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Abstract. In this study, the dynamics of elliptic membrane shell model has been pro-
posed and discussed numerically for the first time. Firstly, we show that the solution of
this model exists and is unique. Secondly, we consider spatial and time discretizations
of the time-dependent elliptic membrane shell by finite element method and New-
mark scheme, respectively. Then, the corresponding existence, uniqueness, stability,
convergence and a priori error estimate are given. Finally, we present numerical re-
sults involving a portion of an ellipsoidal shell and a portion of a spherical shell to
verify the efficiency and convergence of the numerical scheme.
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1 Introduction

Elliptic shells, such as ellipsoidal shells and spherical shells, have been applied in many
fields, such as biological engineering (cf. [1, 2]), composite material (cf. [3]), artificial in-
telligence (cf. [4]), the construction of nuclear power plants building (cf. [5]), magnetic
industry (cf. [6, 7]), and marine structures like egg-shaped pressure hull (cf. [8]). The
theory of elliptic membrane shells is one of the most important branches in elastic shells
theory.

In 1973, the theory of shells and plates was proposed in [9]. The mathematical justi-
fication for membrane shells model and generalized membrane shells model was given,
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respectively, in [10] and [11]. The error estimates for the membrane shells model and the
analysis of generalized membrane shell with hyperbolic [12] and parabolic [13] middle
surfaces were given, respectively. Ciarlet [14] provided a detailed introduction on ellip-
tic membrane shell including definitions, theories and examples. The elliptic membrane
shell is defined by means of its middle surface, which is required to be uniformly ellip-
tic and clamped along the entire boundary. Later, the Donati compatibility conditions
for membrane shells through the intrinsic approach, i.e., a quadratic minimization prob-
lem with the linearized change of metric and change of curvature tensors of the middle
surface of the shell as the new unknowns, were discussed in [15].

For the difficult problem of dynamic membrane shells, which can be equivalently
formulated by means of a set of hyperbolic equations, the literature related to its theory
or model is quite sparse. For viscoelastic elliptic membrane shell, there are also very
few theoretical results. In [16], for instance, the authors justified the two-dimensional
equations of a viscoelastic elliptic membrane shell, which includes a long-term memory
that takes into account previous deformations. In [17], Dong et al. provided a multi-scale
computational method for dynamic thermo-mechanical performance of heterogeneous
shell structures.

To the best of our knowledge, there is rare literature [18] related to the numerical sim-
ulation of the time-dependent model involving membrane shells, which is based on the
steady generalized membrane shell model proposed in [14]. The study of the more gen-
eral time-dependent Koiter’s model has been discussed in [19] and [20]. Compared with
the generalized membrane shell, the main numerical difficulties for the elliptic membrane
shell model is that the geometric hypothesis and boundary conditions are more strict.

In this paper, we study the time-dependent elliptic membrane shell model. Firstly, we
established the time-dependent elliptic membrane shell model and proved the existence
and uniqueness of the solution of the model. Secondly, the spatial variable is discretized
by means of the finite element method and the full time discretization of the model is
performed using the Newmark scheme. Then the corresponding results of existence,
uniqueness, stability, convergence and a priori error estimate are given. These results
rely on some technical approximation hypotheses for which we provide some references.
Finally, we provided numerical experiments for a portion of an ellipsoidal shell and a
portion of a spherical shell. In addition, the stability and validity of the model are verified
by the calculation of the convergence order and error of the ellipsoid shells with different
time steps and space steps.

2 Preliminaries

Our notation is essentially borrowed from [14]. In what follows, Latin indices and expo-
nents take their values in the set {1,2,3}, whereas Greek indices and exponents take their
values in the set {1,2}. In addition, the repeated index summation convention is sys-
tematically used. The Euclidean inner product and the exterior product of any vectors
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~a,~b∈R
3 are denoted by~a·~b and~a×~b, respectively.

Let ω be a domain in R
2, in the sense of Section 1.18 of [21], with boundary γ0 = ∂ω.

Let y = (yα) denote a generic point in the closure of the set ω and let ∂α := ∂/∂yα . Let
~θ∈C3(ω;R3) be an injective mapping such that the two vectors (cf. [22])

~aα(y) :=∂α
~θ(y), α=1,2,

are linearly independent at all points y ∈ ω. These two vectors thus span the tangent
plane to the surface

S :=~θ(ω),

at the point~θ(y), and the unit vector

~a3(y) :=
~a1(y)×~a2(y)

|~a1(y)×~a2(y)|

is normal to the tangent plane to the surface S at the point ~θ(y). The vectors ~ai(y) con-

stitute the covariant basis at the point ~θ(y), whereas the vectors ~ai(y), defined by the
relations

~ai(y)·~aj(y)=δi
j,

constitute the contravariant basis at the point ~θ(y), where δi
j is the Kronecker symbol

(note that~a3(y)=~a3(y) and that the vectors~aα(y) span the tangent plane to S at the point
~θ(y)).

We can define the first fundamental form, as a metric tensor, in covariant or contravari-
ant components, respectively, by

aαβ :=~aα ·~aβ, aαβ :=~aα ·~aβ,

the second fundamental form, as a curvature tensor, in covariant or mixed components,
respectively, by

bαβ :=~a3 ·∂β~aα, b
β
α := aβσ ·bσα,

as well as the Christoffel symbols of the surface S as

Γσ
αβ :=~aσ ·∂β~aα.

The area element along S is
√

ady, where a :=det(aαβ).
The covariant derivatives on S are defined as follows:

ηα|β :=∂βηα−Γσ
αβησ, η3|β :=∂βη3,

ηα|β :=∂βηα+Γα
βσησ, η3|β :=∂βη3,

ηαβ|σ :=∂σηαβ+Γα
στηβτ+Γ

β
στηατ,

b
β
α |σ :=∂σb

β
α+Γ

β
στbτ

α−Γτ
ασb

β
τ ,
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where ~η is the displacement of the middle surface of the shell.
We introduce the fourth-order two-dimensional elasticity tensor on S by means of its

contravariant components aαβστ, defined by

aαβστ :=
4λµ

λ+2µ
aαβaστ+2µ(aασaβτ+aατaβσ),

where λ≥0, µ>0 are the Lamé constants associated with the constituting material.

3 Dynamics of elliptic membrane shell

Assume that we are given a shell with middle surface S=~θ(ω̄) where the mapping ~θ ∈
C3(ω̄;R3) is such that the two vectors ~aα = ∂α

~θ(y) are linearly independent at all points
y∈ ω̄, and whose thickness 2ε>0 approaches zero (cf. Fig. 1).

Hence, for each ε > 0, the reference configuration of the shell is ~Θ(Ω̄), where Ω̄ =
ω̄×[−ε,ε], i.e.,

~Θ(y,ξ)=~θ(y)+ξ~a3(y), for all (y,ξ)∈ ω̄×[−ε,ε].

Note that the mapping ~Θ:Ω→R
3 is such that ∇~Θ(y,ξ) is an invertible matrix at all points

(y,ξ)∈ ω̄×[−ε,ε], provided that ε is small enough (cf. Theorem 3.1-1 of [14]).
Let γαβ denote the covariant components of the change of metric tensor, which are de-

fined as follows

γαβ(~η) :=
1

2
(∂αηβ+∂βηα)−Γσ

αβησ−bαβη3,

for all ~η∈H1(ω)×H1(ω)×L2(ω).

Following [14], let us recall the definition of membrane shell. A linearly elastic shell with

middle surface S=~θ(ω̄) is called an elliptic membrane shell if the following conditions are
simultaneously satisfied:

(i) The shell is subject to a boundary condition of place along its entire lateral face
~Θ(γ0) as its middle curve;

(ii) The middle surface S is elliptic, i.e., the Gaussian curvature of S is everywhere
strictly positive. Equivalently, the two principal radii of curvature are either both
positive at all points of S, or both negative at all points of S.

Let us introduce the space

~VM(ω) :={~η=(ηi)∈H1
0(ω)×H1

0(ω)×L2(ω)},

and the space
~H :=~L2(ω).
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Figure 1: Shell kinematics (cf. [14]): (a) Three-dimensional shell Ω̂ε=~Θ(Ω̄) with middle surface S=~θ(ω̄); (b)

two-dimensional shell S=~θ(ω̄); (c) contravariant basis and displacement vector filed along S.
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In what follows we investigate the evolution of the displacement of the studied mem-
brane shell in the time interval [0,T], where T > 0 is a given constant. We study the
corresponding two dimensional scaled model (cf. [14]) and, therefore, in what follows
we denote (y,x3) the generic point of the set ω×[−1,1]. Let us state the main problem.

Problem 1. Finding a vector field ~ζ : [0,T]→ ~VM(ω) satisfying the following variational
equations

2ερ
∫

ω

d2

dt2
ζ i(t)ηi

√
ady+ε

∫

ω
aαβστγστ(~ζ(t))γαβ(~η)

√
ady=

∫

ω
pi,ε(t)ηi

√
ady, (3.1)

for all ~η ∈ ~VM(ω), in the sense of distributions in (0,T), as well as the following initial
conditions at t=0

~ζ(0)=~ζ0, (3.2a)

d

dt
~ζ(0)=~ζ1, (3.2b)

where ρ is the mass density of the constitutive material, which is assumed to be homoge-
neous and isotropic, the thickness of the shell is 2ε,

ζα(t) := aαβζβ(t), ζ3(t) := ζ3(t),

and the vectors ~ζ0 ∈ ~VM(ω) and ~ζ1 ∈ ~H are given. The functions pi,ε(t) denote the con-
travariant components of the applied forces (this means that pi,ε(t,y)~ai(y)

√

a(y)dy is the
force acting on the area element

√

a(y)dy of S at the time t). For a.a. t∈(0,T), thanks to the
main identification property of Lebesgue-Bochner spaces, we can define each component
pi,ε(t) as

pi,ε(·,t) := ε

{

∫ 1

−1
f i(·,t)dx3+hi

+(·,t)+hi
−(·,t)

}

,

where f i ∈L2(0,T;L2(ω×(−1,1))) denotes the given applied body force density and, for
a.a. t∈ (0,T), hi

+(·,t)∈ L2(ω×{1}) and hi
−(·,t)∈ L2(ω×{−1}) denote the given applied

surface force densities.

As a result, the to-be-sought unknown is the vector field ~ζ(t)= (ζi(t)) : ω̄ →R
3. For

each y∈ω̄ and each t≥0, ζi(t,y)~a
i(y) represents the displacement vector field of the point

~θ(y)∈S at the time t.
Let us define the semi-norm |·|Mω as (cf. [14]),

|~η|Mω :=

{

∑
α,β

|γαβ(~η)|20,ω

}1/2

,

for all ~η = (ηi)∈ H1(ω)×H1(ω)×L2(ω), which is equivalent to the norm ‖·‖~VM(ω), ac-

cording to an inequality of Korn’s type on an elliptic surface (cf. Theorem 2.7-3 of [14]).
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For sake of brevity, let us define, using the same notation as in Section 8.2 of [23],

(~ζ(t),~η) :=2ερ
∫

ω
ζ i(t)ηi

√
ady,

B(~ζ(t),~η) := ε
∫

ω
aαβστγστ(~ζ(t))γαβ(~η)

√
ady,

(~p(t),~η) :=
∫

ω
pi,ε(t)ηi

√
ady,

where ~η∈~VM(ω).
Let us state Problem 1 in a more condensed form.

Problem 2. For each t∈ (0,T] find ~ζ(t)∈~VM(ω) that satisfies

d2

dt2
(~ζ(t),~η)+B(~ζ(t),~η)=(~p(t),~η), (3.3)

for all ~η ∈ ~VM(ω), in the sense of distributions in (0,T), as well as the following initial
conditions at t=0

~ζ(0)=~ζ0,
d~ζ

dt
(0)=~ζ1, (3.4)

where ~ζ0∈~VM(ω) and ~ζ1∈ ~H are given.

Theorem 3.1. Assume that ~p=(pi,ε)∈L2(0,T;~H). Then, Problem 2 (and so Problem 1) has one

and only one solution ~ζ∈C0(0,T;~VM(ω))∩C1(0,T;~H).

Proof. The space ~VM(ω) is contained in the space ~H with a compact canonical injec-
tion and ~VM(ω) is dense in ~H. The bilinear form B(·,·), which is clearly symmetric
and continuous, is also ~VM(ω)-elliptic (cf. [10]). By virtue of Theorem 8.2-2 of [23] (cf.
also [24] and [25]), we can thus deduce that Problem 2 has one and only one solution
~ζ∈C0(0,T;~VM(ω))∩C1(0,T;~H).

4 Numerical methods for approximating the solution:

Semi-discretization in space

The spatial variable is discretized by means of the finite element method as proposed
in [18–20, 26, 27], i.e., given a regular triangulation τh (in the sense of [26]) of the do-
main ω̄ (henceforth assumed to be polygonal) made of triangles K ∈ τh, we use a P1b

conforming finite element (piecewise linear continuous plus bubble element, see [28]) for
approximating the first two components ζα of the unknown displacement whereas we
use a P0 conforming finite element (cf. [28]) for the third component. More specifically,
we let

~Vh :=Vh,1×Vh,2×Vh,3,
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where

Vh,α :={ηh ∈C0(ω̄); ηh|K ∈P1(K)⊕Span{λK

0 λK

1 λK

2 }, for each K∈τh and ηh =0 on γ0},

Vh,3 :={ηh ∈L2(ω);ηh|K is constant, for each K∈τh},

where the notation Pk(K),k≥1, designates the space formed by polynomials in two vari-
ables of degree less than or equal to k restricted to a triangle K∈τh.

The approximation of Problem 3 takes the following form.

Problem 3. For each t∈ (0,T], finding a vector field ~ζh(t)∈~Vh that satisfies

d2

dt2
(~ζh(t),~ηh)+B(~ζh(t),~ηh)=(~p(t),~ηh), (4.1)

for all ~ηh ∈~Vh and for which the following initial conditions hold

~ζh(0)=~ζ0,h,
d~ζh

dt
(0)=~ζ1,h, (4.2)

where ~ζ0,h is the projection of the given vector field ~ζ0 onto the space ~Vh with respect to

the~L2(ω) inner product, i.e.,

~ζ0,h =
m

∑
k=1

(~ζ0,~wk)~L2(ω)~wk,

where m=dim~Vh, (~wk)
m
k=1 is an orthogonal basis in ~VM(ω) which is also a Hilbert basis

in ~L2(ω) (see Theorem 6.2-1 of [23]). Likewise, ~ζ1,h is the projection of the given vector

field ~ζ1 onto the space ~Vh with respect to the~L2(ω) inner product, i.e.,

~ζ1,h =
m

∑
k=1

(~ζ1,~wk)~L2(ω)~wk,

where m=dim~Vh, (~wk)
m
k=1 is an orthogonal basis in ~VM(ω) which is also a Hilbert basis

in~L2(ω) (see Theorem 6.2-1 of [23]).

The proof of the following results comes straightforwardly (cf. Theorem 8.4-1 in [23]
or Section 14.5 in [24]):

Theorem 4.1. Let the assumptions be the same as in Theorem 3.1. Then Problem 3 has one and
only one solution.

The advantage of using a middle surface defined by a specific mapping ~θ is that all
the coefficients appearing in the integrals defining the inner product of the space ~H, (·,·),
and the bilinear form B(·,·) can be computed exactly (in contrast with the case where the



194 X. Shen et al. / Commun. Comput. Phys., 29 (2021), pp. 186-210

middle surface is only known at a finite number of points and possibly of tangent planes
at this point; see, e.g., [26]).

Using the classical interpolation properties of the linear triangle element (cf. [26]), we
then obtain the following result (cf. Corollary 8.4-1 of [23] and also Theorem 8.7-1 of [24])
which makes a technical approximation assumption that we do not explicitly state but
that, however, is worth mentioning for sake of completeness.

Theorem 4.2. Assume that ~ζ ∈C2(0,T;~VM(ω)) and that the approximation hypothesis (8.4-8)
of [23] and

lim
h→0

‖~ζ0,h−~ζ0‖~VM(ω)=0, lim
h→0

|~ζ1,h−~ζ1|~H =0,

hold, where h :=maxT∈τh
diamT and diamT is the diameter of T in the sense of [26].

Then, it results

lim
h→0

{

‖~ζh(t)−~ζ(t)‖~VM(ω)+

∣

∣

∣

∣

d

dt
(~ζh(t)−~ζ(t))

∣

∣

∣

∣

~H

}

=0, for each 0≤ t≤T.

5 Numerical methods for approximating the solution: Full

discretization

The time discretization of Problem 3 is performed using the Newmark scheme (cf. [23,
24, 29, 30]): Given a positive integer N, we introduce the time step △t = T/N and the

discrete time tn=n△t, where n=0,··· ,N. Let us introduce the approximation ~ζn
h ≈~ζh(tn)

and ~pn :=~p(tn), where n=0,··· ,N.

Then, we can state the following full space-time discretization scheme for Problem 3:

Finding ~ζn
h such that

1

△t2
(~ζn+2

h −2~ζn+1
h +~ζn

h ,~ηh)+B

(

β~ζn+2
h +(

1

2
−2β+γ)~ζn+1

h +(
1

2
+β−γ)~ζn

h ,~ηh

)

=

(

β~pn+2+(
1

2
−2β+γ)~pn+1+(

1

2
+β−γ)~pn,~ηh

)

, ∀~ηh ∈~Vh, n=0,··· ,N−2,

~ζ0
h :=~ζ0,h,

d~ζh

dt
(0)=~ζ1,h, (5.1)

where β,γ∈R are given parameters and ~ζ1
h is obtained by solving the following varia-

tional equations:

1

△t2
(~ζ1

h−~ζ0,h−△t~ζ1,h,~ηh)+B

(

β~ζ1
h+

(

1

2
−β

)

~ζ0,h,~ηh

)

=

(

β~p1+

(

1

2
−β

)

~p0,~ηh

)

, ∀~ηh ∈~Vh.
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In what follows, λ̂h denotes the maximum eigenvalue recovered via the Spectral The-
orem in the finite dimensional space ~Vh. We now state the result concerning the existence,
convergence and error estimate for the full space-time discretization scheme of the time-
dependent membrane shell model (cf. Theorem 8.7-2, Remark 8.7-3 of [23] and page 501
of [24]). The following result makes a technical approximation hypothesis that we do not
explicitly state but that, however, is worth mentioning for sake of completeness.

Theorem 5.1 (Existence, uniqueness and convergence of the fully discrete solution). Let
the assumptions be the same as in Theorem 3.1 and assume that the approximation hypothesis
(6.5-2) of [23] holds. Let us also assume that

γ>
1

2
, and β≥ (1/2+γ)2

4
.

Then, the scheme (5.1) has one and only one solution ~ζn
h ∈~Vh, n=0,··· ,N.

Besides, if there exists a constant σ>0, independent of h and △t but, eventually, depending
on γ and β, such that, if the stability condition

λ̂h∆t2≤σ,

and if ~ζ is smooth enough, then, there exists a constant C> 0 independent of h, △t and ~ζ but,
eventually, dependent on σ, such that

‖~ζn
h −~ζ(tn)‖~H ≤C{‖~ζ0,h−~ζ0‖~H+‖~ζ1,h−~ζ1‖~H+h+△t},

for all n=0,··· ,N.

Proof. Under the assumptions of Theorem 8.7-2 and Remark 8.3-3 (cf. [23]), if ~ζ ∈
C2(0,T;~Hl+1(ω))∩C3(0,T;~L2(ω)), and γ>1/2, the following estimates can be obtained:

‖ζn
αh−ζα(tn)‖L2(ω)≤C{‖ζ0,αh−ζ0α ‖L2(ω)+‖ζ1,αh−ζ1α ‖L2(ω)+hk+1+△t}, α=1,2,

where k=1; and

‖ζn
3h−ζ3(tn)‖L2(ω)≤C{‖ζ0,3h−ζ03 ‖L2(ω)+‖ζ1,3h−ζ13 ‖L2(ω)+hk+1+△t},

where k=0.

Thus, from h2≤h(h is small enough), we can deduce that

‖~ζn
h −~ζ(tn)‖~L2(ω)≤C{‖~ζ0,h−~ζ0 ‖~L2(ω)+‖~ζ1,h−~ζ1 ‖~L2(ω)+h+△t}.

Based on the definition of ~H :=~L2(ω), then the error estimates can be derived directly.
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Remark 5.1. The condition γ≥ 1/2 is necessary for stability. If γ= 1/2, it can be found
that the convergence rate of Newmark scheme is second order with respect to time step
(cf. [24]). Moreover, when γ = 1/2 and β = 1/4, the Newmark scheme is uncondition-
ally stable. This popular choice is, however, unsuitable for long time integration, as the
discrete solution may be affected by parasitic oscillations that are not damped as far as

t increases. For long time integration it is therefore preferable to choose β≥ (1/2+γ)2

4 for
a suitable γ> 1/2, although in such a case the method degenerates to a first order with
respect to time step.

6 Numerical experiments

6.1 Ellipsoidal shell

We use a portion of the ellipsoidal shell (cf. Fig. 2) and assume that the thickness of the

shell is 2ε. In curvilinear coordinates, the middle surface is given by the mapping~θ defined
by

~θ(y1,y2)=(msiny1cosy2, nsiny1siny2, lcosy1).

The domain ω is defined as follows

ω :=

{

(y1,y2)∈R
2;

[

π

6
,
5π

6

]

×[0,π]

}

,

and the boundary γ0, where no displacement occurs, is defined

γ0 :=γ01∪γ02∪γ03∪γ04,

with

γ01=

{

(y1,y2)∈R
2; y1 ∈ [0,π], y2=

5π

6

}

,

γ02=

{

(y1,y2)∈R
2; y1 =π, y2∈

[

π

6
,
5π

6

]}

,

γ03=
{

(y1,y2)∈R
2; y1∈ [0,π], y2 =

π

6

}

,

γ04=

{

(y1,y2)∈R
2; y1 =0,y2∈

[

π

6
,
5π

6

]}

.

Then the covariant basis of the tangent plane to S at ~θ(y) is given by

~a1 =
∂~θ

∂y1
=(mcosy1cosy2, ncosy1siny2, −lsiny1),

~a2 =
∂~θ

∂y2
=(−msiny1siny2, nsiny1cosy2, 0),

~a3 =

(

nlsiny1cosy2√
Q

,
mlsiny1siny2√

Q
,

mncosy1√
Q

)

,
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Figure 2: Portion of an ellipsoidal shell

where Q=m2n2cos2y1+n2l2sin2 y1cos2 y2+m2l2sin2y1sin2 y2.

The covariant components of the metric tensor on S are given by

a11 =~a1 ·~a1 =m2cos2 y1cos2 y2+n2cos2 y1sin2y2+l2sin2y1,

a12 = a21=~a1 ·~a2 =(n2−m2)siny1 cosy1siny2cosy2,

a22 =~a2 ·~a2 =m2sin2 y1sin2y2+n2sin2y1cos2y2,

and

a=det(aαβ)=Qsin2y1.

The contravariant components of the metric tensor on S are given by

a11=
m2sin2y2+n2cos2y2

Q
,

a12= a21 =
(m2−n2)cosy1siny2 cosy2

Qsiny1
,

a22=
m2cos2 y1cos2 y2+n2cos2y1sin2 y2+l2sin2 y1

Qsin2 y1

.

As a result,

~a1=a11
~a1+a12

~a2

=

(

mn2cosy1cosy2

Q
,

m2ncosy1siny2

Q
,
−m2lsiny1sin2 y2−n2lsiny1cos2y2

Q

)

,

~a2=a21
~a1+a22

~a2

=

(−mn2cos2y1siny2−ml2sin2 y1siny2

Qsiny1
,

m2ncos2y1cosy2+nl2sin2y1cosy2

Qsiny1
,

(m2−n2)lcos2 y1siny2cosy2

Qsiny1

)

,
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∂1~a1=
∂~a1

∂y1
=(−msiny1cosy2, −nsiny1siny2, −lcosy1),

∂2~a1=
∂~a1

∂y2
=(−mcosy1siny2, ncosy1 cosy2, 0),

∂1~a2=
∂~a2

∂y1
=(−mcosy1siny2, ncosy1 cosy2, 0),

∂2~a2=
∂~a2

∂y2
=(−msiny1cosy2, −nsiny1siny2, 0).

The covariant and mixed components of the extrinsic curvature tensor on S are given by

b11=~a3 ·∂1~a1 =
−mnl√

Q
, b12=~a3 ·∂1~a2 =0,

b21=~a3 ·∂2~a1 =0, b22=~a3 ·∂2~a2=
−mnlsin2y1√

Q
,

b1
1 = a11b11+a12b21=

−mnl(m2sin2 y2+n2cos2y2)
√

Q3
,

b2
1 = a21b11+a22b21=0, b1

2 = a11b12+a12b22=0,

b2
2 = a21b12+a22b22=

−mnl(m2cos2y1cos2y2+n2cos2 y1sin2y2+l2sin2y1)
√

Q3
.

The Christoffel symbols on S are given by

Γ1
11=~a1 ·∂1~a1=

−m2n2siny1cosy1sin2 y2

Q
+

n2l2siny1cosy1cos2y2+m2l2siny1cosy1sin2 y2

Q
,

Γ1
12=Γ1

21=0, Γ1
22=~a1 ·∂2~a2=

−m2n2siny1cosy1

Q
,

Γ2
11=~a2 ·∂1~a1=

(m2−n2)l2(sin2y1−cos3y1 siny2cosy2)

siny1(m2n2cos2 y1+n2l2sin2y1cos2y2+m2l2sin2 y1sin2y2)
,

Γ2
12=Γ2

21=coty1, Γ2
22=~a2 ·∂2~a2 =

(m2−n2)l2sin2y1siny2cosy2

Q
.

We take the Young’s modulus (cf. [2]) as E=2.0×1011Pa and the Poisson ratio as ν=0.25.
Since the Lamé constants, the Poisson ratio and the Young’s modulus are related by

(see, for instance, [14]):

λ=
Eν

(1+ν)(1−2ν)
, µ=

E

2(1+ν)
,

we get
λ=8.0×1010Pa, µ=8.0×1010Pa.
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n=40, m=60 n=80, m=120

Figure 3: Meshes of the surface.
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Figure 4: Applied force component p2 =2.5×106 t, t∈ [0,1.2].

We assume the shell to be made of stainless steel, whose mass density is ρ=7.8×103kg/m3.

We are now in a position to solve the time-dependent problem by using the New-
mark scheme with the software FreeFEM++ (cf. [28]) and we visualize the output using
ParaView (cf. [32]). Two meshes comprising of 2,400 and 9,600 elements used for the
computation are shown in Fig. 3.

The set of parameters related to the numerical experiments is the following: m =
0.06m, n=0.05m, l=0.03m, semi-thickness ε=0.001m (cf. [2]), Young’s modulus E=2.0×
1011Pa, Poisson ratio ν=0.25, mass density ρ=7.8×103kg/m3 and γ=0.6,β=(1/2+γ)2/4.
Let the external force be p1= p3=0 whereas p2= f (t)=2.5×106 t,t∈ [0,1.2] (see Fig. 4).

The deformations of the shell at different times are shown in Figs. 5 and 6 (from dif-
ferent angles), for the four combinations of meshes (n,m)=(40,60) and (n,m)=(80,120),
time-steps ∆t= 0.01s and ∆t= 0.005s. To show that the entire boundary is clamped, we
provide the figures from other angle (see Fig. 6). The entire lateral of each figure is in blue
color, indicating that the entire boundary is clamped, whereas the biggest deformation
happens on the parts in red color, i.e., the center of the ellipsoidal shell.
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Figure 5: Deformations of the ellipsoidal shell at different times. Different mesh (n,m)= (40,60) (in the first
and second line) and (n,m)=(80,120) (in the third and fourth line), different time-step ∆t=0.01s (in the first
and third line) and ∆t=0.005s (in the second and fourth line) respectively.

To illustrate the deformation of the shell we take three random points for each mesh.
Tables 1-3 show the displacements of three random points at time t=0.50s, t=0.70s and
t=1.15s, respectively.

The consistent shapes in Figs. 5 and 6 indicate that the numerical scheme for time-
dependent elliptic membrane shell model with ellipsoidal middle surface is stable under
the different combinations of time-step and space-step. The consistent displacements in
Tables 1-3 indicate the same stability under different time-steps. This is in accordance
with the conclusion of our Theorem 5.1, which infers the stability of the adopted nu-
merical scheme. Moreover, the deformations of the middle surface match the change in
applied force, which corroborates the efficiency of the model.

Moreover, we concern the convergent orders of ~L2 norm related to the theoretical
result of Theorem 5.1. Based on the fact the exact solution of the model cannot be derived,
we must replace the exact solution with the approximate solution in refined space and
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Figure 6: Deformations of the ellipsoidal shell at different times from other angle. Different mesh (n,m)=(40,60)
(in the first and second line) and (n,m)=(80,120) (in the third and fourth line), different time-step ∆t=0.01s
(in the first and third line) and ∆t=0.005s (in the second and fourth line) respectively.

Table 1: Displacements of three random points at time t=0.50s.

space-step meshes 40×60 space-step meshes 80×120

time-step ∆t=0.01s ∆t=0.005s time-step ∆t=0.01s ∆t=0.005s

x -1.13053761e-010 -1.10879653e-010 x -1.00017938e-010 -9.80945186e-011

point1 y 1.01491309e-012 9.95395498e-013 point1 y 1.15143084e-012 1.12928796e-012

z -2.28152913e-010 -2.23765367e-010 z -2.01242856e-010 -1.97372799e-010

x -1.21817084e-010 -1.19474458e-010 x -1.10726650e-010 -1.08597291e-010

point2 y 1.38090245e-012 1.35434665e-012 point2 y 1.48735722e-012 1.45875423e-012

z -2.21076837e-010 -2.16825363e-010 z -2.00407260e-010 -1.96553274e-010

x -1.27404143e-010 -1.24954061e-010 x -1.26771219e-010 -1.24333308e-010

point3 y 1.80589061e-012 1.77116188e-012 point3 y 1.75935731e-012 1.72552359e-012

z -2.07770232e-010 -2.03774650e-010 z -1.46849435e-010 -1.44025417e-010
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Table 2: Displacements of three random points at time t=0.70s.

space-step meshes 40×60 space-step meshes 80×120

time-step ∆t=0.01s ∆t=0.005s time-step ∆t=0.01s ∆t=0.005s

x -1.56535979e-010 -1.54361871e-010 x -1.07175047e-010 -1.05686501e-010

point1 y 1.40526425e-012 1.38574666e-012 point1 y 1.04077782e-012 1.02632258e-012

z -3.15904053e-010 -3.11516479e-010 z -2.52999260e-010 -2.49485405e-010

x -1.68669814e-010 -1.66327174e-010 x -1.29332711e-010 -1.27536426e-010

point2 y 1.91201872e-012 1.88546292e-012 point2 y 1.39090052e-012 1.37158254e-012

z -3.06106390e-010 -3.01854930e-010 z -2.74387763e-010 -2.70576839e-010

x -1.76405723e-010 -1.73955655e-010 x -1.38486375e-010 -1.36562955e-010

point3 y 2.50046381e-012 2.46573530e-012 point3 y 1.59428883e-012 1.57214595e-012

z -2.87681851e-010 -2.83686269e-010 z -2.78643941e-010 -2.74773898e-010

Table 3: Displacements of three random points at time t=1.15s.

space-step meshes 40×60 space-step meshes 80×120

time-step ∆t=0.01s ∆t=0.005s time-step ∆t=0.01s ∆t=0.005s

x -2.68803702e-010 -2.66506234e-010 x -2.72280282e-010 -2.69953115e-010

point1 y 1.01072891e-011 1.00209025e-011 point1 y 1.05072444e-011 1.04174386e-011

z -3.93507393e-010 -3.90144084e-010 z -2.44796405e-010 -2.42704135e-010

x -2.82350060e-010 -2.79936796e-010 x -2.67804612e-010 -2.65515693e-010

point2 y 1.70157898e-011 1.68703558e-011 point2 y 1.12692147e-011 1.11728968e-011

z -2.91695307e-010 -2.89202190e-010 z -2.24397015e-010 -2.22479091e-010

x -2.57885935e-010 -2.55681781e-010 x -2.62833533e-010 -2.60587080e-010

point3 y 1.22005366e-011 1.20962589e-011 point3 y 1.20429743e-011 1.19400436e-011

z -2.00858913e-010 -1.99142175e-010 z -2.04538914e-010 -2.02790715e-010

Table 4: Convergent order and error with different mesh size (γ=0.6, ∆t=0.0001s).

mesh ‖~ζn
h −~ζ(tn)‖~L2 order

10×15 5.96754e-013 /

20×30 3.09816e-013 0.96

40×60 1.56949e-013 0.98

80×120 7.98694e-014 0.97

160×240 4.2221e-014 0.92

time steps (meshes: 530×795, time-steps: ∆t= 0.0001s) to verify the convergent orders.
Under the stable condition of γ>1/2, we take γ=0.6. We can find that convergent rates
with different mesh size and time-steps are nearly first order which can be found in Table
4, Table 5, Fig. 7 and Fig. 8.
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Table 5: Convergent order and error with different time-step (γ=0.6, mesh: 530×795).

∆t ‖~ζn
h −~ζ(tn)‖~L2 order

0.005s 1.94235e-012 /

0.0025s 9.51355e-013 1.03

0.00125s 4.55857e-013 1.06

0.000625s 2.08109e-013 1.13

0.0003125s 8.42346e-014 1.30
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Figure 7: Convergence of errors with respect to mesh size (γ=0.6, ∆t=0.0001s).
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Figure 8: Convergence of errors with respect to time step (γ=0.6, mesh:530×795).
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6.2 Spherical shell

We use a portion of the spherical shell (cf. Fig. 9) and assume that the thickness of the

shell is 2ε. In curvilinear coordinates, the middle surface is given by the mapping~θ defined
by

~θ(y1,y2)=(rcosy1siny2, rsiny1siny2, rcosy2).

Here

ω :=
{

(y1,y2)∈R
2; 0≤y1 ≤π, ǫ≤y2 ≤π/2

}

,

where ǫ is very small positive constant, and

γ0 :=γ01∪γ02∪γ03∪γ04,

where

γ01={(y1,y2)∈R
2; 0≤y1 ≤π, y2=ǫ},

γ02={(y1,y2)∈R
2; y1=π, ǫ≤y2 ≤π/2},

γ03={(y1,y2)∈R
2; 0≤y1 ≤π, y2=π/2},

γ04={(y1,y2)∈R
2; y1=0, ǫ≤y1 ≤π/2}.

Then the covariant basis of the tangent plane to S at ~θ(y) is given by

~a1=
∂~θ

∂y1
=(−rsiny1siny2, rsiny1cosy2, 0),

~a2=
∂~θ

∂y2
=(rcosy1cosy2, rcosy1siny2, −rsiny1),

~a3=~a3 =(cosy1 siny2, siny1siny2, cosy2).

The covariant components of metric tensors on S are given by

a11=~a1 ·~a1 = r2sin2y2, a21 = a12=0, a22 =~a2 ·~a2 = r2,

Figure 9: Portion of a spherical shell.
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and
a=det(aαβ)= r4sin2y2.

The contravariant components of metric tensors on S are given by

a11=(a11)
−1= r−2sin−2y2, a21= a12 =0, a22 =(a22)

−1= r−2.

It can be immediately noticed that the contravariant component a11 is not defined at y2=0.
As a result,

~a1= a1α ·~aα =(−r−1siny1 sin−1y2, r−1cosy1sin−1y2, 0),

~a2= a2α ·~aα =(r−1cosy1cosy2, r−1siny1cosy2, −r−1siny2),

∂1~a1=
∂~a1

∂y1
=(−rcosy1siny2, −rsiny1 siny2, 0),

∂2~a1=∂1~a2 =
∂~a1

∂y2
=(−rsiny1cosy2, rcosy1cosy2, 0),

∂2~a2=
∂~a2

∂y2
=(−rcosy1siny2, −rsiny1 siny2, −rcosy2).

The covariant and mixed components of extrinsic curvature tensors on S are given by

b11=~a3 ·∂1~a1=−rsin2y2, b12=b21=0, b22=~a3 ·∂2~a2 =−r,

b1
1 = a1αb1α=−r−1, b2

1=b1
2 =0, b2

2 = a2αb2α=−r−1.

The Christoffel symbols on S are given by

Γ1
21=sin−1y2cosy2, Γ1

12=sin−1y2cosy2,

Γ2
11=−siny2cosy2, Γ1

11=Γ1
22 =Γ2

12 =Γ2
21 =Γ2

22 =0.

According to [31], we choose the Young’s modulus as E= 1.15×1011Pa and the Poisson
ratio as ν=0.3, we get λ=6.6346×1010Pa, µ=4.4231×1010Pa. We assume the shell to be
made of cast iron, whose mass density is, approximately ρ= 6.95kg/m3. Now we solve
the time-dependent problem with FreeFEM++ (cf. [28]) and we visualize the results using
ParaView (cf. [32]). Two meshes consisting of 5,000 and 20,000 elements used for the
computation are shown in Fig. 10. We set r=6m, semi-thickness ε=0.000025m (cf. [31]),
γ= 0.6, β=(1/2+γ)2/4. Let the external force p1 = p3 = 0 whereas p2 = f (t)= 400sint,
t∈ [0,π/2] is shown in Fig. 11.

The deformations of the shell at different times are shown in Fig. 12, respectively, for
the time-step ∆t=0.01s and ∆t=0.005s, for the space-step (n,m)=(100,50) and (n,m)=
(200,100). The blue color indicates the clamping, whereas the biggest deformation takes
place on the parts in red color.

To illustrate the deformation of the shell numerically, we take three random points
for each mesh. Tables 6-8 show the displacements of the three random points at time
t=0.25s, t=0.30s and t=0.43s, respectively.
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m=100,n=50 m=200,n=100

Figure 10: Meshes of the surface.
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Figure 11: Applied force component p2 =400sint, t∈ [0,π/2].

Table 6: Displacements of three random points at time t=0.25s.

space-step meshes 100×50 space-step meshes 200×100

time-step ∆t=0.01s ∆t=0.005s time-step ∆t=0.01s ∆t=0.005s

x -1.24158886e-011 -1.19666646e-011 x -1.72509004e-011 -1.66267364e-011

point1 y 4.08067365e-011 3.93302751e-011 point1 y 4.85795605e-011 4.68218658e-011

z -1.74695458e-009 -1.68374692e-009 z -2.04065231e-009 -1.96681804e-009

x -4.69416901e-011 -4.52432709e-011 x -5.14694294e-011 -4.96071829e-011

point2 y 1.16826618e-010 1.12599610e-010 point2 y 1.07997507e-010 1.04089959e-010

z -5.59017188e-009 -5.38791012e-009 z -5.35582156e-009 -5.16203880e-009

x -9.31898655e-011 -8.98181113e-011 x -9.73588501e-011 -9.38362513e-011

point3 y 1.83493248e-010 1.76854129e-010 point3 y 1.59115138e-010 1.53358062e-010

z -9.87763382e-009 -9.52024415e-009 z -9.32391941e-009 -8.98656527e-009
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Figure 12: Deformations of the spherical shell at different times. (n,m)=(100,50) (in the first and second line)
and (n,m)=(200,100) (in the third and fourth line), ∆t=0.01s (in the first and third line) and ∆t=0.005s (in
the second and fourth line) respectively.

Table 7: Displacements of three random points at time t=0.30s.

space-step meshes 100×50 space-step meshes 200×100

time-step ∆t=0.01s ∆t=0.005s time-step ∆t=0.01s ∆t=0.005s

x -3.31608491e-011 -3.21585397e-011 x -3.86991134e-011 -3.75294067e-011

point1 y 9.41673128e-011 9.13210549e-011 point1 y 9.33820729e-011 9.05595460e-011

z -4.25892832e-009 -4.13019974e-009 z -4.26283808e-009 -4.13399137e-009

x -8.10228620e-011 -7.85738904e-011 x -8.61496083e-011 -8.35456843e-011

point2 y 1.78626169e-010 1.73227099e-010 point2 y 1.58897173e-010 1.54094418e-010

z -9.05761688e-009 -8.78384476e-009 z -8.56253290e-009 -8.30372482e-009

x -1.49236201e-009 -1.44725443e-009 x -1.34730727e-009 -1.30658406e-009

point3 y 9.39162498e-011 9.10775969e-011 point3 y 9.65652280e-011 9.36465072e-011

z -6.09558981e-008 -5.91134679e-008 z -7.59917214e-008 -7.36948280e-008
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Table 8: Displacements of three random points at time t=0.43s.

space-step meshes 100×50 space-step meshes 200×100

time-step ∆t=0.01s ∆t=0.005s time-step ∆t=0.01s ∆t=0.005s

x -4.58530089e-011 -4.49015027e-011 x -4.01757308e-011 -3.93420331e-011

point1 y 1.30209427e-010 1.27507421e-010 point1 y 1.04505155e-010 1.02336549e-010

z -5.88901372e-009 -5.76680970e-009 z -4.57663685e-009 -4.48166615e-009

x -1.98583217e-009 -1.94462380e-009 x -1.00037578e-009 -1.00146935e-009

point2 y 1.67331357e-010 1.63859024e-010 point2 y 1.82150461e-010 1.53282900e-010

z -8.75875870e-008 -8.57700400e-008 z -9.16495964e-008 -9.25715540e-008

x -8.68468686e-010 -8.50446880e-010 x -8.20708557e-010 -8.30839286e-010

point3 y 4.65154443e-010 4.55501914e-010 point3 y 3.23706867e-010 3.01363795e-010

z -7.44696393e-008 -7.29243084e-008 z -7.17228303e-008 -7.29795175e-008

The consistent shapes in Fig. 12 show that the numerical scheme for time-dependent
elliptic membrane shell model with spherical middle surface is stable under the differ-
ent combinations of time-step and space-step. The consistent displacements in Tables 4-6
indicate the same stability under different time-steps. This is in accordance with the con-
clusion of our Theorem 5.1, which infers the stability of the adopted numerical scheme.
Moreover, the deformations of the middle surface match the change of applied force,
which corroborates the efficiency of the model.

7 Conclusions

We have discussed theoretical analysis and numerical methods for the time-dependent
membrane shell model. First, the existence and uniqueness of the solution of the model
were established. Secondly, the spatial variable was discretized by means of a conforming
finite element method and the time discretization of the model was performed using the
Newmark scheme. Then the existence, uniqueness, stability, convergence and a priori
error estimate are discussed. Finally, numerical experiments for a portion of an ellipsoidal
shell and a portion of a spherical shell, were presented.
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210 X. Shen et al. / Commun. Comput. Phys., 29 (2021), pp. 186-210
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