
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031886, IEEE Access

 

VOLUME XX, 2020 1 

Full Face-and-Head 3D Model with 
Photorealistic Texture  

Yangyu Fan1, Yang Liu2, Guoyun Lv3, Shiya Liu, Gen Li, Yanhui Huang 
1School of Electronics and Information, Northwestern Ploytechnical University 
2The Virtual reality content production Center 

Corresponding author: Guoyun Lv (e-mail: lvguoyun101@nwpu.edu.cn).  

This work was supported in part by the Key Program of Research and Development Plan of Shaanxi Province under Grant 2020ZDLGY04-09 funded by the 
Department of Science and Technology of Shaanxi Province.  

ABSTRACT In the recent period, significant progress has been achieved towards reconstructing the 3D face 
model from face image. With the support of the render engines and sufficient data, the reconstruction results 
are fine in detail. Nevertheless, the research on the 3D face reconstruction with texture from a single 
unrestricted face image is imperfect. The rebuild process lacks essential structure and texture information in 
the profile and the craniofacial region. To address this problem, we present a method of creating a 3D full 
face-and-head model with photorealistic texture from a single “in-the-wild” face image in this paper. To this 
end, we introduce a pipeline to integrate the highly-detailed face model into the basic model. Specifically, 
the basic model was built by multilinear optimization, and the highly-detailed face model which represents 
the facial features generated by constrained illumination distribution. Additionally, to infer the invisible 
region texture information corresponding to the input face image, we design an effective architecture with 
the generative adversarial network (GAN) for panoramic UV texture generation. The final results after UV 
texture mapping were visualized in the experiment, which demonstrates that the model faithfully recovers the 
photorealistic details in arbitrary perspective. Furthermore, compared to the state-of-the-art facial modeling 
techniques and existing commercial solutions, our method takes less input and performs better in surface 
detail.  

INDEX TERMS 3D face reconstruction, full face-and-head model, 3D Morphable Model, UV texture, 
Generative Adversarial Networks.  

I. INTRODUCTION 

The three-dimensional (3D) face-and-head reconstruction 
technology has important theoretical significance and 
practical value in our daily life, especially in Internet 
communications and artificial intelligence applications. Due 
to their powerful ability to represent human feature and the 
face contour, the 3D face-and-head models are intensively 
applied to face reconstruction [1] [2], computer graphics [3] 
[4], biometrics [5] [6] [7], and texture blending [8] [9] [10]. 
The research purpose of the 3D face-and-head model is to 
make it as realistic as possible. Observers can visually 
distinguish the model from texture and capture the tiny details. 
Furthermore, the source of the inputs is “in-the-wild” facial 
images, which can be acquired conveniently.  

We employ the synthetic 3DMM to reconstruct the full 
face-and-head model from a single “in-the-wild” face image. 
The cranium and the face region are constructed with different 
statistical correlations. The resolution requirement and feature 

details of the two parts is distinctive, since the cranium part 
just needs to show the large-scale contour representation of the 
human head, whereas the facial part requires detailed feature 
information and better spatial resolution.  

Our crucial contributions are: (1) we present a method that 
integrates the basic model with the highly-detailed face region 
to obtain a suitable full face-and-head model, (2) we introduce 
an effective network architecture for UV texture generation. 
Using Variational Auto-Encoder (VAE) as the identity 
constraints to control the GAN network training process, (3) 
we collect sufficient UV texture maps, including some UV 
textures from the useful dataset, and the high-fidelity textures 
obtained by our laboratory using professional 3D scanning 
equipment, a total of 1060 identities, (4) we perform an intact 
experiment to map the finished UV texture to the synthetic 
face-and-head model. Visible results are more realistic than 
models from the state-of-the-art modeling methods. The brief 
of the processing overview is shown in Fig. 1.  
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FIGURE 1.  Overview of our proposed method. We build the basic model by joint optimizing of the input images and the database and integrate it with 
the highly-detailed model to obtain the full face-and-head mesh model. The UV texture can be generated by our network architecture with a single “in-
the-wild” face image. The complete full face-and-head model is acquired after the texture mapping and the component completion.  

 

 

II. RELATED WORKS 

The 3D face-and-head modeling has been extensively 
explored in the past twenty years and has been widely used in 
numerous applications. This technology can represent the face 
and head physiological characteristics, and mainly includes 
the 3D Morphable Model (3DMM) and the avatar digitization. 
Empirically speaking, 3DMM is generally used to represent 
the large-scale contour information of the human head and the 
appearance features of the facial region. Therefore, 3DMM 
technology is primarily applying to the fields of face 
recognition and 3D face reconstruction. Avatar digitization is 
mostly used for the game animation and social communication, 
which tends to the global exterior features and the surface 
texture resembles the digital real-time rendering. We 
summarize the relevant research work of the 3D face-and-head 
models according to the different application fields. 

3DMM [11] [12] technology was first proposed by Blanz 
and Vetter in 1999s, the model (100 male and 100 female) 
were built from 200 scans. This method is the most 
outstanding and widely-used, many other ideas are also 
improved and optimized based on this method. The Basel Face 
Model (BFM) is built by Paysan [13], they register the scans 
by utilizing the Non-rigid Iterative Closest Point (NICP) 
algorithm. Classic Principal Component Analysis (PCA) is 
employed as a dimension descent method to construct 3DMM. 
With the improvement of the hardware scanning capability, 
recent works have established some [6] [14] database through 
a large number of face scans. Available face 3DMM database 
can refer to FaceWareHouse [15] and LSFM [16].  

In [17], Ploumpis proposes a pipeline for combining current 
3DMM of the human head to face and some other parts. He 

uses a regressor to accomplish missing parts of one model, the 
Gaussian Process framework is applied to blend covariance 
matrices from multiple models. However, this work has a flaw 
in texture reconstruction which may lead to the full head 
model to discard the partial surface information in the profile 
and top of the head region. A similar problem also appeared in 
[18]. An approach is proposed to improve the nonlinear 3D 
modeling in additional side-step regularization and leverages 
to increase detailed shape in [19]. This work builds a model 
with mid and high-level details in the face, but it is separately 
trained from 2D images which may lack geometry information 
in profile and back areas. In[20], a framework is presented to 
build a new face-and-head shape model that combines the 
variability and facial detail of the LSFM with the full head 
modeling of the LYHM. But this method ignores the texture 
parameters, and the new model cannot match the texture well.  

Recently, some research work based on data-driven has 
achieved suitable progress on 3D face reconstruction. In [21], 
Ranjan has introduced a versatile mesh model that adopted a 
face non-linear representation with spectral convolutions on 
the mesh model surface. The data sample consists of 20466 
meshes of extreme expressions captured over 12 subjects. In 
[22], a novel framework that learns a generative 3D face 
model using autoencoder architecture has been proposed. It 
combines the convolutional networks of being robust to 
corrupted data with the multilinear models of effectively 
modeling and decoupling shape variations. In [23], Cheng 
proposes the first intrinsic GANs architecture directly 
operating on the 3D mesh model. The network can generate 
expressions for random identities from latent spaces where 
identity and expression are mixed. In [3], the multi-frame 
video-based self-supervised training of a deep network learns 
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a face identity model both in shape and appearance, while 
jointly learning to rebuild the 3D face. The approach produces 
high-quality monocular reconstructions of facial geometry 
from “in-the-wild” data. In [24], Wu addressed the problem of 
recovering the 3D geometry of a humankind face from multi-
view facial images and proposed a method to regress 3D 
model parameters from multi-view input with end-to-end 
trainable Convolutional Neural Network (CNN).  

However, those data-driven methods demand a large data 
set, complex network architecture, and the training cost, all of 
these will limits the apply scope. Some other novel methods 
in 3D face reconstruction, such as [25] proposed by Yao. He 
designs a new representation called UV position map which 
records the 3D shape of a complete face in UV space. This 
method does not rely on any prior model information and the 
network is light-weighted in the experiment.  

In the domain of avatar digitization, the destination is to 
rebuild the personal avatar resembles the captured subject. 
Existing 3D avatar creation systems rely on multiple images 
to build a more precise texture map [26]. In [8], a system for 
creating the fully rigged 3D avatar from a hand-held video is 
introduced. The system recovers the expression of the objects 
by adapting the blendshape template to video using an 
optimization, which includes optical flow and Shape from 
Shading (SFS). In [27], Hu introduces an end-to-end 
framework to create a complete 3D avatar from a single image 
for real-time rendering. Their methods and experiments are 
impressive, but the results are imperfect in details, and the 
surface display like “animated face” from a subjective 
perspective.  

These methods we mentioned above are all related to the 
3D face-and-head modeling. On the other hand, the face 
texture reconstruction mainly based on the texture statistical 
model as the prior information. Traditionally speaking, 
3DMMs texture by the UV map which can assign 3D pixel 
data into 2D plane with per-pixel alignment. Nonetheless, the 
texture statistical model is to scan under strict controllable 
conditions to acquire the low-high frequency and albedo 
information. This kind of texture model is hardly obtained and 
it is also difficult for “in-the-wild” image analysis. In [28], a 
data-driven inference method that can synthesize the texture 
map of a complete 3D face model from the 2D view image. 
The middle layer feature can be extracted from a deep 
convolutional neural network, and the texture map is 
synthesized by iteratively optimizing. In [29], Deng has 
proposed a framework for training DCNN to finish the facial 
UV map extracted from partial face images. This architecture 
learns an identity-preserving UV completion model and 
minimizes the pose discrepancy during the training process. In 
[30], Gecer reconstructs the facial texture and shape from 
single images by GAN and DCNN and optimize the 
parameters with the supervision of pre-trained deep identity 
features through the end-to-end differentiable framework. In 
[18], the texture map is generated using raw texture images 
from five views, which means the face texture reconstruction 

is done under the restricted conditions. This pixel embedding 
method can maintain the same pixel resolution as the texture 
map and the raw texture images. In recent works, 
differentiable renderers were employed to learn the 
relationship between the facial identity features and the 
parameters of a 3DMM for shape and texture.  

In conclusion, those methods based on 3DMM have some 
ill-conditioned matters in the multi-parameter information 
fitting process. The method based on data-driven is limited by 
the amount of data of the statistical models under controlled 
conditions and are prone to local optimization and gradient 
explosion problems. Additionally, with the demand of data, 
the latest methods based on GAN have uncontrollable training 
processes and feature couple in non-linear spaces. However, 
the large data cost and the complex device requirement makes 
these approaches above are unsuitable for applications. 
Furthermore, some other approaches lacking the ability to 
represent fine-scale features. Particularly, when we inspect the 
model in specific angles, there is an obvious blurring of texture 
on the profile, back, and bottom of the 3D model.  

In contrast to the methods above, our full face-and-head 
models are built separately based on the display characteristics 
of each part, and more complete in structure than the current 
3D face reconstruction methods. Additionally, the texture 
generation module uses the specially designed VAEGAN [31] 
framework to generate the corresponding UV texture map 
make the information in the invisible region available. Under 
the equivalent condition, our final results are better than the 
state-of-the-art methods in effect.  

III. 3D FULL HEAD BASIC MODEL 

According to the representative structure of the statistical 
model, the 3D face Morphable Model can be divided into a 3D 
full head model and a 3D face model. In general, the full head 
model is used to show human head contours and large-scale 
geometric features. This model has relatively few vertices, but 
the surface is smooth and can be rendered rapidly. The 3D full 
head Morphable Model [12] can be defined by the PCA model, 
and the identity parameters were extracted from the statistical 
model. The shape of the PCA model and the texture of the 
PCA model is respectively expressed as:  
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where S and T  represent the mean shapes and the mean 
textures of the face samples. 

i
P  and 

i
T  are the shape and 

texture eigenbasis, which represents the principal component 
of the face shape and texture models respectively. 

i
α  and 

i
β  

are the shape and texture parameters.  
The PCA model above can be used to reconstruct the face 

shape and the texture, but it disregards the internal relationship 
between the identity and the expression. We arrange face 
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samples according to different axial features to form those data 
samples into third-order tensor. The first dimension is the 
coordinate vertex of the face, the second dimension represents 
the identity feature and the third dimension represents the 
facial expression feature. The tensor of face data reflects the 
internal association of the shape variation. The PCA model of 
the face texture will be used for the UV texture generation in 
section V. 

A. FACE DATABASE AND LANDMARK PROCESSING 

To establish the 3D full head basic model, sufficient face 
samples are needed for statistical analysis. We integrate 
FaceWareHouse [15], BU-3DFE, and 200 extra female 
models into our face database, which consists of 650 different 
identities and 47 different expressions. Registration in the 
database has been finished already. We use the average sample 
of the statistical model to recover the craniosacral region and 
ear components, make those places are roughly matched to the 
human head contour. 

The 3D face landmark points are supposed to be handled 
before multilinear optimization. The normal vector of all 
candidate points is calculated according to the current face 
posture in space[32]. In each candidate point row, the vertex 
with the maximum angle between the normal vector and the 
Z-axis (i.e., perpendicular to the face plane) is defined as the 
alternative contour points.  

B. MULTILINEAR OPTIMIZATION 

We use the multilinear model based-PCA to compress the 
dimension of the face sample since it presents the linear 
combination of facial geometry. The feature dimension can be 
extracted based on identity and expression. The face sample 
S
∗  can be represented by a multilinear combination of the 

third-order tensors:  

id id exp expS ω ω∗ = × ×Cr  (3) 

where Cr is the third-order tensor kernel of the corresponding 
dimension of the orthogonal matrix, id exp× ×  respectively 
represent the modular multiplication on the dimension of 
identity and expression, idω  is the identity feature vector and 

expω  is the expression feature vector of the face. The basic 
model can be expressed as:  

id id exp exp( )F ω ω= ⋅ × × +CrR T  (4) 

where R and T are respectively represent the rotation matrix 
and translation vector of the current face.  

C. BASIC MODEL 

After 2D coordinate projection, we can represent the basic 
model by:  

2( )
data id id exp exp

1

( ) ( ( ) )
L

i

i

i

E Q f qω ω
=

= ⋅ ⋅ × × + −∑ CrR T  (5) 

FIGURE 2.  The illustration of basic model after multilinear optimization. 

 
 
where ( )Q f  indicates 3D coordinates projection set, { }

i
q is 

2D coordinates of facial feature points in the image, and L  is 
the number of the points. We indicate (5) by the optimization 
values of parameters: 
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equation (4) is to minimize the objective function and use the 
coordinate descent method to figure out each variable.  

The basic model after multilinear processing still has some 
bias, which may be related to misalignment between 2D 
landmark points and 3D landmark points. Therefore, we 
utilize the Laplace deformation to correct this deviation: 
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where 
1 2, ,

M
v v v′ ′ ′  are constrained vertices of the 3D face 

model, H  is the Laplace coefficient matrix obtained from 
coordinate vertices of the current model, and 

i
v  is 3D model 

feature points. 1w is the weight of the restrain term and we 
select 

1 0.8w =  after tested. The full head basic models after 
visualized exhibit in Fig. 2, where the first row is the input face 
images, and the corresponding basic model displayed in the 
second row. 

IV. FULL FACE-AND-HEAD MODEL 

The full head basic model obtained in section III lacks facial 
details, and can only be used to represent the large-scale 
geometric contour. But, the facial region has features and 
surface details, and the 3D face-and-head model requires 
precise facial details to verify the identity and the expression.  

The facial details in the geometric model are shown as tiny-
scale surface deformation, which can hardly be represented by 
the statistical model. We use the face reconstruction algorithm 
based on (Shape From Shading) SFS to generate high-
resolution point cloud model [33]. We use the facial region of 
the full head basic model yielded in Section 2 as a template for 
point cloud matching since the high-resolution point cloud 
model lacks standard grid topology,. After that, the highly-
detailed face model is obtained as the face representation of 
our full face-and-head model. 
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A. ILLUMINATION OPTIMIZATION 

For the SFS algorithm needs the illumination changes of the 
target object to recover the 3D geometric shape, which 
satisfies the input requirements of our single “in-the-wild” 
image. The principle of SFS is to reversely deduce the 
rendering equation from image information, meanwhile 
recover surface normal vector and depth information of the 
image. We build the high-resolution point cloud model by SFS 
and propose an optimized algorithm for face detail restoration.  

The primary light reflection of “in-the-wild” images are the 
diffuse reflection after absorbed by the skin and the specular 
reflection generated by the skin oily components [5]. In SFS 
rendering equation, some basic conditions are assumed [34] as: 

-- Face surface does not emit itself, the reflection in skin is 
assumed to be Lambert reflection and specular reflection, and 
the albedo is known; 

-- The light spot is unique, and its luminance and position 
are known; 

-- The image condition is the orthogonal projection. 
The Lambert-light model [34] can be represented by: 

( , ) ( )I x y l ρ= ⋅ ⋅ ⋅u n  (8) 

where ( , )I x y  is the pixel value of the image, l is the 
luminance of the light spot, and ρ is the albedo of surface. 

( , , )
x y z

u u u=u  is the light incident direction, and
( , , )

x y z
n n n=n  is the normal vector to the surface. According 

to the spherical harmonic function, the Lambert model pixel 
value in the image can be obtained by: 

1 1( , ) ( , ) ( ( , ))I x y x y L Y x yρ= ⋅ ⋅ n
 

 (9) 

where 1L


 is the Spherical harmonic function of incident 
direction and the light spot luminance, and we represent the 
vector product of the surface normal as ( ( , ))Y x yn


. Similarly, 

the specular model pixel value can be represented by: 

s
2 ( , ) ((2 ) )I x y k l L L= ⋅ ⋅ ⋅ ⋅ −n n  (10) 

where k  is the specular reflection coefficient, L  is the unit 
vector of incident light which proportioned to the luminance 
and distance of the light spot, and s  is the specular index 
related to the intensity of the highlight area of the face [5]. To 
simplify calculating, we use the energy function:  

( )

2

,
( , ) ( , )

l x y face
E I x y x y L Yρ

∈
= − ⋅ ⋅∑

 
 (11) 

( )

2
s

s ,
( , ) ( , ) ((2 ) )

x y face
E I x y k x y l Y L Y L

∈
= − ⋅ ⋅ ⋅ ⋅ −∑

 
 (12) 

where
l

E represents the energy function of the Lambert 
reflection model, and sE is the Specular reflection energy 
function. The light rendering model R  is acquired by: 

s(1 )
l

R w E wE= − +  (13) 

where w is the luminance weight and [ ]0,1w∈ . Additionally, 
the input image pixel values are consistent in this circumstance, 
and the SFS rendering model is obtained by:  

FIGURE 3.  Some illustrations of the 3D face mesh model after mesh 
subdivision.  
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The depth corresponding to the pixel coordinates can be 
computed by partial differential equations after obtaining the 
normal vector corresponding to each pixel in the face region. 
We have optimized the lighting rendering model in the process 
of high-resolution facial model generation. It has a great effect 
on the display of facial details (wrinkles, expressions, et al.), 
which is better than the current advanced algorithms in 
runtime. 

B. HIGHLY-DETAILED FACE MODEL 

To make the point cloud model match better, the orthogonal 
projection is used to stretch the parameterized face plane 
extracted from the basic model, and the basic model is 
converted into the high-resolution model by mesh subdivision 
algorithm. The Butterfly Subdivision algorithm is employed 
to increase the vertices on the basic model while the original 
grid vertices were kept unchanged. The added vertices were 
located in the triangle of the plane grid, it can be found from 
the original model that contained the points of the triangular 
grid. The mesh model after subdividing is shown in Fig. 3, and 
we utilize various characters and expressions to demonstrate 
the effect of mesh subdivision.  

Besides, the high-resolution face model after mesh 
subdivided needs to be padding with the point cloud structure 
to show the facial details. The spatial point cloud needs to be 
matched which is obtained by mesh subdivision and the 
Iteration Closest Point (ICP) algorithm, the process can be 
expressed as:  

2

mp i p

i

D v v− = −∑  (15) 

2

laplacian i

i

E Hv=∑  (16) 

where mpD −  represents the minimum distance from the vertex 

in the template to the vertex matched to point cloud, 
i

v

symbolize the vertices in the face model, and 
pv  is the vertices 

in the point cloud. Furthermore, laplacianE is the Laplace regular 

term of the mesh without deformation. The function means the  
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FIGURE 4.  An illustration of the cloud point padding effect. Figure (a) 
shows the high-resolution model, Figure (b) is the overlapped cloud 
point, Figure (c) shows the highly detailed model after padding, and 
Figure (d) is the highly-detailed model after texture mapping. 

 
 
vertex will be iterated and converged until matched. The 
specific ICP step is to find the nearest point in the cloud and 
reverse the corresponding point in the model. We can see the 
cloud point padding effect in Fig. 4, the face mesh model after 
subdivided accurately matches facial details and local 
deformation details.  

C. MODEL INTEGRATION 

Once we have obtained the full head basic model and the 
highly-detailed model in the former section, the assignment of 
this step is to integrate the highly-detailed face model with the 
full head basic model.  

Our method is supposed to remove the face region in the 
full head basic model and replace this area with the highly-
detailed face model. The discarded part (see in Fig. 5) is 
adjusted according to the scale of the detailed model, it can be 
referred to the extracted area in Fig. 4. To ensure the 
consistency of the vertices between those two models, a 
transitional mesh gap is appended between the full head basic 
model and the highly-detailed model. The face boundary is 
extracted and mapped the two boundary vertices to the plane. 
This gap is generated by the Delaunay method to integrate two 
models with triangulation, and the vertices in the gap are 
processed by Laplace smoothing algorithm. The processing 
diagram is shown in Fig. 5, we can see that the integrated 
model is smooth and the face details finely maintained. 

V. TEXTURE GENERATION 

After integrating the full face-and-head model, mapping the 
panoramic texture to the mesh model will increase the realism 
of the model. However, it is difficult to synthesize the 
panoramic UV texture from a single face image since the 
essential texture information such as profile and the 
craniofacial region were lost due to the perspective occlusion. 
To solve this, we design an effective framework to generate 
the panoramic UV texture with the optimized generative 
adversarial network. Moreover, we have also collected 
sufficient UV texture data, some textures are selected from 
access databases, and some others are scanned by our 3D 
professional scanner. In this section, we mainly introduce our 
texture generation network structure and the experimental 
configuration.  

FIGURE 5.  The process of the high-detailed face model and the basic 
full head model integrating. The first figure is the full head basic model 
after displaced the face region, and the second figure is the highly-
detailed face model. The third figure shows the integrating process, and 
the last figure is the integrated model.  

 

A. UV TEXTURE GENERATION FRAMEWORK 

Some 3D face alignment methods establish the connection 
between 3DMM and UV map, the facial UV map can be 
generated by sampling 2D image with a fitted 3D face model. 
Besides, methods about using framework based-GAN to 
extract the facial UV map[29] from images are proposed 
recently. Spired by these approaches, we design a modified-
GAN framework to generate corresponding UV panoramic 
texture maps from “in-the-wild” images. This network 
structure includes a VAE module, a generator module, and 
two discriminators with different purposes.  

In the GAN model, the data can be straightforward sampled 
without a present distribution, therefore, the real data can be 
approximate from the training process. Nevertheless, the 
training process of the GAN model is uncontrollable, the 
samples generated from the GAN are often different from the 
real image, especially for the UV texture images with complex 
pixels and high feature entanglement. The feature of the VAE 
is to add constraints to the encoder, and the encoder is subject 
to the latent variable of the unit Gaussian distribution [31]. On 
the other hand, the output image generated by the VAE is 
blurred because of the input noise and coarse loss function 
MSE (Mean Square Error). We also use the unsupervised 
adversarial training of the GAN network to improve the 
constrained effect of the VAE module and create the instances 
more realistic.  

Our texture generation module mainly consists of four parts: 
the encoder module is used to map the input image to the latent 
vector; the generator network module generates the face 
texture image according to the latent vector; the discriminator 
D is used to identify the authenticity of the generated UV 
texture; and the classifier network module is used to detect the 
consistency of the face landmark in the local with the input 
texture parameters. Fig. 6 illustrates our network architecture.  

1) GENERATION MODULE 

We project the input face image to a latent vector by the 
encoder module, and the generator is used to reconstruct the 
original pixels which match the characteristics of the input 
image with the latent vector. The relationship between the 
latent space and the input image can be established by the 
Encoder and the GAN module.  

(a) (b) (c) (d)
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FIGURE 6.  The pipeline of our texture generation network architecture. It consists of one Encoder, one Generator, and two Discriminators. The 
Encoder takes the “in-the-wild” face image and some texture parameters extracted from (2) and (6) in section III as input. The Generator outputs a UV 
texture based on the mixed parameter vector. Two discriminators have different characteristics and are respectively used to distinguish feedback.  

 

 

We add texture parameters of the texture PCA model in 
section III as the conditional attributes before the encoder 
which can promote the accuracy of the discriminator, as well 
as making the GAN network more controllable. The 
optimizing process of the generator module can be formulated 
as minimizes the per-pixel Euclidean distance between the 
synthetic texture and the sample texture corresponding to the 
latent parameters. The new instances can be constructed by 
pixel-wise 2l  norm as the generation loss: 
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where ( , )I x y  and ( , )I x y
∗  respectively symbolize the pixel 

of the generic texture and the pixel of the synthetic texture. Cf

and Df  are the features of an intermediate layer of global 
discriminator network and local face discriminator network.  

2) DISCRIMINATION MODULE 

In the pre-trained GAN network, the discriminators with 
different features are learned to validate the genuineness of the 
generated texture [29]. The discriminator module consists of a 
global discriminator and a face landmark classifier, where the 
global discriminator is used to estimate the authenticity of the 
UV texture images, and the landmark classifier is used to 
verify the identity of the main face region. The criterion of the 
global discriminator evaluation process is that the UV texture 
generated according to the texture parameters is true and 
consistent with the UV map standard. Meanwhile, the 
combined area of the central face and the edge is consistent 
and diverse. To achieve this, the correlated distribution of the 
discriminator can be formulated as:  
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  (18) 

where ( )dP x ( )dP y ( )P c  are the distribution of global UV 
texture, local UV texture, and the PCA texture parameters 
correspondingly.  

3) LANDMARK DETECTION CLASSIFICATION 

We employ the face recognition network [35] to obtain the 
identity-related features of the face region in the generated UV 
texture map. The network is pre-trained and used to detect 
whether the central face area in the generated UV texture is 
consistent with the ground truth. The cosine distance between 
the landmark of the input face image and the generated UV 
texture face region is calculated as the identity loss function: 
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where m  is the batch size, n  is the number of the training 
samples. 512

ix ∈  and 512
iy ∈  indicates the feature vector 

of the input face image and the feature vector generated by the 
network model. yic  is the iy -th class feature center and the λ  
is the weight of the center loss. We take =0.1λ  in our 
experiment since it is beneficial to leverage this loss to 
maintain identity in the synthetic texture [29]. The face 
landmark detect score of a pair of testing image is calculated 
according to cosine similarity between the two feature vectors 
can be referred to [13].   

For the principle of discriminator and classifier network 
structures, please refer to [31] and [29]. However, CVAEGAN 
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recovers the image in a specific category with optional drawn 
values on a latent attribute vector by transforming the fine-
grained category label into the resulting generative model [31]. 
UVGAN is to fill the incomplete textures with random noise 
and distinguish real and fake. In the experiment, we preserve 
the face landmark consistent with the “in-the-wild” face image. 
In other parts (i.e., ears, profile, part of the hair, and the neck 
region), the network generates the novel content based on the 
original attributes. 

4) LOSS FUNCTION OF THE NETWORK 

The final loss function of the UV texture GAN model is a sum 
of the aforementioned losses: 

= G G D D id idL L L Lλ λ λ+ +  (20) 

, ,G D idλ λ λ are the weights to balance the final loss function 
leverage the different modules. We empirically fix the weights 
as 2 31, 5 10 , 10G D idλ λ λ− −= = × = .  

B. CONFIGURATION AND DATASETS 

We collect the UV textures in useful datasets, including the 
WildUV dataset which contains nearly 2000 texture images of 
individuals with different identities and 5638 unique facial UV 
texture maps. Besides the WildUV dataset, the other part of 
texture data is obtained by our laboratory and partner 
companies using professional 3D scanning equipment. About 
400 testers with different identities (250 males, 150 females) 
which provides 2000 various UV texture maps. Moreover, we 
deploy the data augmentation on perfect texture images in the 
database. In the end, there are a total of 10143 texture samples 
in the experiment.  

In the network structure, the encoder and generator module 
follow [36] and employs the fully convolutional cascaded 
form structure, and skip connections between corresponding 
layers in the encoder and generator module are made. 
Subsampling is used in Conv and Pooling layers for the input 
images and the latent vector dimension is fixed to 256. We 
cascade two contiguous layers at the end of the encoder for 
merging the texture parameters with the sub-sampled input 
image. The generator and the encoder are linked by two fully 
connected layers, followed by 6 up-sampled deconvolution 
layers and corresponding filters where the convolution layer 
includes 256,128 and 64 channels [37]. We resize the input of 
the Alexnet framework [38] to 256*256 as our discriminator 
module and utilize the batch normalization layer after the 
convolution layers. 

For the processing of the UV texture, our initial input is “in-
the-wild” face image in optional size. In this experiment, the 
test image size we select from the CelebA-HQ is 512*512. We 
resize the image to 256*256 as the input since the standard size 
of the UV texture samples is 597*377. The face region is 
cropped in 128*128 which is centered with the nose tip. The 
network is deployed with Tensorflow. We train the network 
for 200 epochs, batch size is 16, and the learning rate is 0.001. 

FIGURE 7.  The illustration of the UV texture mapping. The first figure is 
the plane projection of our mesh model, the second figure is the 
panoramic UV texture generated by our network, the last figure shows 
the process of the face organic components padding.  

 

C. MAPPING OPTIMIZATION 

The full face-and-head model require rendering once we have 
obtained the panoramic UV texture. Our method is to calculate 
the texture coordinates of each vertex in the 3D model and 
map the texture to the vertex based on UV mapping.  

The texture information is stored in coordinate form in UV 
texture plane, and each coordinate T is corresponding to the 
vertex in 3D space. We can define a mapping function through 
the correspondence among the coordinates of the UV texture 
plane and the vertices of the 3D model, and the UV texture 
pixels can be matched with the 3D full head model by the 
mapping function [39]. The mapping function can be 
formulated as: 

uv c

uv c

T (I )

: I

t

t→

=℘
℘

，

 (21) 

I uv is the texture image, ct  is the texture coordinate in the UV 
image plane, : I uv ct→℘  represent the project correlation 
between the corresponding coordinates between the UV space 
and the texture image.  

Since the profile and back region in our panoramic UV 
texture is generated by inference, some deviations may appear 
between the textures to the mesh model. We make some 
appropriate adjustments before UV mapping to avoid this 
deviation. Expanding the mesh model under the panoramic 
texture, and align the expanded mesh according to some 
landmark point which is labeled by us. The texture coordinates 
corresponding to the vertices in the 3D mesh model are 
acquired by projection. It can decrease the project offset 
between the UV texture and the mesh model, and the 
projection effect will be better.  

To make the high-fidelity model, the artificial organic 
components are used in the 3D model. Since the ear and the 
teeth part are unimportant biological feature regions, we 
conduct the ear model as a generic model by statistical 
optimization from the full head basic model in section 3.  

The component of the facial organs (including eyes, teeth, 
et al.) have been accomplished manually. The texture of the 
iris is received by reshaping the largest ellipse inside the 
projection of the eye region to the most frontal input face 
image [17]. The main process of the grid expansion is shown 
in Fig. 7. 
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FIGURE 8.  Comparison of the complete textures between our framework and other texture generation methods.  

 

VI. EXPERIMENTS AND EVALUATIONS 

A. EXPERIMENTS 

Our full face-and-head model is a multi-aspects synthesis, 
including full-head model reconstruction, highly-detailed face 
model reconstruction, and panoramic texture map generation. 
We first show the generated models in each process, 
subsequently, evaluate the final results with various methods. 
Under the hardware configuration of this experiment (memory 
16G, CPU 4.0 Hz, GPU NVIDIA 2080TI), the average time 
to recover a full face-and-head model from a single “in-the-
wild” face image is about 12500 ms. We show the output of 
each step and compare it with the state-of-the-art method in 
Fig. 8 and Fig. 9.  

 

B. EVALUATIONS 

In this section, we follow the brief description of the pipeline 
(refer to Fig. 1) to conduct our experiments. The results of each 
step are visualized as illustration, we can check the output 
from the illustration respectively. 

We mainly estimate the results of panoramic texture 
generation, and then mapped the texture to the synthesized full 
face-and-head model for visual comparison. In the experiment, 
we use the single frontal face image in the CelebA dataset as 
the input, and the result generated from each segment of the 
experiment is derived from the same frontal face image. To 
prove the efficiency of our texture generation network 
architecture, we first compare the results of UV texture 
generation in the following 1) section. Apart from this, we use  
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FIGURE 9.  Results of the visual comparison with other methods and the commercial application. The first column is the input images, and the other 
columns are the results of the corresponding method in multi-view.  

 
 
the standard metrics to quantitatively evaluate the texture 
results from the various methods in 2) section. For the effect 
evaluation of the complete model with texture, we visualize 
the final results under multi-perspectives from other methods 
and applications in the following 3) section.  

1) UV TEXTURE EVALUATION 

We compare the UV texture generated in section V with the 
results produced by UVGAN [29] and MVF-Net [24]. Among 
them, the object of UVGAN is similar to ours to generate 
panoramic UV textures. In [24], output is the frontal texture 
generated by the state-of-the-art 3DMM regression method. 
The MVF-Net texture is just appropriate for the facial region 
generated by the 3DMM method and unable generalize to the 

full face-and-head model. We use it as a comparison sample 
of the facial region recover effect. For the subjective 
evaluation of our results with other state-of-the-art methods, 
we can refer to Fig. 8. As shown, the first row is the input 
image, we take some “in-the-wild” frontal face image as input 
to compare the texture maps obtained by different methods. 
The second row below the input images is the texture acquired 
from the MVF-Net, those texture maps fit well in albedo and 
facial feature details. However, the texture map obtained by 
the MAF-Net only has the information of the visible area in 
the input image and is no longer applies to the full head model 
mapping. In addition, some missing spots and deformation 
occur in the shadow and self-occlusion regions. Output of the  
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TABLE 1.  Average PSNR and SSIM comparison 

 

Algorithm MVF-Net UVGAN Ours 

PSNR(UV) - 28.5 29.4 
SSIM(UV) - 0.912 0.930 

PSNR(center) 29.3 28.7 29.5 

SSIM(center) 0.923 0.919 0.952 

 
UVGAN are shown in the third row, the panoramic UV 
texture can be used in full face-and-head model mapping and 
the details in the missing part is inferred to be more precise. 
Nonetheless, this method has defects in the surface albedo, 
which caused the skin color of the obtained UV texture to be 
inconsistent with the original input. This might be caused by 
the lack of face texture parameters in the UVGAN prediction 
process. Our results are shown in the fourth row, the 
panoramic UV texture generated by our network maintains the 
identity and expression, as well as precisely predicts the 
texture information of the invisible region. Compared to 
UVGAN, our method create a high-fidelity model, and 
recovers a wider region (e.g., the hair and the neck part). The 
overall effect is more realistic, surface details and the skin in 
particular. 

2) QUANTITATIVE EVALUATION 

To quantitatively evaluate the texture results from various 
methods, we employ the peak signal-to-noise ratio (PSNR) 
and structural similarity index (SSIM) metrics to evaluate the 
quality of the textures. The PSNR measures the difference 
between the pixel values, and the SSIM estimates the 
similarity between the two results. We compute the metrics 
between the generated textures and the ground truth to 
compare the reliability of the invisible region which is 
represented by PSNR (UV) and SSIM (UV) in Tab.1. 
Meanwhile, we measure the metrics of the facial center area 
among the outputs and the original images which is indicated 
by PSNR (center) and SSIM (center) in Tab. 1. Note that the 
top two rows of the 3DMM column are empty as the texture 
generated by 3DMM is incomplete. In Tab.1, we show the two 
metrics between each methods, it can be seen that the texture 
generated by our method is better than other methods in both 
metrics.  

3) EFFECT EVALUATION 

To demonstrate the effect of our full face-and-head model is 
better than the results of other face modeling methods, we 
visually compare the complete model from multi-perspective. 
In Fig. 9, we can see that both GANFIT, Tran [4]methods, and 
the commercial application FaceGen recovers the frontal face 
model well. Those models generated by the GANFIT and Tran 
are incomplete models, which just has a facial part. Under the 
perspective in profile, some unexpected irregular spots 
emerged on the nose corner from the GANFIT model. The 
reason may be information loss which caused by the self-
occlusion and the light shadow of the original image. The 
result built by Tran method also performs well in the frontal 
facial area, but some pixel blur and texture stretching occurs 

in the profile. In addition to the component of the facial organs 
(eyes, teeth, and tongue, et al.), those two comparative 
methods adopt UV texture as the covering layer rather than the 
artificial components (GANFIT discards the mouth 
components) which may lack stereoscopy. Furthermore, we 
join a comparison with the current commercial solution 
FaceGen. The result built by FaceGen is a full face-and-head 
model that is relatively complete in structure. However, 
FaceGen just recovers the texture of the face center region, it 
lacks the essential surface information, as well as in the cheek 
and forehead parts where are visible in the input image. 
Moreover, those models from FaceGen are identical in 
structure and have the same face shape and size in Fig. 9, 
because of the modeling process is based on a general model. 
In contrast, our models maintain individual structure features 
well, and the panoramic texture perfectly fulfills the entire 
surface of the model even in the profile, back, and the top of 
the head region. In general, our result is more fine and 
photorealistic than other comparative methods.  

VII. CONCLUSION 

In this paper, we introduce a method that generates the full 
face-and-head model with photorealistic texture from a single 
“in-the-wild” face image. The pipeline incorporates multiple 
effective processes to extract input image information for 3D 
model reconstruction, and the invisible region texture 
information is recovered by our data-driven VAEGAN 
network with a large-scale UV texture dataset. From the 
evaluation, we demonstrate that our full face-and-head model 
performs better than other “state-of-the-art” methods under the 
equivalent circumstances. Our model exhibits an 
unprecedented level of detail and realism in the experiment, it 
will provide some artistic inspirations to this field.  

LIMITATIONS AND FUTURE WORK 

In the texture generation module, our network preserves the 
texture of the facial area well. But for some hair and neck 
regions, the network is sensitive to the pixel variations (e.g., 
illumination and gray hair, et al.), this may result in the 
predicted texture in those regions are quite different from the 
original image. We will try to append some specific noise in 
the training process to address this matter in the future work. 
On the other hand, our full face-and-head model does not 
involve the reconstruction of the hair. We utilize the texture to 
restore the visual effect of some male hairstyles like short hair 
or bald condition, but our approach performs weird when the 
hairstyle is complex. For the different physical characteristics 
of the hair and the head, the topology structure is also 
inconsistent, and those two parts are modeled separately in the 
current method. Our future work will concern on the hair 
modeling, combining the hair part with our full face-and-head 
model. One possible solution could be mesh modeling based 
on the hairstyle data-driven and mapping with the hair texture. 
We will verify the feasibility of this inspiration and hope to 
use it for the 3D avatar creation.  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031886, IEEE Access

 Yangyu Fan et al.: Full Face-and-Head 3D Model with Photorealistic Texture 

 9 

REFERENCES 
[1] L. Hu et al., "Avatar digitization from a single image for real-

time rendering," ACM Transactions on Graphics, vol. 36, no. 6, 
p. 195, 2017. 

[2] M. Sela, E. Richardson, and R. Kimmel, "Unrestricted Facial 
Geometry Reconstruction Using Image-to-Image Translation," 
2017 Ieee International Conference on Computer Vision (Iccv), 

2017. 
[3] A. Tewari et al., "FML: Face Model Learning from Videos," (in 

English), 2019 Ieee/Cvf Conference on Computer Vision and 

Pattern Recognition (Cvpr 2019), pp. 10804-10814, 2019. 
[4] L. Tran, F. Liu, and X. Liu, "Towards High-Fidelity Nonlinear 

3D Face Morphable Model," in 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition (CVPR), 2019. 
[5] T. Li, T. Bolkart, M. J. Black, H. Li, and J. Romero, "Learning a 

model of facial shape and expression from 4D scans," ACM 

Transactions on Graphics, vol. 36, no. 6, pp. 1-17, 2017. 
[6] J. Booth, A. Roussos, S. Zafeiriou, A. Ponniah, and D. Dunaway, 

"A 3D Morphable Model learnt from 10,000 faces," (in English), 
2016 Ieee Conference on Computer Vision and Pattern 

Recognition (Cvpr), pp. 5543-5552, 2016. 
[7] J. R. Tena, F. De la Torre, and I. Matthews, "Interactive Region-

Based Linear 3D Face Models," (in English), Acm Transactions 

on Graphics, vol. 30, no. 4, Jul 2011. 
[8] A. E. Ichim, S. Bouaziz, and M. Pauly, "Dynamic 3D Avatar 

Creation from Hand-held Video Input," (in English), Acm 

Transactions on Graphics, vol. 34, no. 4, Aug 2015. 
[9] T. Bagautdinov, C. L. Wu, J. Saragih, P. Fua, and Y. Sheikh, 

"Modeling Facial Geometry using Compositional VAEs," (in 
English), 2018 Ieee/Cvf Conference on Computer Vision and 

Pattern Recognition (Cvpr), pp. 3877-3886, 2018. 
[10] Z. Liu, P. Luo, X. Wang, and X. Tang, "Deep Learning Face 

Attributes in the Wild," in IEEE International Conference on 

Computer Vision, 2016. 
[11] V. Blanz, T. J. I. T. o. P. A. Vetter, and M. Intelligence, "Face 

Recognition Based on Fitting a 3D Morphable Model," IEEE 

Transactions on Pattern Analysis ＆ Machine Intelligence, vol. 
25, no. 9, pp. 1063-1074, 2003. 

[12] V. Blanz, T. Vetter, and A. J. a. s. Rockwood, "A Morphable 
Model for the Synthesis of 3D Faces," ACM Siggraph, pp. 187-
194, 2002. 

[13] P. Paysan, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter, 
"A 3D Face Model for Pose and Illumination Invariant Face 
Recognition," in 2009 Sixth IEEE International Conference on 

Advanced Video and Signal Based Surveillance, 2009. 
[14] D. S. Ma, J. Correll, and B. Wittenbrink, "The Chicago face 

database: A free stimulus set of faces and norming data," (in 
English), Behavior Research Methods, vol. 47, no. 4, pp. 1122-
1135, Dec 2015. 

[15] Chen et al., "FaceWarehouse: a 3D facial expression database 
for visual computing," IEEE transactions on visualization and 

computer graphics, 2014. 
[16] J. Booth, A. Roussos, A. Ponniah, D. Dunaway, and S. J. I. J. o. 

C. V. Zafeiriou, "Large Scale 3D Morphable Models," 
International Journal of Computer Vision, 2018. 

[17] S. Ploumpis, E. Ververas, E. O. Sullivan, S. Moschoglou, S. P. 
J. I. T. o. P. A. Zafeiriou, and M. Intelligence, "Towards a 
complete 3D morphable model of the human head," IEEE 

Transactions on Pattern Analysis ＆ Machine Intelligence, vol. 
PP, no. 99, pp. 1-1, 2020. 

[18] H. Dai, N. Pears, W. Smith, and C. Duncan, "A 3D Morphable 
Model of Craniofacial Shape and Texture Variation," (in 
English), 2017 Ieee International Conference on Computer 

Vision (Iccv), pp. 3104-3112, 2017. 
[19] L. Tran and X. Liu, "Nonlinear 3D Face Morphable Model," in 

2018 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2018. 
[20] S. Ploumpis, H. Y. Wang, N. Pears, W. A. P. Smith, and S. 

Zafeiriou, "Combining 3D Morphable Models: A Large scale 
Face-and-Head Model," (in English), 2019 Ieee/Cvf Conference 

on Computer Vision and Pattern Recognition (Cvpr 2019), pp. 
10926-10935, 2019. 

[21] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black, "Generating 
3D Faces using Convolutional Mesh Autoencoders," in 2018 

ECCV 2018, pp. 725-741. 
[22] V. F. Abrevaya, S. Wuhrer, and E. Boyer, "Multilinear 

Autoencoder for 3D Face Model Learning," (in English), 2018 

Ieee Winter Conference on Applications of Computer Vision 

(Wacv 2018), pp. 1-9, 2018. 
[23] S. Cheng, M. Bronstein, Y. Zhou, I. Kotsia, M. Pantic, and S. 

Zafeiriou, "MeshGAN: Non-linear 3D Morphable Models of 
Faces," 2019 CVPR, 2019. 

[24] F. Z. Wu et al., "MVF-Net: Multi-View 3D Face Morphable 
Model Regression," (in English), 2019 Ieee/Cvf Conference on 

Computer Vision and Pattern Recognition (Cvpr 2019), pp. 959-
968, 2019. 

[25] Y. Feng, F. Wu, X. Shao, Y. Wang, and X. Zhou, "Joint 3D Face 
Reconstruction and Dense Alignment with Position Map 
Regression Network," in European Conference on Computer 

Vision, 2018. 
[26] C. C. H. W. Y. W. T. S. KunZhou, "Real-time Facial Animation 

with Image-based Dynamic Avatars," ACM Transactions on 

Graphics, 2016. 
[27] L. W. Hu et al., "Avatar Digitization From a Single Image For 

Real-Time Rendering," (in English), Acm Transactions on 

Graphics, vol. 36, no. 6, Nov 2017. 
[28] S. Saito, L. Y. Wei, L. W. Hu, K. Nagano, and H. Li, 

"Photorealistic Facial Texture Inference Using Deep Neural 
Networks," (in English), 30th Ieee Conference on Computer 

Vision and Pattern Recognition (Cvpr 2017), pp. 2326-2335, 
2017. 

[29] J. Deng, S. Cheng, N. Xue, Y. Zhou, and S. Zafeiriou, "UV-GAN: 
Adversarial Facial UV Map Completion for Pose-invariant Face 
Recognition," 2017 CVPR, 2017. 

[30] B. Gecer, S. Ploumpis, I. Kotsia, and S. Zafeiriou, "GANFIT: 
Generative Adversarial Network Fitting for High Fidelity 3D 
Face Reconstruction," 2019 CVPR, 2019. 

[31] J. M. Bao, D. Chen, F. Wen, H. Q. Li, and G. Hua, "CVAE-GAN: 
Fine-Grained Image Generation through Asymmetric Training," 
(in English), 2017 Ieee International Conference on Computer 

Vision (Iccv), pp. 2764-2773, 2017. 
[32] W. Gao, X. Zhao, Z. Gao, J. Zou, P. Dou, and I. A. Kakadiaris, 

"3D Face Reconstruction From Volumes of Videos Using a 
Mapreduce Framework," IEEE Access, vol. 7, pp. 165559-
165570, 2019. 

[33] P. Huber, G. Hu, R. Tena, P. Mortazavian, and J. Kittler, "A 
Multiresolution 3D Morphable Face Model and Fitting 
Framework," in Visapp, 2016. 

[34] C. Li, K. Zhou, and S. Lin, "Intrinsic Face Image Decomposition 
with Human Face Priors," in European Conference on Computer 

Vision, 2014. 
[35] J. K. Deng, J. Guo, N. N. Xue, and S. Zafeiriou, "ArcFace: 

Additive Angular Margin Loss for Deep Face Recognition," (in 
English), 2019 Ieee/Cvf Conference on Computer Vision and 

Pattern Recognition (Cvpr 2019), pp. 4685-4694, 2019. 
[36] O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional 

Networks for Biomedical Image Segmentation," (in English), 
Medical Image Computing and Computer-Assisted Intervention, 

Pt Iii, vol. 9351, pp. 234-241, 2015. 
[37] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, 

"Autoencoding beyond pixels using a learned similarity metric," 
presented at the Proceedings of The 33rd International 
Conference on Machine Learning, Proceedings of Machine 
Learning Research, 2016. Available: http://proceedings.mlr.pres 

[38] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet 
Classification with Deep Convolutional Neural Networks," (in 
English), Communications of the Acm, vol. 60, no. 6, pp. 84-90, 
Jun 2017. 

[39] K. Genova, F. Cole, A. Maschinot, A. Sarna, and W. T. Freeman, 
"Unsupervised Training for 3D Morphable Model Regression," 
in 2018 IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), 2018. 
 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3031886, IEEE Access

 Yangyu Fan et al.: Full Face-and-Head 3D Model with Photorealistic Texture 

 9 

Yang-Yu Fan (M’76–SM’81–F’87) received 
The M.S. degree in Electromechanical 
Engineering from Shaanxi University of Science 
and Technology, Xi’an, China, in 1992, and the 
Ph.D. degree in Acoustics Signal Processing from 
Northwestern Polytechnical University, Xi’an, 
China, in 1999. He is currently a Professor in the 
School of Electronics and Information, 
Northwestern Polytechnical University. He has 
authored or coauthored numerous papers that 
appeared in various publications, including 

Neurocomputing, Signal Processing, Image and Vision Computing, IEEE 
Transactions on Antennas and Propagation, Multimedia Tools and 
Applications, etc. His research interests include image processing, pattern 
recognition and virtual reality.  
 

 
Yang Liu received the M.S. degree in 
Electronics and Information Engineering from 
Northwestern Polytechnical University, Xi’an, 
China, in 2018. He is currently a Ph.D. candidate 
in the School of Electronics and Information, 
Northwestern Polytechnical University, Xi’an, 
China. His research interests include image 
processing, virtual reality, computer vision, 
machine learning and their applications to 3D 
face reconstruction. 

 
 

Guoyun Lv received the B.S degree in applied 
physics from National University of Defense 
Technology. And Ph.D. degree in computer 
application from Northwestern Polytechnical 
University in 2008. From 1996 to 2006, he was a 
Research scientist in different research institute 
and company for signal processing, Pattern 
recognition, Sound and photoelectric warning 
system, Communications and electronic 
information systems, Embedded System and so 

on. Since 2008, he was been associate professor in School of Electronics 
and Information, Northwestern Polytechnical University. His research 
interest includes Signal and Information Processing, Audio and video image 
processing, artificial intelligence, Target Detection and Identification, 3D 
virtual reality and augmented reality, multiple heterogeneous information 
fusion. 
 
 

Shiya Liu. director of the Virtual reality content 
production Center, Director of Qingdao Star 
Shark Virtual reality Technology Research 
Institute, researcher of the United Nations 
Institute of Digital economy, member of the 
Information and Communication economy 
expert Committee of the Ministry of Industry and 
Information Technology, Focus on the 
integration, innovation and application of high 
and new technologies in the field of electronic 

information and communication, such as VR/AR, 4K/8K, AI, 5G, 
microelectronics.  
 

 
 
 

Gen Li received the B.S. degree in Electronics 
and Information Engineering from Northwestern 
Polytechnical University, Xi’an, China, in 2018. 
He is currently a M.S. candidate in the School of 
Electronics and Information, Northwestern 
Polytechnical University, Xi’an, China. His 
research interests include virtual reality, image 
processing, computer graphic, and their 
applications to the hair reconstruction. 

 
 

 
 

Yanhui Huang received the B.S. degree in 
Electronics and Information Engineering from 
Northwestern Polytechnical University, Xi’an, 
China, in 2008, the M.S. degree in Electronics 
and Information Engineering from Northwestern 
Polytechnical University, Xi’an, China, in 2011, 
and the Ph.D. degree in Electronics and 
Information Engineering from Northwestern 
Polytechnical University, Xi’an, China, in 2018, 
He is currently an Asistant Researcher in 
miHoYo company, Shanghai, China. His 

research interests include computer graphic, virtual reality, computer vision, 
machine learning and their applications to 3D avatar creation. 


