Full-Frame Video Stabilization with Motion Inpainting

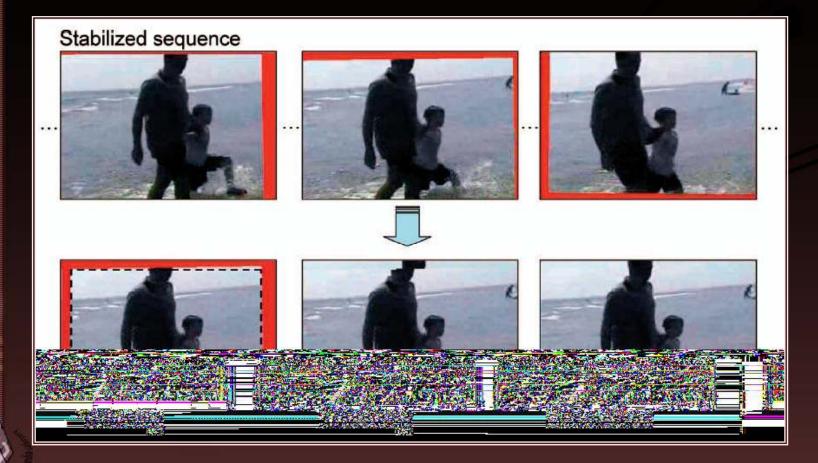
Yasuyuki Matsushita, Eyal Ofek Weina Ge Xiaoou Tang Heung-Yeung Shum

IEEE Trans on PAMI, July 2006

National Taiwan University CMLAB , since 1991

Outline

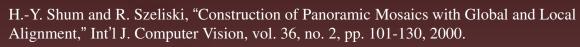
- Introduction
- Proposed Method
- Experimental results
- Quantitative Evaluation
- Computation Cost
- Conclusion



Introduction

- Stabilization:
 - Remove undesirable motion caused by unintentional shake of a human hand.
 - remove high frequency camera motion vs. completely remove camera motion.
 - full frame vs. trimming
 - motion inpainting vs. mosaicing

Prior Work vs. Now



Global Motion Estimation

- GM is estimated by aligning pair-wise adjacent frames.
 - $-\min(I_{t'}(Tp_{t})-I_{t}(p_{t}))$
- Hierarchical motion estimation
 - construct an image pyramid
 - start from the coarsest level
- By applying the parameter estimation for every pair of adjacent frames, a global transformation chain T^j is obtained.

Image Deblurring

- Transferring sharper image pixels from neighboring frames.
 - evaluates the "relative blurriness"

$$b_{t} = \frac{1}{\sum_{p_{t}} \{ ((f_{x} \otimes I_{t})(p_{t}))^{2} + ((f_{y} \otimes I_{t})(p_{t}))^{2} \}}$$

evaluates the "alignment error"

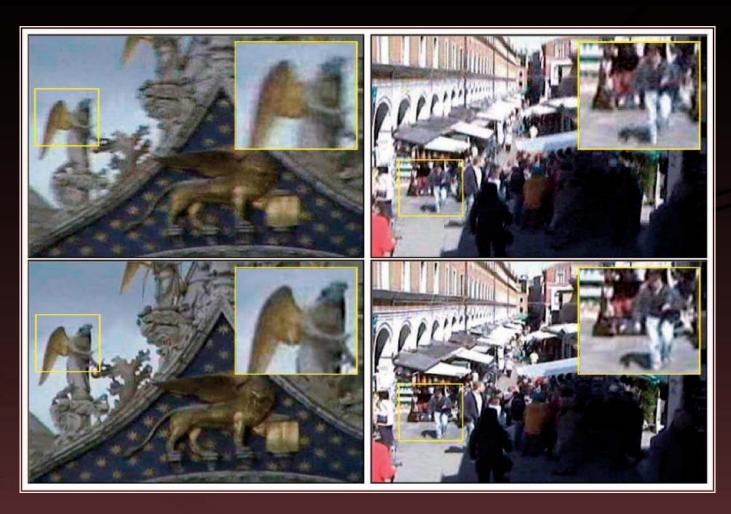
$$E_{t'}^{t}(p^{t}) = |I_{t'}(T_{t}^{t'}p_{t}) - I_{t}(p_{t})|$$

Image Deblurring

Blurry pixel are replaced by interpolating shaper pixels.

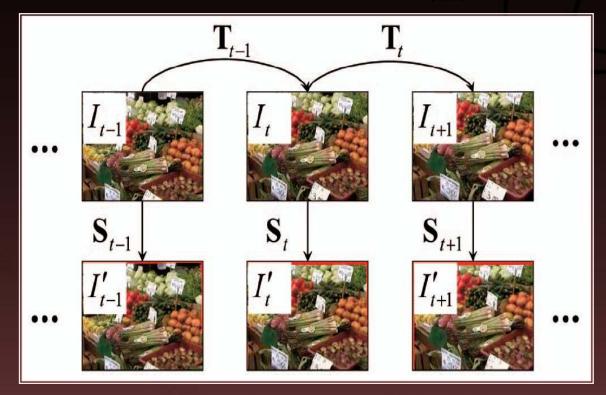
$$I_{t}(p_{t}) + \sum_{t' \in N} w_{t'}^{t}(p_{t}) I_{t} (T_{t}^{t} p_{t})$$

$$1 + \sum_{t' \in N} w_{t'}^{t}(p_{t})$$


 \cdot w is the weight factor which consists of the pixel-wise alignment error and relative blurriness

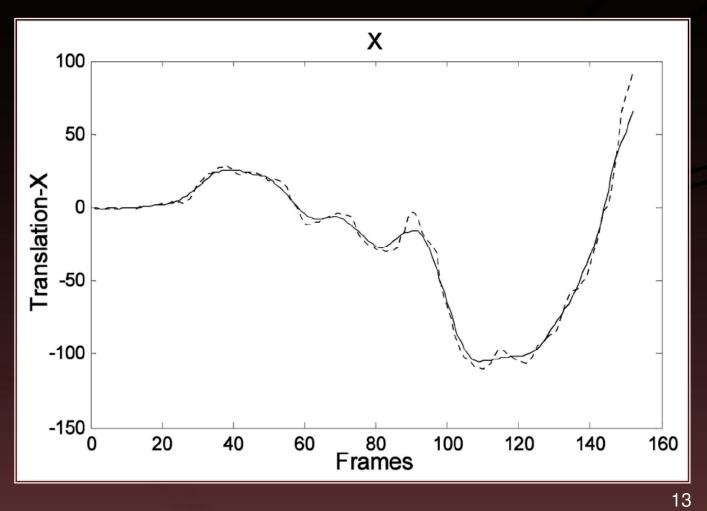
$$w_{t'}^{t}(p_{t}) = \begin{cases} 0 & \text{if } \frac{b_{t}}{b_{t'}} < 1\\ \frac{b_{t}}{b_{t'}} \frac{\alpha}{E_{t'}^{t}(p_{t}) + \alpha} & \text{otherwise} \end{cases}$$

Image Deblurring



Motion Smoothing

 $S_{\mathfrak{t}} = \sum_{i \in \mathcal{V}} T_{i}^{i} \otimes G(k)$


 $N_t = \{ j : t - k \le j \le t + k \}, \quad G(k) = \frac{1}{\sqrt{2\pi}\sigma} e^{-k^2/2\sigma^2}, \quad \sigma = \sqrt{k} \}$

Motion Smoothing

Local Motion Estimation

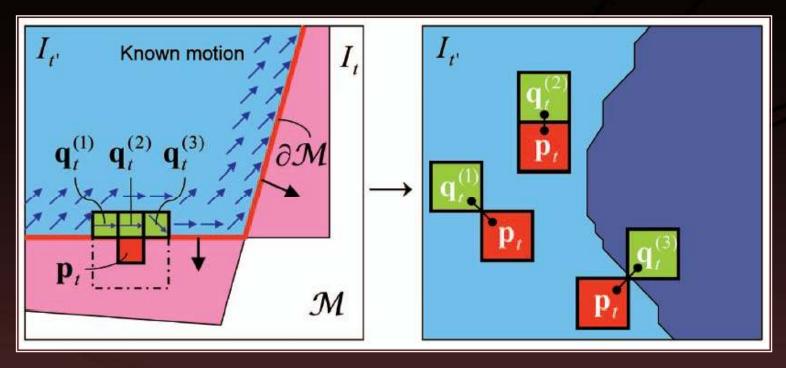
 A pyramidal version of Lucas-Kanade optical flow computation is applied to obtain the local motion field.

Motion Inpainting

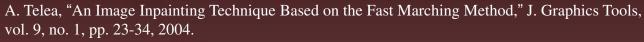
Mosaicing with consistency constraint.

$$I_{t}(p_{t}) = \begin{cases} midian_{t'}(I_{t'}(T_{t'}^{t'}p_{t})) & \text{if } v_{t}(p_{t}) < T \\ keep it as missing & \text{otherwise} \end{cases}$$

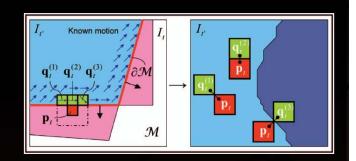
where


$$v_{t}(p_{t}) = \frac{1}{n-1} \sum_{t' \in M_{t}} (I_{t'}(T_{t}^{t'}p_{t}) - \overline{I_{t'}}(T_{t}^{t'}p_{t}))^{2}$$

$$\overline{I_{t'}}(T_t^{t'}p_t) = \frac{1}{n} \sum_{t' \in M_t} I_{t'}(T_t^{t'}p_t)$$



Motion Inpainting



Motion Inpainting

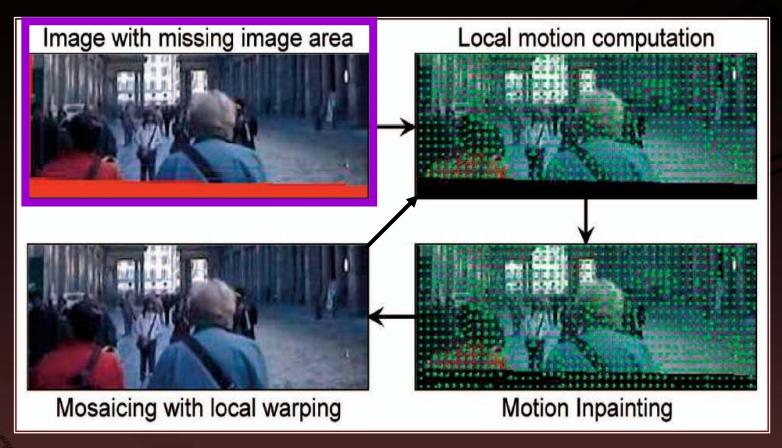
 The motion value for pixel p_t is generated by a weighted average of the motion vectors of the pixels H(p_t)

$$F(p_t) = \frac{\sum_{q_t \in H(p_t)} w(p_t, q_t) F(p_t \mid q_t)}{\sum_{q_t \in H(p_t)} w(p_t, q_t)}$$

where

$$F(p_t | q_t) = F(q_t) + \nabla F(q_t)(p_t - q_t) = F(q_t) + \begin{bmatrix} \frac{\partial F_x(q_t)}{\partial x} & \frac{\partial F_x(q_t)}{\partial y} \\ \frac{\partial F_y(q_t)}{\partial x} & \frac{\partial F_y(q_t)}{\partial y} \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

$$w(p_{t},q_{t}) = \frac{1}{\parallel p_{t} - q_{t} \parallel} \frac{1}{\parallel I_{t'}(q_{t'} + p_{t} - q_{t}) - I_{t'}(q_{t'}) \parallel + \varepsilon}$$


$$\text{Copyright 2. CMLaboratory Since 1991, All rights reserved.} \quad \text{25TU} \quad \text{CSUE} \quad \text{CMLAB}$$

Summary of the Algorithm

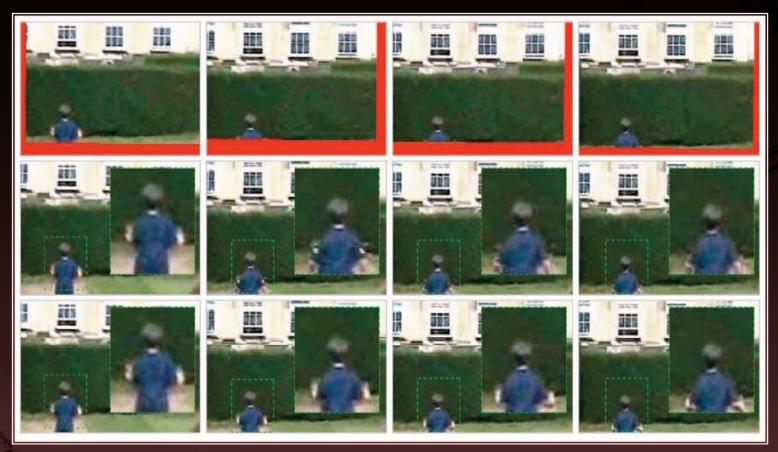
Experimental Results

- 30 video clips (about 80 minutes) with different types of scenes
- k = 6 for motion smoothing
- 5x5 filter for motion inpainting

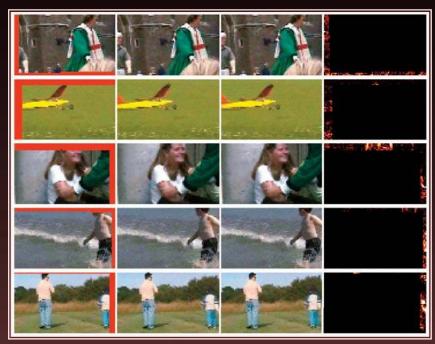
Experimental Results (1)

Experimental Results (2)

Experimental Results (3)


Failure Cases – incorrect estimation of motion

Failure Cases – abrupt changes of motion



Quantitative Evaluation

- Deviation from the Ground Truth.
- MAD of intensity

Our method	Mosaicing
9.87	12.2
4.18	7.83
7.64	8.27
6.65	9.14
10.5	23.6

Quantitative Evaluation

- Evaluation of Spatio-Temporal Smoothness.
 - The normalized discontinuity measure D is defined as

$$D = \frac{1}{n} \sum_{i=1}^{n} \| \nabla I_i \| = \frac{1}{n} \sum_{i=1}^{n} \sqrt{\nabla I_i \cdot \nabla I_i}$$

$$\nabla I = \begin{bmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \\ \frac{\partial I}{\partial t} \end{bmatrix} \approx \begin{bmatrix} I(x+1, y, t) - I(x-1, y, t) \\ I(x, y+1, t) - I(x, y-1, t) \\ I(x, y, t+1) - I(x, y, t-1) \end{bmatrix}$$

- The relative smoothness is evaluated by $(D_M-D_O)/(D_M-D_A)$
- 5.9%~23.5% smoother than mosaicing

Computation Cost

• 2.2 frames/s for 720x486 video with P4 2.8GHz CPU

	Computational Cost (%)	Number of times
Global motion estimation	5.26%	N
Motion smoothing	0.05%	N (using $2k$ motions)
Local motion estimation	84.25 %	2kN
Motion inpainting	7.20%	2kN
Image warping	1.47 %	(2k+1)N for global warping, $2kN$ for local warping
Image deblurring	1.77%	N (using $2k+1$ images)

Conclusion

- Motion inpainting instead of cropping.
- Deblurring without estimating PSFs.
- Spatial smoothness is indirectly guaranteed by the smoothness of the extrapolated motion.
- Temporal consistency on both static and dynamic areas is given by optical flow from the neighboring frames.

Thank You

presented by 蕭志傑 Hsiao, Chih-Chieh

