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e Stabilization :

— Remove undesirable motion caused by
unintentional shake of a human hand.

* remove high frequency camera motion vs.
completely remove camera motion.

e full frame vs. trimming
« motion inpainting vs. mosaicing
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Global Motion Estimation

A A Tl Wl

« GM is estimated by aligning pair-wise
adjacent frames.
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 Hierarchical motion estimation
— construct an image pyramid
— start from the coarsest level

« By applying the parameter estimation for

every pair of adjacent frames, a global
7=z,  transformation chain is obtained.

R 1/
% : H.-Y. Shum and R. Szeliski, “Construction of Panoramic Mosaics with Global and Local
= Alignment,” Int'l J. Computer Vision, vol. 36, no. 2, pp. 101-130, 2000.
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Image Deblurring
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» Transferring sharper image pixels
from neighboring frames.

— evaluates the “relative blurriness”
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— evaluates the “alignment error”
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Image Deblurring
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 Blurry pixel are replaced by interpolating
shaper pixels.
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- wis the weight factor which consists of

the pixel-wise alignment error and relative
blurriness




Image Deblurring
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Motion Smoothing
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Motion Smoothing
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Local Motion Estimation
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* A pyramidal version of Lucas-Kanade
optical flow computation is applied to
obtain the local motion field.
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J. Bouguet, “Pyramidal Implementation of the Lucas Kanade Feature Tracker: Description of the
Algorithm,” OpenCV Document, Intel, Microprocessor Research Labs, 2000.
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Motion Inpainting
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* Mosaicing with consistency constraint.
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Motion Inpainting
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/4 £ Known motion ;

A. Telea, “An Image Inpainting Technique Based on the Fast Marching Method,” J. Graphics Tools,
vol. 9, no. 1, pp. 23-34, 2004.




i il M

Motion Inpainting
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» The motion value for pixel p; is
generated by a weighted average of
the motion vectors of the pixels H(p,)
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Summary of the Algorithm

Image with missing image area Local motion computatlon
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Experimental Results
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» 30 video clips (about 80 minutes)
with different types of scenes

» K =6 for motion smoothing
» 5x5 filter for motion inpainting
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Experimental Results (1)
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Experimental Results (2)




Experimental Results (3)
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Failure Cases —
Incorrect estimation of motion
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Failure Cases —
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Quantitative Evaluation
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 Deviation from the Ground Truth.
* MAD of intensity Our method | Mosaicing

LT B T T




Quantitative Evaluation
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 Evaluation of Spatio-Temporal Smoothness.

— The normalized discontinuity measure D is
defined as

AU TRATEAETY | TR

D — The relative smoothness is evaluated by
ﬁv’ (Dm-Do)/(Dy-Da)
— 5.9%~23.5% smoother than mosaicing 29




Computation Cost
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e 2.2 frames/s for 720x486 video with
P4 2.8GHz CPU
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Computational Cost (%) Number of times

Global motion estimation 5.26% N
Motion smoothing 0.05% N (using 2k motions)
Local motion estimation 84.25 % 2kN
Motion inpainting 7.20% 2kN
Image warping 1.47 % (2k+1)N for global warping, 2kN for local warping
Image deblurring 1.77% N (using 2k + 1 images)
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Conclusion

Motion inpainting instead of cropping.
Deblurring without estimating PSFs.
Spatial smoothness is indirectly

guaranteed by the smoothness of the
extrapolated motion.

Temporal consistency on both static
and dynamic areas is given by optical
flow from the neighboring frames.
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