private com- 
munication from D. Clary noting that he obtains good 
agreement with our present results for N(E) if he treats H, 
mode vibrationally adiabatically rather than freezing it and 
shifting the energy [as was done in Ref. 6(a)]. 

We would like to thank Professor J. M. Bowman for 
communicating his unpublished results (from work with 
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