
 Open access  Journal Article  DOI:10.1364/AO.42.003800

Full-field birefringence imaging by thermal-light polarization-sensitive optical
coherence tomography. I. Theory — Source link 

Julien Moreau, V. Loriette, Albert-Claude Boccara

Institutions: Centre national de la recherche scientifique

Published on: 01 Jul 2003 - Applied Optics (Optical Society of America)

Topics: Optical coherence tomography, Optical tomography, Birefringence, Achromatic lens and
Interference microscopy

Related papers:

 
Full-field birefringence imaging by thermal-light polarization-sensitive optical coherence tomography. II. Instrument
and results

 
Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence
tomography with PM fibers

 
Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence
tomography.

 
Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-
sensitive optical coherence tomography.

 Helical computed tomography with feedback scan control

Share this paper:    

View more about this paper here: https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-
4ltdj6lvmi

https://typeset.io/
https://www.doi.org/10.1364/AO.42.003800
https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-4ltdj6lvmi
https://typeset.io/authors/julien-moreau-3quxyhf929
https://typeset.io/authors/v-loriette-5e60ggxo7o
https://typeset.io/authors/albert-claude-boccara-4337wrxlcn
https://typeset.io/institutions/centre-national-de-la-recherche-scientifique-2ew2zhz4
https://typeset.io/journals/applied-optics-21exfu9r
https://typeset.io/topics/optical-coherence-tomography-1qu8wmda
https://typeset.io/topics/optical-tomography-2wt7mu30
https://typeset.io/topics/birefringence-2e0kke4t
https://typeset.io/topics/achromatic-lens-12qftprr
https://typeset.io/topics/interference-microscopy-v4r6sgsu
https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-8astlat2ly
https://typeset.io/papers/determination-of-birefringence-and-absolute-optic-axis-3u6fk9vjy3
https://typeset.io/papers/two-dimensional-depth-resolved-mueller-matrix-2y6pf4nctl
https://typeset.io/papers/depth-resolved-birefringence-and-differential-optical-axis-3j3wlg3sdl
https://typeset.io/papers/helical-computed-tomography-with-feedback-scan-control-3bpn9vqkj5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-4ltdj6lvmi
https://twitter.com/intent/tweet?text=Full-field%20birefringence%20imaging%20by%20thermal-light%20polarization-sensitive%20optical%20coherence%20tomography.%20I.%20Theory&url=https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-4ltdj6lvmi
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-4ltdj6lvmi
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-4ltdj6lvmi
https://typeset.io/papers/full-field-birefringence-imaging-by-thermal-light-4ltdj6lvmi


HAL Id: hal-00624813
https://hal.archives-ouvertes.fr/hal-00624813

Submitted on 19 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full-Field Birefringence Imaging by Thermal-Light
Polarization-Sensitive Optical Coherence Tomography. I.

Theory
Julien Moreau, V. Loriette, A.C. Boccara

To cite this version:
Julien Moreau, V. Loriette, A.C. Boccara. Full-Field Birefringence Imaging by Thermal-Light
Polarization-Sensitive Optical Coherence Tomography. I. Theory. Applied optics, Optical Society
of America, 2003, 42 (19), pp.3800-3810. 10.1364/AO.42.003800. hal-00624813

https://hal.archives-ouvertes.fr/hal-00624813
https://hal.archives-ouvertes.fr


Full-field birefringence imaging by thermal-light

polarization-sensitive optical coherence

tomography. I. Theory

Julien Moreau, Vincent Loriette, and Albert-Claude Boccara

A method for measuring birefringence by use of thermal-light polarization-sensitive optical coherence
tomography is presented. The use of thermal light brings to polarization-sensitive optical coherence
tomography a resolution in the micrometer range in three dimensions. The instrument is based on a
Linnik interference microscope and makes use of achromatic quarter-wave plates. A mathematical
representation of the instrument is presented here, and the detection scheme is described, together with
a discussion of the validity domain of the equations used to evaluate the birefringence in the presence of
white-light illumination. © 2003 Optical Society of America

OCIS codes: 110.4500, 120.5060, 260.1440.

1. Introduction

The presence of point defects inside multilayer opti-
cal coatings is a major source of losses in optical
systems that require low levels of scattering. The
performance of laser gyros and interferometric detec-
tors of gravitational waves is directly affected by the
amount of scattered light that is present; usually
scattering levels larger than a few parts in 106 are not
tolerated.1,2 Lowering the number of scattering de-
fects inside optical coatings is a technical challenge
that requires the development of diagnostic tools in
parallel with optimization of the manufacturing pro-
cesses. The exact localization of point defects inside
a multilayer structure, on the substrate–coating in-
terface, at the interface between layers, or inside lay-
ers could produce useful information on the source of
contamination. However, a single point defect may
scatter only a few parts in 106 of the flux incident
upon the optical component, so a simple tomographic
image of the component’s reflectance would not per-
mit the detection of such a small signal, which would

be completely masked by the specular reflectances of
the various interfaces of the coating. Recently it
was proposed to get rid of the specular reflectance
signals by performing optical coherence tomography
�OCT� measurements on tilted optical components.3

Another solution could be to detect the change of
polarization of the incident light caused by the pres-
ence of nonspherical scattering defects. Birefrin-
gence imaging has already proved to be a highly
efficient way of revealing structures inside various
media such as biological and geological specimens.
Birefringence signals may be affected by chemical,
mechanical, or structural causes, which are usually
barely detectable with polarization-insensitive in-
struments if the causes do not modify the reflectance
of the structure. A combination of polarization mea-
surement and OCT has been successfully used to im-
age birefringent structures in biological tissues.4–12

In these experiments the axial resolution is deter-
mined by the coherence length of the source. Usu-
ally superluminescent diodes are used, with a
coherence length in the 10–20-�m range. The
search for micrometer-scale resolution in classic
�non-polarization-sensitive� OCT has been achieved
either with femtosecond lasers13 or with the addition
of more original superluminescent light sources with
bandwidths ten times larger than those of classic
superluminescent diodes.14 Recently, similar reso-
lution was obtained with thermal light.15 Thermal
light may not be so effective as spatially coherent
light sources in producing high-sensitivity systems,
but it has the advantages of low cost and ease of
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implementation on a standard microscope, and,
above all, permits the use of detector arrays to per-
form full-field microscopy.16–18 To achieve a phase-
sensitive �PS� OCT instrument with micrometer
resolution in three dimensions we chose to use a ther-
mal light source in a polarization-sensitive Linnik
microscope. The detector is a CCD array, and the
detection is based on sine phase-modulation inter-
ferometry.19,20 In this paper we present a mathe-
matical description of our instrument. We show
that, by making two measurements with different
orientations of the polarizing elements, one can char-
acterize the magnitude and direction of birefringence
or of dichroism and simultaneously obtain phase
OCT images, with limited crossover among the vari-
ous parameters. Crossover is induced by the use of
a polychromatic light source. We show how the
spectrum’s shape affects the measurements of topog-
raphy and birefringence and under what hypotheses
the equations that are valid for monochromatic illu-
mination can be corrected to be used with polychro-
matic illumination.

2. Setup

The Linnik microscope �a Michelson interferometer
with microscope objectives in both arms� is the in-
strument of choice to fulfill the requirements of three-
dimensional imaging capabilities, lateral and axial
resolution in the micrometer range, sensitivity to po-
larization,21 and full-field imaging capabilities. The
hardest requirement to fulfill is to achieve axial res-
olution, because it requires working either with high-
numerical-aperture objectives22 or with a broadband
source. The second solution is preferred because
only standard sets of microscope objectives with rel-
atively low numerical apertures and classic illumina-
tion sources can be used. However, in using a
broadband source one has to overcome two difficul-
ties: First, perfectly symmetrical arms are neces-
sary to ensure that the resolution is not spoiled by
dispersion mismatch. Then, as is the case in most
polarization-sensitive interferometers, quarter-wave
plates are present inside the arms. The best achro-
matic quarter-wave plates are Fresnel rhombs, but
their use is difficult in this setup because they shift
the beams laterally. The only other solution is to
use thin achromatic quarter-wave plates, but those
plates are achromatic only over a few hundred nano-
meters. Thermal light sources, such as xenon
lamps, have spectral widths larger than 800 nm,
whereas typical thin achromatic quarter-wave plates
working in the visible spectrum have a spectral width
of 300 nm, which limits the width of the usable light
spectrum and thus reduces the achievable resolution.
Our system is shown schematically in Fig. 1.

3. Measurement Method

In this section we show how we calculate the inten-
sity of the field on the detector and extract informa-
tion from the sample. We start by recalling a few
basic mathematical tools that we shall use through-
out our calculations. We perform the calculations

first for monochromatic and then for broadband illu-
mination. In each case the calculation is divided
into two steps: First we calculate a Jones matrix
that represents the whole interferometer and show
that by making two measurements we can obtain the
necessary information with which to evaluate both
topographic and birefringence signals. Then we
present a measurement method, based on a phase-
modulation technique, that permits the topographic
and birefringence signals to be recovered from a com-
bination of intensity measurements. We always cal-
culate the field intensity on a pixel that images a
finite transverse section of the sample. As the mea-
surement is local �i.e., pixels are independent�, we do
not explicitly write the dependence on transverse co-
ordinates in the equations. In the following calcu-
lations all phase variables are denoted by the Greek
letters � for the phase terms induced by the sample
and � for propagation phase terms; all length vari-
ables are denoted by either � for lengths that char-
acterize the sample or � for lengths of the arms.

A. Basic Mathematical Tools

The basic tools that we use to calculate the state of
polarization of the electromagnetic field in an inter-
ferometer are Jones matrices. We do not present
the theory behind Jones matrix calculus or calcula-
tions of elementary Jones matrices, as they can be
found in many textbooks.23 Jones matrices allow
the amplitude of the transverse optical field emerging
from a polarizing component to be calculated if the
amplitude of the incident transverse field is known.
The fields are represented as vectors on an orthonor-
mal basis �eS, eP�. The directions of the transverse
vectors are chosen depending on the setup geometry.
In the following calculations we refer to S and P
linear polarization states. In the instrument those
directions are fixed by the orientation of a beam split-
ter cube. If the beam splitter were a perfectly non-

Fig. 1. Schematic of the instrument: NPBS, nonpolarizing
beam-splitter cube; AQWPs, achromatic quarter-wave plates; PZT,
piezoactuated translation stage.
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polarizing component, any other directions could be
used; but in practice a so-called nonpolarizing beam
splitter always exhibits some polarization properties,
and those imperfections can be used to align any
other optical axis in the instrument. For example, if
a linearly polarized field is incident upon the beam
splitter, the reflected and transmitted fields will be
slightly elliptically polarized unless the incident field
is perfectly parallel or perfectly perpendicular to the
plane of incidence on the beam splitter’s interface.
It is thus natural to define the S polarization state as
an electric field vector perpendicular to the plane of
incidence on the beam splitter’s interface. The basic
Jones matrices that we need are the following. MS

and MP are the Jones matrices of vertical and hori-
zontal polarizers:

MS � �1 0
0 0� , (1)

MP � �0 0
0 1� ; (2)

MQ is the Jones matrix of a quarter-wave plate with
its fast axis vertical:

MQ � exp�i
�

4��1 0
0 	i� ; (3)

M
 is the rotation matrix of angle 
 in the �eS, eP�
plane:

M
 � � cos 
 sin 


	sin 
 cos 
� ; (4)

MQ
 is the Jones matrix of a quarter-wave plate with
its fast axis making an angle 
 with the vertical axis:

MQ
 � M	
MQ M


� exp�i
�

4�� cos2 
 � i sin2 
 cos 
 sin 
�1 � i�

cos 
 sin 
�1 � i� sin2 
 � i cos2 
 � ;

(5)

MQ45 is the Jones matrix of a quarter-wave plate
with its fast axis at 45° from the vertical axis:

MQ45 �

�2

2
�1 i

i 1� ; (6)

MR is the Jones matrix of a nonbirefringent and non-
dichroic surface with a reflection factor r:

MR � r�1 0
0 1� . (7)

We have chosen to use positive values for the compo-
nents of MR; this means that the reflected field is de-
scribed on the same �eS, eP� basis as the incident field,
although the direction of the wave vector is reversed on
reflection. This choice has no influence on the results,
but it simplifies the calculation because, in this case,
the Jones matrix that represents a polarizing element
with axes that make an angle 
 with the basis vectors
retains its form, independently of the direction of the
field incident upon it. As the goal of the measure-
ment is the detection of changes in electromagnetic
field properties of a completely polarized beam on re-
flection on or inside a sample, we should treat the most
general case of a birefringent, dichroic, and absorptive
sample, and this would lead to the use of a general
Jones matrix.24 However, we are interested chiefly in
the detection of pure birefringence. We thus simplify
our calculations by fully treating only this case. MB is
the Jones matrix of a birefringent sample with reflec-
tion factor r on the basis of its proper axes:

MB � r�exp�	i��B�2�� 0
0 exp�i��B�2��� . (8)

Angle �B is the phase shift between two orthogonal
states of polarization of a field reflected by a struc-
ture inside the sample. Its value depends not only
on the phase shift induced by the reflection on the
structure but also on the birefringence integrated
along the round trip of the beam inside the sample.
Thus �B can be seen not as a local value of birefrin-
gence inside a sample but only as an integrated
signal. Of course this remark also holds for dichro-
ism and topography of buried structures. MB� is
the Jones matrix of a birefringent sample on the �S,
P� basis; the proper axes make an angle � with the
�S, P� axes:
The Jones matrix of a dichroic sample on the basis of
its proper axes is

MD � �rx 0
0 ry

� , (10)

and on the �S, P� basis

MD� � �rx cos2 � � ry sin2 � �rx � ry�sin � cos �

�rx � ry�sin � cos � rx sin2 � � ry cos2 �� .

(11)

In Eq. �11� the reflection factors may be complex; in
this case the sample is also birefringent but the axes
of birefringence are the same as the axes of dichroism.
We use this matrix to represent our sample and, de-

MB� � r�cos2 � exp�	i��B�2�� � sin2 � exp�i��B�2�� 	i sin 2� sin��B�2�

	i sin 2� sin��B�2� cos2 � exp�i��B�2�� � sin2 � exp�	i��B�2��� .

(9)
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pending on the relative phase and magnitude of rx

and ry, we shall present either a dichroic or birefrin-
gent sample.

MbsR and MbsT are the reflection and transmission
matrices, respectively, of a perfect nonpolarizing

beam splitter cube:

MbsR � rbs�1 0
0 1� , (12)

MbsT � tbs�1 0
0 1� . (13)

The Jones vector of a P-polarized field of intensity I is

EP � �I �0
1� . (14)

B. Monochromatic Source

1. Jones Representation of the Arms

To calculate the field amplitude on the detector we
build a single Jones matrix that represents the whole
interferometer, using the elementary Jones matrices
presented in Subsection 3.A. This matrix is the sum
of two matrices, Mref and Msam, that represent, respec-
tively, the reference arm and the sample arm. Al-
though we use a broadband source to obtain the
required resolution, it is useful to start the calculations
with a monochromatic source. In this way we can
deal with much simpler formulas and get better in-
sight into the problem. The broadband source is
treated next.

The Jones matrix of a reference arm of length �ref is

Mref � MbsTMQ
MR MQ
MbsR, (15)

Mref � i�cos 2
 sin 2


sin 2
 	cos 2
�rbstbsrref exp�i�ref�.

(16)

The global phase term �ref represents the phase shift
of the field after a round trip in the reference arm.
Although is should be sensitive to the topography of
the reference mirror as well as to the modulation of
its position, as is explicitly detailed below, the refer-
ence mirror is assumed to be perfectly flat. This

assumption is justified by the fact that in practice the
reference mirror is a superpolished flat with a rms
roughness less than 0.1 nm. Therefore �ref depends
only on the reference mirror’s position, �ref �
4���ref�c. The Jones matrix of the sample arm is

For a birefringent sample rx  ry � 2r cos��B�2� and
rx 	 ry � 	2ri sin��B�2�. The Jones matrix for the
sample arm of length �sam reads as

The global phase term �sam is the phase shift of the
field after a round trip in the sample arm.

2. Field on the Detector for the Monochromatic
Source

The field incident upon the beam splitter is P polar-
ized. To extract the amplitude of the birefringence
�or the dichroism� and the direction of the axes we
must make two measurements with two orientations
of the analyzer. The first measurement is per-
formed with a P-oriented analyzer. The amplitude
of the field on the detector is given by

Edet
�P�

� MP�Mref � Msam� EP. (20)

Using Eqs. �14�, �18�, and �19� in Eq. �20� and using a
perfectly symmetrical beam splitter with rbs � tbs �
�2�2, we obtain

Edet
�P�

�

�I

2 �	rref cos 2
 exp�i�ref�

�
rx � ry

2
exp�	2i��exp�i�sam�� . (21)

The intensity is thus

Idet
�P�

�
I

4
�rref cos 2
�2

�
�rx � ry�

2

4
� rref cos 2
�Re�rx

� ry�cos�� � 2�� � Im�rx � ry�sin�� � 2��� .

(22)

Phase � � �sam 	 �ref is the phase shift between the
two beams. It is different for each pixel. We can
write it by making the topography appear explicitly
as

�� x, y� � �sam � �ref � �z� x, y�. (23)

Mech � MbsRMQ45MS�MQ45MbsT, (17)

Msam �
1

2
��rx � ry�exp�2i�� i�rx � ry�

i�rx � ry� 	�rx � ry�exp�	2i���rbstbs exp�i�sam�. (18)

Msam � i�	sin��B�2�exp�2i�� cos��B�2�

cos��B�2� sin��B�2�exp�	2i���rbstbsr exp�i�sam�. (19)
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The �x, y� coordinates are lateral coordinates on the
sample. �z�x, y� is the classic topography phase sig-
nal, �z�x, y� � 4���z�x, y��c, where �z�x, y� is the
sample topography. �sam � �ref � 4����sam 	 �ref��c
is the phase shift averaged over the �x, y� image field.
It is important to insist on the fact that, if an inter-
ference term is generated by birefringence or dichro-
ism, then its phase depends not only on the direction
of the principal axis � but also on the sample’s topog-
raphy �z. Unless a pure topography map of the sam-
ple is available, it is not possible to extract the value
of the direction of the birefringence–dichroism axes
independently of the value of �z with only one mea-
surement.

The second measurement is performed with an
S-oriented analyzer. In this case we obtain

Edet
�S�

�

�I

2 �rref sin 2
 exp�i�ref�

� i
rx � ry

2
exp�i�sam�� (24)

and, for the intensity,

Idet
�S�

�
I

4 ��rref sin 2
�2
�

�rx � ry�
2

4

� rref sin 2
�Re�rx � ry�sin��� � Im�rx

� ry�cos����	 . (25)

For a dichroic sample we write rx  ry � 2rsam and
rx 	 ry � �r; Eqs. �22� and �25� can be rewritten as

Idet
�P�

�
I

4 ��rref cos 2
�2
�

�r2

4
� rref�r cos 2
 cos��

� 2��� , (26)

Idet
�S�

�
I

4
��rref sin 2
�2

� rsam
2

� 2rrefrsam sin 2
 sin���� . (27)

When the sample is birefringent, rx  ry � 2r
cos��B�2� and rx 	 ry � 	2ri sin��B�2�, Eqs. �22� and
�25� can be rewritten as

Idet
�P�

�
I

4 ��rref cos 2
�2
� �rsam sin

�B

2 �2

� 2rrefrsam cos 2
 sin
�B

2
sin�� � 2��� , (28)

Idet
�S�

�
I

4 ��rref sin 2
�2
� �rsam cos

�B

2 �2

� 2rrefrsam sin 2
 cos
�B

2
sin���� . (29)

Using Eq. �23�, we write the results of the two mea-
surements as

Idet
�P�

� I0
�P�

� A�P� cos��sam � �ref�

� B�P� sin��sam � �ref�, (30)

Idet
�S�

� I0
�S�

� A�S� cos��sam � �ref�

� B�S� sin��sam � �ref�, (31)

with

I0
�P�

�
1

4
I��rref cos 2
�2

� �rsam sin
�B

2 �2� , (32)

A�P�
� 

I

2
rrefrsam cos 2
 sin

�B

2
sin��z � 2��, (33)

B�P�
� 

I

2
rrefrsam cos 2
 sin

�B

2
cos��z � 2��, (34)

I0
�S�

�
1

4
I��rref sin 2
�2

� �rsam cos
�B

2 �2� , (35)

A�S�
� 	

I

2
rrefrsam sin 2
 cos

�B

2
sin��z�, (36)

B�S�
� 	

I

2
rrefrsam sin 2
 cos

�B

2
cos��z�. (37)

To measure the amplitude of the birefringence signal
we must first extract the four values A�P�, B�P�, A�S�,
and B�S�. Then the birefringence amplitude can be
calculated from

tan2��B

2 � � tan	2�2
�
A�P�2

� B�P�2

A�S�2
� B�S�2 ; (38)

the topography from

tan��z� �
A�S�

B�S� ; (39)

and the birefringence direction from

tan�2�� �
A�S�B�P�

� A�P�B�S�

B�S�B�P�
� A�S�A�P� . (40)

The value of �B is of course independent of 
 and, in
most papers that treat polarization-sensitive OCT ex-
periments, 
 � ��8. This configuration is useful if the
birefringence amplitude is unknown and can a priori
take any value. We prefer to leave the value of 

unspecified because in some cases, for example, when
one is testing nonbiological samples, the birefringence
may be small everywhere. In these cases, choosing a
lower value for 
 enhances the weight of the sin��B�2�
terms and thus the signal-to-noise ratio.

3. Modulation

In this last step of the calculation we describe a
practical way to compute the values of A�P�, B�P�,
A�S�, and B�S�. These values can be obtained from
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Eqs. �30� and �31� by use of a different set of values
for �sam � �ref and by calculation of different linear
combinations of those results. Four values are nec-
essary to produce a set of two parameters, A�P� and
B�P� or A�S� and B�S�. One might think that only two
values would be necessary, but, as we make clear
below, two extra parameters appear, a phase shift
and a modulation depth, that need to be evaluated
too. We can change �sam � �ref, for example, by mov-
ing the reference mirror to any of four positions. We
chose to modulate the reference arm’s length sinusoi-
dally with angular frequency �. This signal extrac-
tion method can be used only if the reference mirror’s
position span is shorter than the depth of field of the
microscope objectives; otherwise different positions of
the reference mirror will lead not only to a different
state of interference but also to a different contrast of
the interference signal. An expression of the
FWHM of the contrast function can be found in Ref.
22:

FWHM �
0.6�

1 � cos�arcsin N.A.�
, (41)

where N.A. is the numerical aperture of the objective
and � is the wavelength. In practice the modulation
amplitude is always smaller than this length because
one great advantage of a broadband source is the
possibility of using objectives with a depth of field
large compared to the average wavelength, because
the axial resolution is limited by the coherence
length. By using objectives with numerical aper-
tures smaller than 0.6 we can assume that the con-
trast does not depend on the position of the reference
mirror.

We write �sam � �ref as

�sam � �ref � �0 sin��t � ��, (42)

where �0 is the modulation depth and phase term �
is the phase shift between the reference mirror’s mod-
ulated position and the CCD acquisition sequence.
These two parameters are in practice tunable by elec-
tronic means. The constraint that

�0 � 2� (43)

ensures that the modulation amplitude is small com-
pared to the depth of field of the objective:

sin��sam � �ref� � 2 �
k�0

�

J2k1��0�sin��2k � 1���t

� ���, (44)

cos��sam � �ref� � J0��0� � 2 �
k�1

�

J2k��0�cos�2k��t

� ���. (45)

The CCD array used to image the sample integrates
the signal, so we cannot directly extract the signal at
the modulation frequency. Instead, we use the in-
tegration property of the detector to acquire four con-

secutive images, labeled S1–S4, integrated during
one quarter of modulation period T. Figure 2 is a
simulated signal recorded on one pixel of the CCD
array:

Sq
�P�

� �
�q	1�T�4

qT�4

Idet
�P��t�dt,

Sq
�S�

� �
�q	1�T�4

qT�4

Idet
�S��t�dt. (46)

Substituting Eqs. �42�, �44�, and �30� into Eq. �46�, we
have

Sq
�P�

�
T

4
�I0

�P�
� J0��0� A�P��

�
TA�P�

� �
k�1

� J2k��0�

2k (sin�2k�q
�

2
� ���

� sin�2k��q � 1�
�

2
� ��	)

�
TB�P�

� �
k�0

� J2k1��0�

2k � 1 (cos��2k � 1��q
�

2

� ��� � cos��2k � 1���q � 1�
�

2
� ��	) ,

(47)

and, using Eq. �31�, we obtain a similar expression for
Sq

�S�. To extract A�P� and B�P� we use two different
linear combinations of the four values of Sq

�P�:

�B
�P�

� 	S1
�P�

� S2
�P�

� S3
�P�

� S4
�P�, (48)

�A
�P�

� 	S1
�P�

� S2
�P�

� S3
�P�

� S4
�P�. (49)

Fig. 2. Typical interferometric signal Idet recorded by a CCD pixel
as a function of time. This signal is integrated over four consec-
utive quarters of the modulation period to give four images, S1–S4.
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Substituting Eq. �47� into Eqs. �48� and �49� leads to

�B
�P�

�
4T

�
B�P��B��0, ��, (50)

�A
�P�

�
4T

�
A�P��A��0, ��, (51)

with

�B��0, �� � �
k�0

�

�	1�k
J2k1��0�

2k � 1
sin��2k � 1���, (52)

�A��0, �� � �
k�1

�

�1 � �	1�k�
J2k��0�

2k
sin�2k��. (53)

We use the same combinations to extract A�S� and
B�S�. Equation �38� can thus be rewritten as

4. Evaluation of Modulation Depth �0 and
Modulation Phase �

To calculate the value of �A��0, �� and �B��0, �� we
need to measure �0 and �. We could rely on a precise
calibration of the reference mirror’s displacement sys-
tem to obtain �0, but we have no easy way to measure
�. To overcome this difficulty we need to use other
combinations of images to fix those parameters to
known values. Once those values are known, we can
modify them to optimize the signal-to-noise ratio. As
they are independent of the orientation of the ana-
lyzer, we can choose to measure them with a
P-oriented analyzer. We use the following notation
for the image background:

S0
�P�

�
T

4
�I0

�P�
� J0��0� A�P��. (55)

The four images can be written as

S1
�P�

� S0
�P�

�
T

�
�	A�P��A��0, �� � B�P�f2��0, ��, (56)

S2
�P�

� S0
�P�

�
T

�
�A�P��A��0, �� � B�P�f3��0, ���, (57)

S3
�P�

� S0
�P�

�
T

�
�	A�P��A��0, �� � B�P�f2��0, ���, (58)

S4
�P�

� S0
�P�

�
T

�
�A�P��A��0, �� � B�P�f3��0, ���, (59)

with

f2��0, �� � �
k�0

� J2k1��0�

2k � 1
�cos��2k � 1���

� �	1�k sin��2k � 1����, (60)

f3��0, �� � �
k�0

� J2k1��0�

2k � 1
�cos��2k � 1���

� �	1�k sin��2k � 1����. (61)

It is easy to show that

�B��0, �� � 1⁄2 � f2��0, �� � f3��0, ���. (62)

A practical way to find a specific value of � is to tune
it until the two images S2 and S4 become identical.
At this point the value of f3��0, �� vanishes. If this

holds for any value of �0, which we check by changing
the modulation amplitude, then necessarily � � ��4.
We can then compute �A

�P�2  �B
�P�2:

�A
�P�2

� �B
�P�2

� �4T

�
�2

��A�P��A��0, ���2

� �B�P��B��0, ���2�. (63)

Then to fix the value of �0 we use the fact that, when
�0 � 2.0759 rad �when �A��0, �� � �B��0, ���, we
obtain

�A
�P�2

� �B
�P�2

� �4T

�
�A��0, ��

I

2
rrefrsam cos 2
 sin

�B

2 �2

, (64)

which is obviously independent of the topography sig-
nal. In practice one generates a topography signal
by tilting the reference mirror such as to get many
fringes in the images and then adjusts �0 to eliminate
this topography signal by making the fringes vanish.
So, although we do not directly measure �0 and �, we
can calculate �B by from

tan2��B

2 � � tan	2�2
�
�A

�P�2
� �B

�P�2

�A
�S�2

� �B
�S�2 . (65)

C. Broadband Source

We can now study the case of a broadband source,
with an apparent spectrum f ���. In what follows, all
numerical examples are calculated with a sample
spectrum that is flat from 650 to 950 nm. The bire-
fringence amplitude depends on wavelength, and we
write �B��� � 2���B�c. The direction of birefrin-
gence axes � is a geometrical characteristic of the

tan2��B

2 � � tan	2�2
�
��B��0, ���A

�P��2
� ��A��0, ���B

�P��2

��B��0, ���A
�S��2

� ��A��0, ���B
�S��2 . (54)
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sample, which depends mainly on the local orienta-
tion of the structures that compose it. We make the
hypothesis that within a given structure the direc-
tions of the birefringence axes do not change signifi-
cantly with wavelength. Our goal is to obtain an
equation, similar to Eq. �54�, that will allow us to
evaluate �B by using combinations of the eight im-
ages. As for the monochromatic source, we first
have to find a way to measure the modulation param-
eters. When the beam splitter, the reference mirror,
the quarter-wave plates, and the polarizers are per-
fectly achromatic, we can write Eqs. �28� and �29�
with an explicit dependence on � as

Idet
�P���� �

I

4 ��rref cos 2
�2
� �rsam sin

�B���

2 �2

� 2rrefrsam cos 2
 sin
�B���

2
sin�����

� 2��	 , (66)

Idet
�S���� �

I

4 ��rref sin 2
�2
� �rsam cos

�B���

2 �2

� 2rrefrsam sin 2
 cos
�B���

2
sin������	 .

(67)

Modulation phase � does not depend on wavelength
but the modulation depth does, as �0 � 4���0�c,
where �0 is the oscillation amplitude of the reference
mirror. The four images are now

S1
�P�

� S0
P

�
T

��	 �
0

�

f ��� A�P���, �B��A��, �0, ��d�

� �
0

�

f ��� B�P���, �B� f2��, �0, ��d�� , (68)

S2
�P�

� S0
P

�
T

� ��
0

�

f ��� A�P���, �B��A��, �0, ��d�

� �
0

�

f ��� B�P���, �B� f3��, �0, ��d�� , (69)

S3
�P�

� S0
P

�
T

� �	 �
0

�

f ��� A�P���, �B��A��, �0, ��d�

� �
0

�

f ��� B�P���, �B� f2��, �0, ��d�� , (70)

S4
�P�

� S0
P

�
T

� ��
0

�

f ��� A�P���, �B��A��, �0, ��d�

� �
0

�

f ��� B�P���, �B� f3��, �0, ��d�� . (71)

We cannot at this point use the equations that are
valid for the monochromatic source. The result
would not be a measurement of the birefringence
weighted by the source spectrum, even if there were
no topography signal ��z � 0�, because the functions
�A and �B vary significantly with wavelength, as can
be seen from Fig. 3, and thus cannot be extracted
from the integrals of Eqs. �68�–�71�.

D. Evaluation of Oscillation Amplitude �0 and Modulation

Phase � for the Broadband Source

To fix the values of �0 and � we perform the same
operations as for the monochromatic source. For �
the problem is simply solved because f3��, �0, ��4� �
0@�, �0. So, by making S2

�P� � S4
�P�, we obtain � �

��4. It is more difficult to handle �0, and in fact
there is no way to cancel S2

�P� 	 S1
�P� for any wave-

length or for �A
�S�2  �B

�S�2 to be independent of the
topography for any wavelength. We establish the
setting by using a nonbirefringent sample and work-
ing with an S-oriented analyzer:

�A
�S�2

� �B
�S�2

� �4T

� �2

(��
0

�

f ��� A�S�

� ��, �B��A���, �0, ���d�	2

� ��
0

�

f ��� B�S�

� ��, �B��B���, �0, ���d�	2

) , (72)

with

A�S���, �B� � 	
I

2
rrefrsam sin 2
 sin�4���z�c�, (73)

B�S���, �B� � 	
I

2
rrefrsam sin 2
 cos�4���z�c�. (74)

Fig. 3. Values of �A and �B as a function of wavelength for �0 �

�0opt.
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Equation �72� cannot be made independent of �z

whatever its value, but we can try to make our nota-
tion insensitive to �z near a particular value, for ex-
ample, �z � 0. We want to find �0opt that satisfies
the equation

d

d�z
��A

�S�2
� �B

�S�2�
 �z
� 0 � 0, (75)

or, substituting Eqs. �73� and �74� into Eq. �72�,

��
0

�

f ����A��, �0opt��d��2

� ��
0

�

f ����B��, �0opt�d� �
0

�

f ����B��, �0opt��
2d��

� 0. (76)

We can verify that, when f ��� is the Dirac distribution
��� 	 �0�, we end with �A

�S� � �B
�S�. For an arbitrary

spectrum the equation must be solved numerically.
The left-hand side of Eq. �76� is plotted in Fig. 4. It
was calculated from the flat spectrum from 650 to 950
nm. The first zero of this function gives the value of
�0, which makes Eq. �72� independent of �z near �z �
0. One can perform this calculation experimentally
as in the monochromatic case by tilting the reference
mirror to obtain Fizeau fringes and then finding the
value of �0 that make the fringes at the center of the
interferogram disappear. The width of this region,
�z, is nearly equal to the coherence length of the
source. Figure 5 shows a calculation of such an in-
terferogram, in which �z varies from 	2 to 2 �m
and �0 varies from 0.85 to 1.15 times its optimal
value. We can clearly see the central fringes disap-
pear as �0 reaches its optimal value.

From the value of �0opt we can calculate an equiv-
alent wavelength �0, defined by

�A�4�
�0opt

�0

,
�

4� � �B�4�
�0opt

�0

,
�

4� . (77)

The equivalent wavelength can be thought of as the
wavelength that should be used in the monochro-
matic case with the same modulation amplitude �0opt.

Once the values of �0 and � are fixed we can try to
generalize Eq. �54� to encompass a broadband source.
We define �A and �B by

�A��0opt� � �
0

�

f ����A���, �0opt,
�

4��d�,

�B��0opt� � �
0

�

f ����B���, �0opt,
�

4��d� (78)

and estimate birefringence �B by using

tan2��
�B

�0
� � tan	2�2
�

�
��B��0opt��A

�P��2
� ��A��0opt��B

�P��2

��B��0opt��A
�S��2

� ��A��0opt��B
�S��2 ,

(79)

topography �z with

tan�2�
�z

�0
� �

�B��0opt��A
�S�

�A��0opt��B
�S� , (80)

and the birefringence direction as

tan�2�� �
�A��0opt��B��0opt���A

�S��B
�P�

� �A
�P��B

�S��

�A
2��0opt��B

�S��B
�P�

� �B
2��0opt��A

�S��A
�P� .

(81)

For a monochromatic source, only the measurement
of the direction of birefringence axes � was affected
by the topography. For the broadband source, nei-
ther � nor �B can be made rigorously independent of
�z. Figure 6 shows the calculated value of the topog-
raphy plotted relative to the true topography. Fig-
ure 7 shows the minimum and maximum values of
the estimated birefringence as functions of the true
birefringence for two values of the birefringence di-
rection, as �z varies from �z � 0 to �z � 0.75 � �0.

Fig. 4. Value of Eq. �76� as a function of the reference mirror’s
modulation amplitude: circle, point for calculating Fig. 5�b�; tri-
angles, points used in Figs. 5�a� and 5�c�.

Fig. 5. Simulation of the procedure proposed for fixing the value
of �0: interferograms with micrometer times micrometer dimen-
sions: �a� �0 � 0.85 � �0opt, �b� �0 � �0opt, and �c� �0 � 1.15 � �0opt.
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The estimation error depends on the value of �z. For
values of �z � �z�2, Eqs. �79�–�81� cannot be used.
This simply means that, outside the coherence length
of the source, the measurement cannot be made,
which is a standard limitation of phase detection
methods.25 A way to overcome this limitation is first
to perform a test on the interferometer envelope26 to
discriminate between points at which the evaluation
birefringence can or cannot give accurate results.
One could of course use efficient combinations of more
than four images27,28 to obtain a precise measure-
ment of the coherence envelope, but this test should
not be used directly to measure topography, as it
would give poor results. Let function � be defined
by

���B, �, �z� � �A
�S�2

� �A
�P�2

� �B
�S�2

� �B
�P�2. (82)

Figure 8 is a plot of the maximum and minimum
values of � as functions of �z when �B takes the

values 0 and � rad. We see that � is only slightly
dependent on the birefringence. � can thus be used
as an estimate of the coherence envelope. By calcu-
lating the value of this function at each point on the
image field we roughly estimate the topography, in-
dependently of the birefringence. In practice, for re-
cording full-field images, one fixes the sample upon
an axial translation stage that permits step-by-step
movement with step size dz smaller than the FWHM
of �. For a given position of the sample, the bire-
fringence is evaluated only inside the region where
the rough topography has a value smaller than dz�2.
This condition determines the threshold level that is
used with the function �.

4. Discussion

We have presented a method for combining phase-
sensitive OCT and thermal-light OCT to obtain
polarization-sensitive tomographic images. We
have shown that, within determined limits, birefrin-
gence or dichroism and a tomographic phase can be
measured nearly independently of each other. A
combination of coherence envelope detection and to-
mographic phase measurement permits discrimina-
tion between points where the evaluation of
birefringence is strongly dependent on topography
and points where simple formulas can be used to
obtain accurate results. We have presented formu-
las that explicitly include the spectrum of the light
source and allow us to evaluate birefringence by use
of a thermal-light polarization-sensitive optical co-
herence tomography instrument. Micrometer axial
resolution is then possible with such a white-light
source. These formulas �Eqs. �79�–�81�� are simple
combinations of eight images; they hide the experi-
mental difficulties introduced by the use of imper-
fectly achromatic components and by the need to
combine two different arrangements of polarizing el-
ements. The polarization scheme used rejects light
whose polarization state has not been modified by the
sample. This property, combined with micrometer
resolution, makes this instrument a valuable tool for

Fig. 6. Estimated versus true topography �z for a source spectrum
that is flat from 650 to 950 nm.

Fig. 7. Magnitudes of estimated versus true birefringence �B for
various values of topography �z ranging from 0 �dashed curves� to
0.75 � �0 �solid curves� for the flat source spectrum: �a� � � ��4,
�b� � � 0.

Fig. 8. Values of � as a function of �z expressed in units of �0 for
�B � 0 �solid curve� and �B � � �dashed curve�.
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the study of small-scale birefringent defects inside
optical components, in particular, inside optical mul-
tilayer coatings. Although our primary motivation
for developing this measurement method was to use
it for the study of optical components, biological ap-
plications could of course also benefit from it.

The authors thank Arnaud Dubois and Laurent
Vabre for helpful discussions.
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