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A B S T R A C T

Background: A novel coronavirus (2019-nCoV) associated with human to human transmission and severe human

infection has been recently reported from the city of Wuhan in China. Our objectives were to characterize the

genetic relationships of the 2019-nCoV and to search for putative recombination within the subgenus of sar-

becovirus.

Methods: Putative recombination was investigated by RDP4 and Simplot v3.5.1 and discordant phylogenetic

clustering in individual genomic fragments was confirmed by phylogenetic analysis using maximum likelihood

and Bayesian methods.

Results: Our analysis suggests that the 2019-nCoV although closely related to BatCoV RaTG13 sequence

throughout the genome (sequence similarity 96.3%), shows discordant clustering with the Bat_SARS-like cor-

onavirus sequences. Specifically, in the 5′-part spanning the first 11,498 nucleotides and the last 3′-part spanning

24,341–30,696 positions, 2019-nCoV and RaTG13 formed a single cluster with Bat_SARS-like coronavirus se-

quences, whereas in the middle region spanning the 3′-end of ORF1a, the ORF1b and almost half of the spike

regions, 2019-nCoV and RaTG13 grouped in a separate distant lineage within the sarbecovirus branch.

Conclusions: The levels of genetic similarity between the 2019-nCoV and RaTG13 suggest that the latter does not

provide the exact variant that caused the outbreak in humans, but the hypothesis that 2019-nCoV has originated

from bats is very likely. We show evidence that the novel coronavirus (2019-nCov) is not-mosaic consisting in

almost half of its genome of a distinct lineage within the betacoronavirus. These genomic features and their

potential association with virus characteristics and virulence in humans need further attention.

The family Coronaviridae includes a large number of viruses that in

nature are found in birds and mammals (Kahn and McIntosh, 2005;

Fehr and Perlman, 2015). Human coronaviruses, first characterized in

the 1960s, are associated with a large percentage of respiratory infec-

tions both in children and adults (Kahn and McIntosh, 2005; Paules

et al., 2020).

Scientific interest in Coronaviruses exponentially increased after the

emergence of SARS-Coronavirus (SARS-CoV) in Southern China

(Drosten et al., 2003; Ksiazek et al., 2003; Peiris et al., 2003). Its rapid

spread led to the global appearance of more than 8000 human cases and

774 deaths (Kahn and McIntosh, 2005). The virus was initially detected

in Himalayan palm civets (Guan et al., 2003) that may have served as

an amplification host; the civet virus contained a 29-nucleotide se-

quence not found in most human isolates that were related to the global

epidemic (Guan et al., 2003). It has been speculated that the function of

the affected open reading frame (ORF 10) might have played a role in

the trans-species jump (Kahn and McIntosh, 2005). A similar virus was

found later in horseshoe bats (Lau et al., 2005; Li et al., 2005a). A 29-bp

insertion in ORF 8 of bat-SARS-CoV genome, not found in most human

SARS-CoV genomes, was suggestive of a common ancestor with civet

SARS-CoV (Lau et al., 2005). After the SARS epidemic, bats have been

considered as a potential reservoir species that could be implicated in
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future coronavirus-related human pandemics (Cui et al., 2019). During

2012 Middle East Respiratory coronavirus (MERS-CoV) emerged in

Saudi Arabia (Zaki et al., 2012; Hajjar et al., 2013) and has since

claimed the lives of 919 out of 2521 (35%) people affected (ECDC,

2020). A main role in the transmission of the virus to humans has been

attributed to dromedary camels (Alagaili et al., 2014) and its origin has

been again traced to bats (Ithete et al., 2013).

Ever since both SARS and MERS-CoV (due to their high case fatality

rates) are prioritized together with “highly pathogenic coronaviral

diseases other than MERS and SARS” under the Research and

Development Blueprint published by the WHO (World Health

Organization, 2018).

A novel coronavirus (2019-nCoV) associated with human to human

transmission and severe human infection has been recently reported

from the city of Wuhan in Hubei province in China (World Health

Organization, 2020; Hui et al., 2020). A total of 1,320 confirmed and

1,965 suspect cases were reported up to 25 January 2020; of the con-

firmed cases 237 were severely ill and 41 had died (World Health

Organization, 2020). Most of the original cases had close contact with a

local fresh seafood and an animal market (Zhu et al., 2020; Perlman,

2020).

Full-genome sequence analysis of 2019-nCoV revealed that belongs

to betacoronavirus, but it is divergent from SARS-CoV and MERS-CoV

that caused epidemics in the past (Zhu et al., 2020). The 2019-nCoV

along with the Bat_SARS-like coronavirus forms a distinct lineage

within the subgenus of the sarbecovirus (Zhu et al., 2020).

Our objectives were to characterize the genetic relationships of the

2019-nCoV and to search for putative recombination within the sub-

genus of sarbecovirus.

Viral sequences were downloaded from NCBI nucleotide sequence

database (http://www.ncbi.nlm.nih.gov). The BatCoV RaTG13

sequence was downloaded from the GISAID BetaCov 2019–2020 re-

pository (http://www.GISAID.org). The sequence was reported in Zhou

et al. (2020). Full-genomic sequence alignment was performed using

MAFFT v7.4.2. (Katoh and Standley, 2013) and manually edited using

MEGA v1.0 (Stecher et al., 2020) according to the encoded reading

frame. Putative recombination was investigated by RDP4 (Martin,

2015) and Simplot v3.5.1 (Lole et al., 1999) and discordant phyloge-

netic clustering in individual genomic fragments was confirmed by

phylogenetic analysis using maximum likelihood (ML) and Bayesian

methods. ML trees were reconstructed using Neighbor-Joining (NJ)

with ML distances or after heuristic ML search (TBR) with GTR + G as

nucleotide substitution model as implemented in PAUP* 4.0 beta

(Swofford, 2003). The GTR + G was used in Bayesian analysis as im-

plemented in MrBayes v3.2.7 (Huelsenbeck and Ronquist, 2001). Phy-

logenetic trees were viewed using FigTree v1.4 (http://tree.bio.ed.ac.

uk/software/figtree/).

A similarity plot was performed using a sliding window of 450 nts

moving in steps of 50 nts, between the query sequence (2019-nCoV)

and different sequences grouped according to their clustering pattern.

The similarity plot (Fig. 1A,B) suggested that the RaTG13 was the most

closely related sequence to the 2019-nCoV throughout the genome. The

genetic similarity between the 2019-nCoV and RaTG13 was 96.3% (p-

distance: 0.0369). On the other hand, a discordant relationship was

detected between the query and the sequences of the Bat_SARS-like

coronavirus (MG772934 and MG772933) (Fig. 1C). Specifically in in

the 5′-part of the genome spanning the first 10,901 nts of the alignment

that correspond to the 11,498 nucleotides of the prototype strain

(NC_045512) and the last 3′-part spanning 22,831–27,933 positions

(24,341–30,696 nucleotides in the NC_045512), 2019-nCoV and

RaTG13 formed a single cluster with Bat_SARS-like coronavirus se-

quences (Fig. 1C). In the middle region spanning the 3′-end of ORF1a,

Fig. 1. A. Genomic organization of the novel coronavirus (2019-nCoV) according to the positions in the edited alignment. B. Simplot of 2019-nCoV

(NC_045512_Wuhan_Hu-1) against sequences within the subgenus sarbecovirus. Different colours correspond to the nucleotide similarity between the 2019-nCoV and

different groups. The regions with discordant phylogenetic clustering of the 2019-nCoV with Bats_SARS-like sequences are shown in different colours. C. Maximum

likelihood (ML) phylogenetic trees inferred in different genomic regions as indicated by the Simplot analysis. The genomic regions are shown in numbers at the top or

at the left of the trees. The 2019-nCoV sequence is shown in red and stars indicate important nodes received 100% bootstrap and 1 posterior probability support. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the ORF1b and almost half of the spike regions (10,901–22,830 nts in

the alignment or 11,499–24,340 of the NC_045512), 2019-nCoV and

RaTG13 grouped in a separate distant lineage within the sarbecovirus

branch (Fig. 1B, C). In this region the 2019-nCoV and RaTG13 is dis-

tantly related to the Bat_SARS-like coronavirus sequences. Phylogenetic

analyses using different methods confirmed these findings. A BLAST

search of 2019-nCoV middle fragment revealed no considerable simi-

larity with any of the previously characterized corona viruses (Fig. 2).

Our study suggests that the new corona virus (2019-nCoV) is not a

mosaic and it is most closely related with the BatCoV RaTG13 detected

in bats from Yunnan Province (Zhou et al., 2020). The levels of genetic

similarity between the 2019-nCoV and RaTG13 suggest that the latter

does not provide the exact variant that caused the outbreak in humans,

but the hypothesis that 2019-nCoV has originated from bats is very

likely. On the other hand, there is evidence for discordant phylogenetic

relationships between 2019-nCoV and RaTG13 clade with their closest

partners, the Bat_SARS-like coronavirus sequences. In accordance with

previous analysis (http://virological.org/t/ncovs-relationship-to-bat-

coronaviruses-recombination-signals-no-snakes/331), Bat_SARS-like

coronavirus sequences cluster in different positions in the tree, sug-

gesting that they are recombinants, and thus that the 2019-nCoV and

RaTG13 are not (Ji et al., 2020; Magiorkinis et al., 2004). One previous

study based on codon usage analyses suggested that the spike protein of

2019-nCoV might have originated from one yet-unknown unsampled

coronavirus through recombination (Ji et al., 2020). Codon usage

analyses can resolve the origin of proteins with deep ancestry and in-

sufficient phylogenetic signal or invented de novo. The recently-pub-

lished bat coronavirus sequence however provides strong phylogenetic

information to resolve the origin of the Spike protein, as well as the rest

of the genome, suggesting a uniform ancestry across the genome. We

have previously shown that phylogenetic discordance in deep re-

lationships of coronaviruses is common and can be explained either by

ancient recombination event or altered evolutionary rates in different

lineages, or a combination of both (Magiorkinis et al., 2004). Our study

rejects the hypothesis of emergence as a result of a recent recombina-

tion event. Notably, the new coronavirus provides a new lineage for

almost half of its genome, with no close genetic relationships to other

viruses within the subgenus of sarbecovirus. This genomic part com-

prises half of the spike region encoding a multifunctional protein re-

sponsible also for virus entry into host cells (Babcock et al., 2004; Li

et al., 2005b). The unique genetic features of 2019-nCoV and their

potential association with virus characteristics and virulence in humans

remain to be elucidated.
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