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Full-field thermal imaging of quasiballistic crosstalk
reduction in nanoscale devices
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Understanding nanoscale thermal transport is of substantial importance for designing con-

temporary semiconductor technologies. Heat removal from small sources is well established

to be severely impeded compared to diffusive predictions due to the ballistic nature of the

dominant heat carriers. Experimental observations are commonly interpreted through a

reduction of effective thermal conductivity, even though most measurements only probe a

single aggregate thermal metric. Here, we employ thermoreflectance thermal imaging to

directly visualise the 2D temperature field produced by localised heat sources on InGaAs with

characteristic widths down to 100 nm. Besides displaying effective thermal performance

reductions up to 50% at the active junctions in agreement with prior studies, our steady-state

thermal images reveal that, remarkably, 1–3 μm adjacent to submicron devices the crosstalk is

actually reduced by up to fourfold. Submicrosecond transient imaging additionally shows

responses to be faster than conventionally predicted. A possible explanation based on

hydrodynamic heat transport, and some open questions, are discussed.
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S
tudy of thermal transport is a crucial part of electronic
device design and optimisation1. The governing law of heat
conduction, Fourier equation, has been the subject of

scrutiny as the size of electronic and optoelectronic devices has
reached submicron scales. It has been predicted and shown
experimentally that as the thermal transport length scales are
reduced to the order of the phonon mean free paths, Fourier
diffusion equation fails to explain the thermal behaviour2–5 and
thermal transport become non-diffusive.

Non-diffusive thermal transport in semiconductor materials
has been extensively studied over the past decade6–12. The qua-
siballistic effects that inherently emerge when the characteristic
length scale of the thermal field becomes comparable to that of
the dominant heat carriers can be well understood from the
Boltzmann transport equation (BTE) for phonons11,13. Some
recent studies14,15 have incorporated the non-diffusive char-
acteristic of the heat flow explicitly into their analysis of experi-
mental observations, enabling them to characterise Lévy
superdiffusion in semiconductor alloys14 and phonon transmis-
sion spectra of metal/semiconductor interfaces15. Most mea-
surements, however, are fitted to a modified Fourier theory that
uses a reduced effective semiconductor thermal conductivity16–20.
These analyses imply that small heat sources will get hotter than
nominally expected for a given power density, underlining the
added challenges posed by thermal management at the nanoscale,
but do little justice to the underlying non-diffusive heat flow
physics7,21.

Moreover, translating the currently available experimental
results to a quantitative assessment of thermal performance in
actual devices is not straightforward due to several particularities
of the utilised thermal metrology techniques. First, they rarely
measure the actual temperature distribution, but rather infer
quasiballistic deviations indirectly from an aggregate thermal
metric. For example, transient thermal grating (TTG) experi-
ments monitor the peak-to-valley contrast of the spatially peri-
odic temperature field22, whereas pulsed/modulated laser
thermoreflectance (TR) signals constitute a spatially averaged
surface thermal response due to the Gaussian-shaped probe
beam16,23. Second, the techniques impose heat sources with
extensive temporal bandwidths. This complicates the signal
analysis due to non-equilibrium effects, such as electron-hole pair
relaxations in TTG22 and photon–electron–lattice coupling in TR
metal transducers24,25. Third, the techniques typically operate in
quasi-1D heat flow regimes9,13,16. Extrapolating the resulting
insights to multidimensional configurations is far from trivial, as
highlighted by recent TR beam offset experiments that suggested
the breakdown of diffusive theory is highly anisotropic24. Overall,
the question still remains how the observed behaviour affects the
thermal field in realistic nanoscale device geometries.

In this work, using full-field thermoreflectance thermal ima-
ging (TRI)26,27, we try to provide some answers by directly
visualising the steady-state and transient quasiballistic thermal
fields of gold nanoheater lines fabricated on InGaAs substrate.
Figure 1a provide a schematic of TRI setup (more details in
methods, and Supplementary Note 1). As we reduce the width of
heat sources, the measured temperature of the heater lines exceed
those predicted by the Fourier diffusive heat equation. In addi-
tion, the non-diffusive behaviour is very significant in the thermal
images within 1–3 μm outside the nanoheater lines. Detailed
analyses demonstrate that using existing models including
Fourier theory with a modified thermal conductivity of the thin
film, Fourier theory assuming an anisotropic thermal con-
ductivity24, as well as incorporating thermal boundary resistance
(TBR) between heat source and the substrate along with modified
thermal conductivity19, are not sufficient to consistently explain
the full temperature distribution of all device sizes. We show that

a hydrodynamic model is a possible alternative to describe the
full-field temperature distribution of all the heater lines under
study.

Results
Steady-state TR imaging. Owing to illumination in the visible
spectrum and in-situ calibration, TRI provides 2D maps of the
absolute temperature rise with spatial resolutions far superior to IR
metrology (see Methods). We used electron beam lithography to
fabricate a series of samples on a wafer consisting of a 5 μm
In0.53Ga0.47As film grown atop InP substrate (see Methods). This
material system was chosen based on its relevance to (opto)elec-
tronic device technologies aimed at carrying Moore’s law deep into
the nanoscale28 and fibre optic telecommunication systems29,30.
The test devices themselves consist of pairs of gold striplines, one
of which is operated as heater, whereas the other can be used as
optothermal sensor to monitor the thermal field adjacent to the
active junction (Fig. 1b, c). An ultrathin Al2O3 layer, grown by
atomic layer deposition, ensures excellent electrical insulation
between the metallisation and semiconductor wafer while adding
minimal thermal resistance. We fabricated a variety of heater
electrode ranging in widths from 100 nm to 10 μm to allow sys-
tematic study of the thermal performance with respect to char-
acteristic device dimension. TR Temperature profiles of a 10 μm
and a 400 nm heater line are plotted in Fig. 2a, b.

Besides being far more representative of actual integrated
devices than the optically biased structures used in conventional
metrology, our electrically operated heater lines offer two
additional advantages. First and foremost, the active junction
itself can serve as electrical temperature sensor by performing
four-probe resistivity measurements (see Supplementary Note 3).
Electrically measured junction temperatures closely agree with
those inferred from the thermoreflectance images over a wide bias
range in both large and small devices. This is shown for a 10 μm
and a 400 nm heater line in Fig. 2c, d, respectively. A second
benefit is that the heat source is defined much more precisely,
since dissipation is completely confined by the current flow in
metallisation traces and easily quantified from the supplied bias
power. We carried out 3D finite element modelling (FEM)
employing material thermal properties measured by TDTR and
3ω techniques (see Supplementary Note 2). The simulated
thermal fields are then compared to our experimental images to
detect and quantify quasiballistic deviations.

We first turn our attention to the junction temperatures
(Fig. 2). For wide heater lines, the measured profiles show a very
close match with nominal FEM predictions, both under steady-
state (Fig. 2e) and transient-pulsed (Fig. 2g) operations. This
observation confirms the accuracy of the FEM diffusive
simulations at sufficiently large characteristic length scales. This
is clearly no longer the case for smaller devices. Measured
junction temperatures in the shown 400 nm wide line, for
example, exceed nominal predictions by about 18% (Fig. 2f, h). In
analogy with prior literature, one may attempt to interpret the
excessive device heating within the modified Fourier framework.
We find that an effective InGaAs thermal conductivity reduced by
22% (from 5.4 to 4.2Wm−1K−1) indeed fits the measured
junction temperatures quite accurately (Fig. 2f, h).

Close investigation of the full-field temperature distribution
(Fig. 3a, b) reveals that the modified Fourier profiles with suitably
adjusted effective conductivity so as to match the measured
temperatures at the active junction (Fig. 3c, d) substantially
overestimate the experimentally observed temperature a short
distance away from submicron heater lines (Fig. 3e). Remarkably,
the recorded temperature tails for the narrowest heater lines (W
lower than 300 nm) remain lower than expected even when

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02652-4

2 NATURE COMMUNICATIONS |  (2018) 9:255 |DOI: 10.1038/s41467-017-02652-4 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


compared to nominal FEM predictions. These findings indicate
that the thermal crosstalk adjacent to the submicron devices is
reduced.

Analysing Figs. 2 and 3 (and the Supplementary Note 4 on the
full set of fabricated samples) shows that as device size reduces,
self-heating at the heater line becomes stronger while thermal
crosstalk with the neighbouring thermometer is reduced
significantly.

Experimental validation. We designed a set of measurements to
further validate the experimental results. First, a set of identical
nanoheater lines were fabricated on top of 3.5 μm thick SiO2 on a
silicon substrate to serve as control samples. The results for three
device sizes of 1 μm, 500 nm, and 300 nm are shown in Supple-
mentary Note 6 (see Supplementary Fig. 10). Fourier finite ele-
ment modelling with a single pair of thermal conductivity of
oxide and boundary resistance can explain the full temperature
distribution of three device sizes suggesting that the observations
made in Figs. 2 and 3 do not appear in the control sample, and
thus, they are not artefacts of the TR measurement technique.

Second, to verify that optical effects, such as diffraction, do not
impact the comparison between theory and experiment on the
thermometer line, temperature measurements were performed at
three different wavelengths in the visible range. The results are
summarised in Supplementary Note 7. TR measurements
performed at 470, 530 and 660 nm wavelengths (see Supplemen-
tary Fig. 11) show consistent behaviour on the junction as well as
on the neighbouring thermometer, suggesting that the observa-
tions made in Figs. 2 and 3 are not due to optical effects.

Third, we investigated the impact of temperature-dependent
thermal conductivity of InGaAs. The results are shown in
Supplementary Note 8. Temperature profile of a pair of 10 μm
heater lines at multiple power density inputs were obtained. It is
shown (see Supplementary Fig. 12) that the temperature profile
scales linearly with the power values both on top of the heater line
as well as on the neighbouring line. This in turn demonstrate that
the impact of the temperature dependence of the InGaAs thermal
conductivity is negligible in the range of localised heating studied
in this work. Additionally, as it is evident from Fig. 3b, d, whereas
the temperature change at the top is about 35 K, its value on the
tail is only about 4 K, suggesting that the temperature change
across the InGaAs thin film is small and will not impact the
measured temperature. This is because the temperature-
dependent thermal conductivity of InGaAs in 300–340 K range
is negligible (<5% change based on the TDTR data)31.

Transient TR imaging. The transient TR imaging responses of
the heater lines also show discrepancies between the experiment
and the modified Fourier model. This is shown in Fig. 4. The
temperature evolution of the heater line over time in response to
a 1 μs electrical pulse with 10% duty cycle is plotted in Fig. 4a–c
for 500, 400 and 200 nm heater lines, respectively. In each panel
the maximum TR temperature change on top of the heater line is
plotted against time. The evolution in time of TR temperature
change is compared with the corresponding modified Fourier
model results (cyan line in the figure). The same thermal con-
ductivity as their steady-state values are used for each heater line
(Fig. 3e). It is evident that the experimental transient responses of
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Fig. 1 Full-field thermoreflectance thermal imaging of quasiballistic transport in InGaAs devices. The test structures a consist of electrically biased

nanofabricated heater lines of varied widths W. A second device, offset by gap distance G, serves as thermoreflective and resistive sensor of the thermal
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purposely capped to clearly visualise the lateral decay adjacent to the active junction)
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and FEMs’ longitudinal temperature cross sections along e 10 μm; and f
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the 400 and 200 nm heater lines do not follow the modified
Fourier model. Interestingly, both the heating and cooling rates of
the experimental data are faster than the Fourier simulations. The
effect is more prominent as the device width decreases.

Discussion
The strongly contrasting InGaAs thermal conductivity values
required in the FEM simulations to reproduce distinct portions of
the measured temperature field show that modified Fourier the-
ory fails to properly capture the quasiballistic transport physics.
Beside modified Fourier, we investigated alternative approaches
in literature, namely using an anisotropic thermal conductivity24

and incorporating thermal boundary resistance (TBR) between
heat source and the substrate along with modified thermal con-
ductivity19 to address the departure from diffusive heat transport.
The details are shown in Supplementary Notes 5.1–5.3.

Anisotropic Fourier theory has several limitations to explain all
of the experimental results (Supplementary Note 5.2 and Sup-
plementary Fig. 5). First of all, it is hard to justify an anisotropic
thermal conductivity of 1.5Wm−1 k−1 in-plane and 10Wm−1 k−1

cross-plane for a five micron thick InGaAs. Second, for each
device size a new pair of anisotropic thermal conductivity values
is required to fit the temperature profiles. Also, for very narrow
heaters, some disagreements still remain on the tails of the
temperature profile (Supplementary Fig. 5c).

Separating TBR from the oxide and substrate thermal con-
ductivities was also investigated using finite element model (see
Supplementary Note 5.3). It is noticed that although one could fit
the entire temperature profile (see Supplementary Fig. 6), a dis-
tinct pair of thermal conductivity and TBR was needed for each
device size (the fitted TBR value was not constant). Supplemen-
tary Table 1 summarises pair of conductivity and TBR values
needed to fit experimental results of different device widths from
10 μm to 200 nm. Not only the pairs are distinct for each device
size, the values obtained for TBR are very large compared with
the known values of TBR based on the TDTR characterisation or
diffuse or acoustic mismatch models (DMM and AMM), which
are on the order of 1–5 nKm2W−132,33.

It was recently shown that superdiffusive Lévy transport in
alloys can explain the reduced apparent thermal conductivity at
the source7. The tempered Lévy model is validated in Supple-
mentary Fig. 7. As described in Supplementary Note 5.4, this
model predicts the correct trend at the source (increased self-
heating and corresponding higher temperature at the heater line),

but a near nominal or even increased thermal crosstalk (and
corresponding higher temperature) at the nearby thermometer
(see Supplementary Fig. 8), which contradicts the lower thermal
crosstalk observed in the experiments. This failure is a direct and
inevitable consequence of the fact that the associated Green’s
function nowhere crosses over with the diffusive counterpart.
One should note that this failure would equally occur in BTE
analysis within the relaxation time approximation (RTA). Indeed,
the rigorous single pulse response of the 1D RTA-BTE invariably
displays impeded thermal transport that gradually recovers (but
never trumps) diffusive behaviour13. Explaining the present
measurement therefore clearly requires additional physics going
beyond the current state-of-the-art RTA/superdiffusion
formalisms.

Here, we provide a possible explanation based on a hydro-
dynamic model (see Methods) that provides good agreement with
our experimental results with minimum number of fitted para-
meters. The approach rests upon the following relation between
heat flux q and temperature gradient ∇ T that can be derived
directly from the BTE (Torres et al., in preparation):

q� ‘
2
∇
2qþ 2∇∇ � q

� �� �

¼ �κ∇T: ð1Þ

Here T is temperature, q is the heat flux, κ is the thermal con-
ductivity and ‘ a characteristic length scale. The details of this
model and an analysis of some of its consequences are described
elsewhere (Torres et al., in preparation). The term in square
brackets accounts for nonlocality induced by non-resistive nor-
mal phonon scattering processes and gives rise to hydrodynamic
(fluid-like) effects over characteristic length scale ‘. This beyond
Fourier correction has a marked impact on the thermal fields in
the vicinity of small sources. In particular, our measurements can
be well understood qualitatively in terms of the notable vorticity
that emerges near the edge of the heater line (Fig. 5). Here the
flux field bends over a region with characteristic size ‘ and is no
longer parallel to the thermal gradient, thereby achieving addi-
tional cooling of the semiconductor surface in the area adjacent to
the heater line. Notice that the effect of the Laplacian cannot be
absorbed in an effective thermal conductivity due to its intrinsic
non-isotropical nature. In Fig. 5, the vorticity is only shown for
few hundreds of nanometre in the vicinity of nanoheater lines.
Vorticity, however, extends few micron away from nanoheater
line which reaches the area below the thermometer line (see
Supplementary Note 9 and Supplementary Fig. 13).
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Quantitatively, FEM simulations of semi-infinite InGaAs sub-
strates governed by constitutive Eq. (1) with a single hydro-
dynamic length ‘ = 150 nm closely match the entire measured
temperature field (both at and around the active junction) for all
investigated device sizes (Fig. 3a, b, and Supplementary Fig. 4).
The nonlocal term also provides a better fit of the transient
experiments (Fig. 4a, b). Some differences in the amplitude of
transient response at early times still exist (Fig. 4c).

It may seem somewhat surprising to invoke hydrodynamic
transport in InGaAs. After all, the bulk conductivity of this alloy
material is dominated by mass impurity scattering, and routinely
predicted within the relaxation time approximation which treats
normal processes simply as fully resistive. However, bulk con-
ductivity is inherently evaluated under the assumption of a 1D
temperature gradient, whereas the vectorial nature of hydro-
dynamic vorticity only reveals itself in multidimensional settings.

Moreover, vorticity only becomes important when the char-
acteristic source dimension becomes comparable with the
hydrodynamic length ‘ ~ 150 nm, being about an order of mag-
nitude smaller than the dominant phonon mean free paths that
govern bulk transport.

In conclusion, full-field thermoreflectance thermal imaging of
InGaAs devices yielded a detailed characterisation of nanoscale
thermal transport beyond those achievable in conventional
metrology. The observation of lower thermal crosstalk adjacent to
submicron active junctions and faster transient response at the
heat source are particularly remarkable, as such unexpected
behaviour would normally not be associated with the necessary
evil of quasiballistic heat flow effects. Our findings imply pro-
mising prospects for reduced thermal crosstalk between neigh-
bouring transistor channels or photonic arrays in nanoscale
systems.

Methods
Thermoreflectance thermal imaging. Thermoreflectance (TR) thermal imaging is
based on the change in materials’ reflection coefficient as a function of temperature.
For quasi steady-state measurement, we use a low-frequency (7.5 Hz) sinusoidal
electrical current. A constant LED light is illuminated on the device under test
(DUT), while the device is being biased. Typically, 530 nm illumination wavelength
is used for gold samples but the wavelength can be tuned to maximise the signal.
The reflected light from the DUT is captured by a CCD camera with synchronous
lock-in detection. Using the calibrated coefficient of thermoreflectance (CTR),
temperature profile is extracted. Typical sensitivity is on the order of 0.1 °C for 5
min averaging. By pulsing the LED light and with the use of boxcar averaging,
transient thermal images with 50 ns resolution can obtained. More details are
described in the Supplementary Note 1 and Supplementary Fig. 1.

Device fabrication. The native oxide on the In0.53Ga0.47As (5 μm)/In0.52Al0.48As
(100 nm)/InP (500 μm) sample (grown by molecular beam epitaxy) was removed
with 1 min dilute HF solution dip. Subsequently, a 20 nm Al2O3 insulation layer
was deposited using the atomic layer deposition (ALD) technique at 200 °C fol-
lowed by rapid thermal annealing at 450 °C for 30 s. Au heater lines were then
fabricated using a Ti (~5 nm) adhesion layer through electron beam lithography
(EBL), metallisation and lift-off. The Au thickness was measured to be 90 nm. The
aspect (length-to-width) ratio of each device was fixed to 40 (except for 10 μm, for
which the aspect ratio was 30). Four large contact pads, each 80 × 80 μm2, were
fabricated for each heater line, so that the samples can be probed easily and also the
thermal measurement can be further confirmed using electrical measurement of
the heater resistance. Two similar heater lines were placed in parallel next to each
other with distances (gap sizes) of 300 nm, 500 nm and 20 μm. In this case one of
the heater line works as a heater and the other heater line serve as thermometer.

Finite element modelling. ANSYS finite element modelling (FEM) was used to
calculate full 3D steady-state and transient temperature profile in the devices.
Material parameters were obtained from TDTR, 3ω, and temperature-dependent
current-voltage (IVT) measurements. These parameters are provided in steady-
state results section as well as in Supplementary Note 2 and Supplementary Fig. 2.
Electrical and thermal conductivities, as well as temperature coefficient of resis-
tance (TCR) of gold lines are individually calibrated using the IVT measurements
(see Supplementary Note 3). There is a minor width dependence compared to the
bulk gold properties as described in Supplementary Fig. 3. This can be due to the
metal line grain boundaries and edge roughness that have a more important role in
narrower heaters. Heat capacity and mass density for transient modelling were set
according to literature values for Au, Al2O3, InGaAs and InP. Over a million mesh
elements were used in the full 3D FEM model to ensure accuracy of the 3D FEM
Model.

Hydrodynamic model. This is based on the kinetic-collective model (KCM) that
takes into account the non-resistive normal scattering as well as the nonlocal effects
due to the appearance of phonons with large mean free paths. In this model, two
different transport regimes are considered, a kinetic regime where all phonons are
independent and a collective regime where a group of phonons share the same
velocity and mean free paths. Collective phonons give rise to fluid-like hydro-
dynamic transport. KCM has been used to predict the thermal conductivity of bulk
media, thin films and nanowires using scattering terms from ab-initio calcula-
tions34. From the Boltzmann transport equation (BTE), one can derive the
hydrodynamic Eq. (1) that includes memory and nonlocal effects. The details of
this model and an analysis of some of its consequences are described elsewhere
(Torres et al., in preparation). Solutions to BTE taking into account the full phonon
spectrum for complex multilayer and 3D geometries, such as that in our experi-
ment, are computationally prohibitive. However, Eq. (1) can be easily integrated

Temperature rise (K)
Heat
flux

Minus
grad T

40 30 20 10 0

180 135

Angle between heat flux and minus grad T  (degrees)

90 45 0

AlignedOrthogonalAntiparallel

100 nm

500 nm

a

b

“Small” device (W  = 265nm)

Fig. 5 Fluid-like thermal transport in room-temperature solid media.

Hydrodynamic model simulations of the steady-state temperature field (a)

are in good agreement with the measured surface temperature profiles

both at and nearby the active device (see Fig. 3a–d). The hydrodynamic

heat flux and temperature gradient are found to be severely misaligned

adjacent to small sources. b It is this vorticity that may be physically

responsible for the experimentally observed disagreement in effective

thermal performance over those regions (see Fig. 3e)
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with the help of finite element method. Despite its apparent simplicity, the vectorial
characteristic of Eq. (1) includes 3D hydrodynamic effects in addition to the
intrinsic thermal diffusion (Torres et al., in preparation). This is also consistent
with the theoretical modelling of Ramu and Bowers10.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files or
from the corresponding authors on reasonable request.
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