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Abstract

Background: Chromatin modifications such as DNA methylation are targeted to transposable elements by small

RNAs in a process termed RNA-directed DNA methylation (RdDM). In plants, canonical RdDM functions through

RNA polymerase IV to reinforce pre-existing transposable element silencing. Recent investigations have identified a

“non-canonical” form of RdDM dependent on RNA polymerase II expression to initiate and re-establish silencing of

active transposable elements. This expression-dependent RdDM mechanism functions through RNAi degradation of

transposable element mRNAs into small RNAs guided by the RNA-dependent RNA polymerase 6 (RDR6) protein and

is therefore referred to as RDR6-RdDM.

Results: We performed whole-genome MethylC-seq in 20 mutants that distinguish RdDM mechanisms when

transposable elements are either transcriptionally silent or active. We identified a new mechanism of

expression-dependent RdDM, which functions through DICER-LIKE3 (DCL3) but bypasses the requirement of both

RNA polymerase IV and RDR6 (termed DCL3-RdDM). We found that RNA polymerase II expression-dependent forms of

RdDM function on over 20 % of transcribed transposable elements, including the majority of full-length elements with

all of the domains required for autonomous transposition. Lastly, we find that RDR6-RdDM preferentially targets long

transposable elements due to the specificity of primary small RNAs to cleave full-length mRNAs.

Conclusions: Expression-dependent forms of RdDM function to critically target DNA methylation to full-length and

transcriptionally active transposable elements, suggesting that these pathways are key to suppressing mobilization. This

targeting specificity is initiated on the mRNA cleavage-level, yet manifested as chromatin-level silencing that in plants is

epigenetically inherited from generation to generation.

Keywords: Cytosine methylation, MethylC-seq, RNA-directed DNA methylation (RdDM), Transposable element (TE),

Small interfering RNA (siRNA), RNA interference (RNAi), Methylome, TE-silent context, TE-active context, Decrease in

DNA methylation 1 (DDM1)

Background

Transposable elements (TEs) are mobile fragments of

DNA that can generate mutations and genome instabil-

ity. To repress TE activity and new mutations, cells

target TEs for epigenetic transcriptional silencing.

Small RNAs (sRNAs) are the triggers of epigenetic

transcriptional silencing targeted to transposable ele-

ments (TEs) and transgenes. sRNAs are known to dir-

ect cytosine DNA methylation and histone tail post-

translational modifications in both mice and plants,

while in organisms that lack cytosine DNA methyla-

tion (such as fission yeast, C. elegans, and Drosophila)

sRNAs direct only histone tail modifications (reviewed

in [1]). The mechanism of small RNA-directed DNA

methylation (RdDM) has been extensively investigated

in the reference plant Arabidopsis, where a “canonical”
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form of RdDM has been uncovered (reviewed in [2]). This

canonical form of RdDM begins with the transcription of

the target locus by the RNA polymerase protein Pol

IV, a plant-specific Pol II paralog [3], which generates

a non-coding RNA that is immediately converted into

double-stranded RNA (dsRNA) via RNA-dependent

RNA polymerase 2 (RDR2). The Pol IV/RDR2 derived

dsRNA is cleaved by the RNaseIII DICER protein

DCL3 into 23–24 nucleotide (nt) small interfering

RNAs (siRNAs) and these 24 nt siRNAs are incorpo-

rated into either the Argonaute 4 (AGO4) or AGO6

proteins [4]. In the nucleus, the siRNA-loaded AGO4/

AGO6 can base pair with a nascent non-coding RNA

still attached to its DNA template produced by Pol V,

a second plant-specific paralog of Pol II. The Pol V

transcript acts as a scaffold for protein assembly, and

interaction between AGO4/6 and the Pol V transcript

results in the recruitment of the protein DRM2 to

methylate the cytosines of the corresponding locus.

Pol IV is recruited to and transcribes regions of the

genome that have reduced histone acetylation, undergo

CG-context maintenance methylation, and are enriched

for H3K9me2 [5, 6], heterochromatic marks that decor-

ate regions of the genome inhibited for mRNA produc-

tion. Canonical Pol IV-targeted RdDM (Pol IV-RdDM) is

known to reinforce DNA methylation at regions of TE

heterochromatin adjacent to genes [7, 8]. Several labora-

tories have recently investigated how DNA methylation

is initiated at a region of the genome that is actively pro-

ducing an mRNA and is not already silenced. These

investigations have uncovered various “non-canonical”

mechanisms of RdDM, which do not rely on Pol IV, but

rather are triggered by Pol II mRNA transcripts [9–13].

Pol II TE mRNAs can undergo degradation via endogen-

ous RNAi into 21–22 nt siRNAs [14, 15]. In Arabidopsis,

the TE mRNA is converted into dsRNA via RDR6, and

this dsRNA is cleaved into 21–22 nt siRNAs via DCL4

and DCL2, respectively [15]. Originally thought to be

only a post-transcriptional mechanism of silencing,

several studies have determined that the degradation

products of Pol II-derived mRNAs can trigger RdDM

[9, 12, 13, 16]. The best characterized of these path-

ways is RDR6-RdDM, where the RDR6-dependent

21–22 nt siRNAs are incorporated into the AGO6

protein and drive RdDM in a Pol V and DRM2-

dependent manner [16].

There are only a few known targets of RDR6-RdDM

[12, 16]. This is due to the fact that this pathway acts on

Pol II transcriptionally active regions of the genome and

over time these regions become transcriptionally si-

lenced and regulated by either Pol IV-RdDM or by the

maintenance methylation pathway that is not dependent

on small RNAs [7, 17]. Maintenance methylation occurs

separately for each cytosine sequence context, with CG

methylation propagated by MET1, CHG (where H = A,

C or T) by CMT3, and CHH context methylation by

CMT2 [17–19]. Like Pol IV, CMT2 and CMT3 are

guided to previously silenced loci by the H3K9me2 het-

erochromatic mark [17, 20]. CHH context maintenance

methylation is low compared to CG or CHG [17] and

therefore RdDM (which targets all cytosine contexts

equally) has traditionally been assayed by investigating

the CHH methylation level [21, 22].

Maintenance methylation of TEs is coordinated by

Decrease in DNA methylation 1 (DDM1) [23], a swi/snf

family chromatin remodeling protein. DDM1 specifically

regulates TEs and in ddm1 mutants TEs undergo loss of

H3K9me2, CG DNA methylation, and heterochromatin

condensation [23, 24]. This results in genome-wide TE

transcriptional activation [23] and the triggering of the

RNAi mechanism to degrade TE mRNAs into 21–22 nt

siRNAs [15, 25]. In ddm1 mutant plants, TE transcrip-

tional silencing cannot be regained and therefore the cell

is stuck in a perpetual cycle of attempted re-silencing via

RdDM. Re-targeting of TEs for silencing, and in particu-

lar CHH hyper-methylation, is a conserved consequence

of TE activation via ddm1 mutation in Arabidopsis,

maize, and rice [12, 26, 27]. ddm1 mutants display

unmatched resolution of the mechanisms the cell uses

to re-silence TEs [28, 29]. Investigation of ddm1 mutants

lead to the discovery of RDR6-RdDM [12, 16]; however,

the genome-wide roles RDR6-RdDM have been a con-

tinued question. For example, what are the additional

targets and the overall role of RDR6-RdDM, is this the

sole non-canonical RdDM mechanism that functions

genome-wide, and why are particular TEs targeted to

undergo non-canonical forms of RdDM while others are

not? To address these questions, we created a genome-

wide DNA methylation and small RNA dataset in 20 key

RdDM mutants that span both the TE-silent and TE-

active contexts, providing insight to the pathways the

plant uses to target DNA methylation to specific TEs.

Results
RDR6-RdDM targets many transcriptionally active TEs

The switch from an epigenetically silenced state to

transcriptional activation is known to trigger Pol II

expression-dependent mechanisms of TE silencing such

as RDR6-RdDM on the single-locus level [12]. To exam-

ine genome-wide methylation states of both active and

inactive TEs, we generated a dataset containing whole-

genome MethylC-seq of nine key RdDM mutant geno-

types in the wild-type Columbia (wt Col) background as

well as the same nine mutant genotypes in the ddm1

mutant background. TE transcription is globally reacti-

vated in the ddm1 mutant (Additional file 1: Figure S1)

[23], whereas the RdDM mutants that we investigated

generally do not show TE transcriptional reactivation or
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at least not nearly as severe of a transcriptional reactiva-

tion compared to ddm1. For example, even in pol V mu-

tants, which are defective for all RdDM [30], global TE

activation is minimal compared to ddm1 (Additional

file 1: Figure S1) [19, 22]. Therefore, in this study any

genotype without ddm1 is referred to as the TE-silent

context and our dataset distinguishes RdDM types in

both the TE-silent context and the globally reactivated

ddm1 TE-active context.

We determined that using only uniquely mapping se-

quencing reads resulted in reduced coverage of repetitive

TE regions; however, sequencing coverage was high

enough to assay RdDM dynamics of individual TE copies

(see “Methods,” Additional file 2: Results, and Additional

file 3: Figure S2). To identify the regions of the genome

targeted by RDR6-RdDM (and contrast them to the re-

gions regulated by Pol IV-RdDM), we identified differen-

tially methylated regions (DMRs) between all of the

genotypes (see “Methods”). Aligning the DMRs, we find

that the average wt Col and rdr6 CHH methylation pat-

terns are indistinguishable, demonstrating that RDR6-

RdDM plays a minor genome-wide role in the TE-silent

context (Fig. 1a, replicate data in Additional file 4: Figure

S3A). In contrast, pol IV mutants lose methylation from

the DMRs, confirming that Pol IV-RdDM functions to

target CHH methylation on a genome-wide level in the

TE-silent context (Fig. 1a) [22, 31]. In addition, we

assayed the loss of methylation when both RDR6- and

Pol IV-RdDM are lost (in pol IV rdr6 double mutants)

and found that this methylation level is slightly reduced

compared to the pol IV single mutant (Fig. 1a), demon-

strating that RDR6-RdDM plays a minor role when Pol

IV-RdDM is mutated (see section below on RdDM

compensation). In the ddm1 TE-active context, the

overall CHH methylation level is reduced compared

to the TE-silent context (Fig. 1a, replicate data in

Additional file 4: Figure S3A) [19]. In addition, the

ddm1 rdr6 double mutant shows lower CHH methylation

compared to the ddm1 single mutant (Fig. 1a, replicate

data in Additional file 4: Figure S3A), demonstrating a

genome-wide role for RDR6-RdDM when TEs are

reactivated.

In both the TE-silent and ddm1 TE-active contexts,

loss of CHH methylation in pol IV mutants is reduced

near the edge of the DMR and less so in the center of

the DMR (Fig. 1a). To determine if this loss is due to

Pol IV-RdDM functioning specifically at edges of long

DMRs or if this effect is due to Pol IV-RdDM’s prefer-

ence for short TE targets [19], we investigated only

DMRs over 2 kb. We found that in the TE-silent context

Pol IV-RdDM functions preferentially on long DMR

edges, as the CHH methylation in pol IV mutants is lost

more at the edge compared to the center of a >2 kb

DMR (Fig. 1b). At the same time, we found the peak of

high CHH methylation at the DMR edge (compared to

the body of the DMR) in wt Col and ddm1 is a function

of small DMRs in our analysis, as when only DMRs

>2 kb are assayed, the CHH methylation values in wt

Col or ddm1 are consistent over the length of the entire

DMR (compare Fig. 1a to 1b, replicate data in Additional

file 4: Figure S3A, B). Therefore, at least in the TE-silent

context, Pol IV-RdDM targets short DMRs as well as the

edges of long DMRs.

A DMR is a computationally identified feature that

may span multiple TEs and genes or which may be as

short as 4 bp. We found that analysis of the alignment

of CHH methylation states of annotated genomic fea-

tures (such as genes or TEs) was more informative than

an analysis of the arbitrary edges of DMRs. For genes,

we find that there is low average CHH methylation that

is unaltered by Pol IV- or RDR6-RdDM, and we confirm

that Pol IV-RdDM is responsible for gene-flanking

methylation [22, 32], while RDR6-RdDM does not act

near genes (Fig. 1c). For TEs, similar to our findings

with DMRs, we find that rdr6 shows a CHH methylation

loss only in the ddm1 TE-active context but not the TE-

silent context (Fig. 1d, replicate data in Additional file 4:

Figure S3D). We also observed that loss of CHH methy-

lation in ddm1 rdr6 mutants occurs not specifically at

the edge (as with Pol IV-RdDM at TE edges, see Fig. 1d),

but rather acts over the length of the entire long TE and

mostly from the TE internal region (Fig. 1e, replicate

data in Additional file 4: Figure S3E). Interestingly, in

the TE-active context Pol IV-RdDM acts like RDR6-

RdDM throughout the length of the entire >2 kb TE

(Fig. 1e). We observed this differential role of Pol IV-

RdDM with DMRs as well (Fig. 1b) and these data dem-

onstrate that the function of Pol IV-RdDM to reinforce

silencing at short TEs and TE edges expands to silencing

TE internal body coding regions when TEs are activated.

In addition, for TEs >2 kb we find that the pol IV rdr6

double mutant has lower CHH methylation levels com-

pared to either the rdr6 or pol IV mutants in either the

TE-silent or TE-active context (Fig. 1d, e). This demon-

strates that the finding on the single-locus level that

some TEs are subject to both Pol IV- and RDR6-RdDM

to direct full TE CHH methylation [12, 16] is also true

on the genome-wide level.

To assess the role of Pol II expression on RdDM

dynamics, we focused our analysis on transcriptionally

competent TEs by identifying elements with direct

evidence of mRNA production in ddm1 mutant plants

(see “Methods”). For this set of 2374 TEs (7.6 % of all

TEs) in the TE-silent context, we find that RDR6-

RdDM does not function and Pol IV-RdDM’s role is

reduced and primarily contributes to the edges of long

TEs (Fig. 1f, g, replicate data in Additional file 4:

Figure S3F, G). When this set of TEs is specifically
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transcribed, we find that RDR6-RdDM plays a larger

role in TE methylation compared to Pol IV-RdDM,

and this is pronounced in the internal regions of

long TEs. Therefore, we conclude that RDR6-RdDM

targets transcriptionally active TEs on the genome-

wide level.

Dataset capture of both Dicer-dependent and

Dicer-independent RdDM

Recent data have demonstrated that RdDM can occur

through a Dicer-independent mechanism by which either

transcribed or processed un-Diced RNAs of ~30–40 nt

are trimmed into various small RNA sizes including

21–24 nt siRNAs [33–36]. This Dicer-independent

production of small RNAs was shown to occur on

both Pol IV and Pol II derived transcripts. While

Dicer-dependent production generates specific siRNA

size classes, Dicer-independent siRNA production creates

small RNAs of all sizes, known as small RNA laddering

[35]. We aimed to remove all Dicer-dependent and Dicer-

independent TE RdDM at the same time by using a pol IV

rdr6 double mutant. The pol IV mutation abolishes Pol IV

transcript accumulation upstream of Dicer-independent

or Dicer-dependent siRNA production [33, 36]. Because

we cannot mutate Pol II’s function without affecting es-

sential non-RdDM networks, we mutated rdr6 to block

the production of dsRNA from Pol II transcripts. By using

siRNA laddering as a consequence of Dicer-independent

siRNA production, we find that loci that undergo Pol II-

dependent RdDM require RDR6 production of dsRNA be-

fore either Dicer-dependent or Dicer-independent RdDM

(Fig. 2). For example, the TAS3 locus loses CHH methyla-

tion in rdr6 but not pol IV mutants (Fig. 2a), confirming

that the TAS3 locus is a target of RDR6-RdDM in the

TE-silent context [9]. When RDR6 is functional and

DCL2, DCL3, and DCL4 are mutated, Dicer-independent

Fig. 1 Meta-plots of CHH methylation levels in TE-silent and TE-active contexts. a Average CHH methylation percentage across all DMRs identified

in the TE-silent (top) or ddm1 TE-active (bottom) contexts. b Analysis of DMRs longer than 2 kb. c Alignment of all genes by their 5′ start and 3′

stop codons. d Alignment of all TEs by their 5′ and 3′ annotated boundaries. Orientation of the TE was determined using the TAIR10 TE annotation.

e Alignment of all TEs longer than 2 kb. f Alignment of the transcriptionally competent subset of 2374 TEs. g Alignment of the transcriptionally

competent TEs longer than 2 kb. Solid lines represent the 100 bp binned average CHH methylation percentages. The variation of individual

element data points is represented as the transparent colored region around the solid lines (95 % confidence interval of the average)
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Fig. 2 (See legend on next page.)
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processing occurs and generates a ladder of TAS3 siRNA

sizes (Fig. 2b) [34, 35]. However, when RDR6 is non-

functional (in the rdr6 mutant), TAS3 siRNAs and ladder-

ing are not produced, demonstrating that RDR6 is up-

stream of Dicer-independent processing (Fig. 2b). The

same is true of TE siRNAs: in the TE-silent context they

are all dependent on Pol IV (Fig. 2c) and in the TE-active

context siRNA laddering does not occur in the ddm1 pol

IV rdr6 triple mutant as it does in ddm1 dcl3 (Fig. 2d).

This result demonstrates that like Pol IV activity,

RDR6 activity on TE mRNAs occurs before the

Dicer-independent siRNA production that generates

siRNA laddering. Therefore, the pol IV rdr6 double

mutant represents the removal of the majority of the

upstream dsRNA that drives Dicer-dependent or

Dicer-independent RdDM in either the TE-silent or

TE-active context. Correspondingly, we find that Pol IV

and RDR6 are responsible for nearly all TE RdDM in the

TE-silent or TE-active contexts (Fig. 1d, e, Additional

file 2: Results, and Additional file 5: Figure S4A), but

this level is not 100 % as we have identified a distinct

pathway of TE RdDM that is not dependent on either

Pol IV or RDR6 (see below).

Upon TE transcriptional activation, three RdDM

mechanisms target genome-wide TE methylation

To characterize the methylation pathways that act on

each TE genome-wide, we calculated the CHH methy-

lation level for each of the annotated TE elements

and fragments in the Arabidopsis genome (31,189).

We were able to successfully cover and individually

assay 29,252 (93.8 %) of all TEs, with the majority of

TEs lost representing small high-copy TE fragments.

We grouped TEs by their mechanism of CHH methyla-

tion: no CHH methylation, Pol IV-RdDM (dependent on

Pol IV), RDR6-RdDM (dependent on RDR6), and main-

tenance methylation (not dependent on any RdDM)

(see “Methods”) (Fig. 2e). The corresponding CG and

CHG methylation analysis is shown in Additional file 6:

Figure S5 and replicate data of CHH methylation patterns

for key genotypes is shown in Additional file 4:

Figure S3H. Similar to the TEs that have been indi-

vidually investigated and determined to be targets of

RDR6-RdDM [12, 16], we found that both RDR6-

RdDM and Pol IV-RdDM can target the same TE,

providing a distinct co-regulated category (Fig. 2e).

In addition, we identified a category of TEs that are

methylated by a new pathway of DCL3-dependent

24 nt siRNAs which are not produced from Pol IV, a

pathway we refer to as DCL3-RdDM (see below).

Genome-wide distribution of TE CHH methylation in

the TE-silent context demonstrates that roughly one-

third of TEs do not have CHH methylation, roughly

one-third of TEs are not going through RdDM and are

subject to only maintenance CHH methylation via

CMT2, and roughly one-third are regulated by Pol IV-

RdDM (Fig. 2e). This confirms that when TEs are si-

lenced, maintenance methylation and Pol IV-RdDM are

the major pathways that mutually exclusively target TE

CHH methylation [7]. We find that pol IV and rdr2 mu-

tants have less TE CHH methylation than dcl3 mutants

(Fig. 2e), supporting the Dicer-independent function of

Pol IV/RDR2-derived siRNAs in RdDM [35, 36]. On a

genome-wide level very few TEs are targeted by DCL3-

RdDM or RDR6-RdDM in the TE-silent context, al-

though this number is not zero and we have previously

identified a TE that is subject to RDR6-RdDM in wt Col

[16]. Consequently, very few TEs in the TE-silent con-

text are regulated by AGO1 and the TEs regulated by

AGO6 are targeted through 24 nt siRNAs and the Pol

IV-RdDM pathway (Fig. 2e). In addition, we find evidence

of 1547 TEs that are primarily targeted by Pol IV-RdDM,

but upon loss of Pol IV, these TEs have low levels of

RDR6-dependent CHH methylation, demonstrating that

they are acted upon by both Pol IV-RdDM and RDR6-

RdDM (Fig. 2e). By analyzing mutants that at the same

time lose both Pol IV- and RDR6-RdDM, we are able to

detect that these two distinct pathways do not function

completely independently, but rather one can compensate

for the loss of the other (Additional file 7: Figure S6).

We find on the genome-wide level that RdDM regu-

lates more TEs when they lose transcriptional silencing

and this is due to an increased number of TEs targeted

by the Pol II expression-dependent RdDM pathways

(Fig. 2e) (Additional file 5: Figure S4B). Compared to the

TE-silent context, in the TE-active context we observe

(See figure on previous page.)

Fig. 2 Genome-wide distribution of TE CHH methylation pathways. a CHH methylation levels of the RDR6-RdDM targeted locus TAS3. Track scale

is 0–50 %. b TAS3 small RNA size and abundance heat maps in the TE-silent context. R1, R2, and R3 signify independent biological replicates.

c Small RNA size and abundance heat maps for all perfectly and uniquely mapping TE small RNAs in the TE-silent context. d Small RNA size and

abundance heat maps for all perfectly and uniquely mapping TE small RNAs in the TE-active context. GSE numbers represent the data source.

e Heat map representing CHH methylation values for individual TEs (rows). The columns represent different genotypes assayed. Numbers represent the

amount of TEs targeted by each corresponding CHH methylation pathway. TEs change position between the TE-silent (left) and ddm1 TE-active (right)

panels. The location of the Athila6A TE analyzed in Additional file 3: Figure S2C is shown as an arrow, while the TE shown in Fig. 3a is marked with an

arrowhead. Genotypes are color-coded based on the methylation pathway (black =maintenance methylation (no RdDM), red = Pol IV-RdDM,

blue = RDR6-RdDM, green = contributes to both Pol IV-RdDM and RDR6-RdDM)
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in our dataset an increase in the number of TEs that go

through RDR6-RdDM (4.3-fold higher in Fig. 2e),

DCL3-RdDM (6.2-fold higher), and the Pol IV-/RDR6-

co-regulated RdDM category (2.7-fold higher). We find

that roughly one-third (31.6 %) of TEs with CHH methy-

lation in the TE-active context are regulated by RDR6-

RdDM (either RDR6-RdDM alone or co-regulated with

Pol IV-RdDM). We used the TEs identified in our ana-

lysis as regulated by RDR6-RdDM to investigate a repli-

cate dataset and determined that ~50 % of TEs are not

covered in the replicate dataset, ~25 % display RDR6-

dependent methylation in both datasets, and ~25 %

failed to replicate (Additional file 4: Figure S3I). The

fraction of RDR6-RdDM TEs that could not be repli-

cated may either be false positives in our analysis or

bona fide RDR6-RdDM targets identified but not rep-

licated as a result of the four-fold increase in TE

methylation resolution between datasets (Additional

file 4: Figure S3J) due to our improved TE mappabil-

ity (see “Methods” and Additional file 2: Results). Our

data prove that RDR6-RdDM does not just function

on three TEs (as previously shown [12, 16]), but ra-

ther hundreds of individual TEs, and this pathway

was likely previously not identified due to the lack of

transcriptionally active TEs in wt Col and the activity

of Pol IV-RdDM on many of the same TE target loci.

A corresponding reduction (we find 2.3-fold) takes

place in the number of TEs regulated by maintenance

methylation in the ddm1 TE-active context, demon-

strating that DDM1 functions in preserving mainten-

ance methylation-based transcriptional silencing [19].

Of the TEs that undergo any type of RdDM in the

TE-silent context, the majority (we find 71.9 %) still

undergo RdDM in the ddm1 TE-active context, while

the other TEs lose CHH methylation completely

(Additional file 5: Figure S4C). Pol IV-RdDM is still

the major RdDM mechanism targeting TEs in ddm1,

as the number of TEs that undergo Pol IV-RdDM

(without RDR6-RdDM) in the ddm1 background is

roughly equal (we find a 1.3-fold change) compared

to TE-silent context (and we find a 1.1-fold change

when the RDR6 co-regulated pathway is considered).

When focused on only transcriptionally competent

TEs in the TE-active context, the Pol II-expression

dependent RdDM pathways play a pronounced role:

we find RDR6-RdDM is 17.4-fold higher, DCL3-

RdDM is 18.4-fold higher, and the co-regulated

RDR6- and Pol IV-RdDM pathway is 3.6-fold higher

compared to the TE-silent context. At the same time,

Pol IV-RdDM has decreased function on transcriptionally

active TEs (we find a 0.6-fold change) (Additional file 8:

Figure S7A). Therefore, we conclude that RDR6- and

DCL3-RdDM are the major activated pathways upon TE

transcriptional activation and these pathways preferentially

act on TEs transcribed into mRNAs. As a consequence of

this shift in RdDM pathways, AGO1 indirectly contributes

to the CHH methylation of more TEs (we find four–fold)

in the TE-active context due to its role in the production of

21–22 nt siRNAs (Fig. 2e) [15].

In addition to the number of TE targets, we quantified

the amount of CHH methylation that each RdDM path-

way contributes to their respective targets. We find that

in the TE-active context, when all three RdDM mecha-

nisms are active, Pol IV-RdDM is the most efficient and

causes the highest level of CHH methylation, while

RDR6-RdDM and DCL3-RdDM cause less overall

CHH methylation of their targets (Additional file 5:

Figure S4D). The higher efficiency of Pol IV-RdDM

may be due to the specialization of this pathway and

its components away from post-transcriptional silen-

cing to specifically target RdDM.

Pol II-dependent DCL3-RdDM defines a new mechanism

targeting TEs

In our analysis of TE CHH methylation patterns, we

identified a category of TEs that loses methylation in

dcl3, but not in pol IV or rdr2 mutants (Fig. 2e). In the

canonical Pol IV-RdDM pathway, Pol IV/RDR2-derived

dsRNAs are processed into 23–24 nt siRNAs by DCL3

(reviewed in [2]). To characterize the Pol IV/RDR2-inde-

pendent mechanism of DCL3-RdDM, we investigated

the AtCopia68 long terminal repeat (LTR) retrotrans-

poson fragment At5TE76210, which is located within an

intron of the Agenet domain gene At5g52070. We found

that CHH methylation of this TE is present in ddm1,

but lost in the ddm1 dcl3, ddm1 ago6, ddm1 drm2, and

ddm1 pol V double mutants (Fig. 3a, blue box). Import-

antly, the CHH methylation is present in ddm1 pol IV

and ddm1 rdr2 mutants at a comparable level as the

ddm1 single mutant, demonstrating that the CHH

methylation at this TE is not dependent on Pol IV/RDR2.

The DCL3-RdDM mechanism requires Pol V, which acts

downstream of siRNA production [37, 38]. Therefore, the

downstream chromatin-bound portion of the DCL3-RdDM

pathway acts similar to RDR6- and Pol IV-RdDM to target

Pol V scaffolding transcripts with AGO-bound siRNAs,

while it is only the upstream siRNA-producing portion of

the pathway that differs. This DCL3-RdDM mechanism is

responsible for the methylation of few TEs in the TE-silent

context, but plays a larger role in CHH methylation of TEs

in the ddm1 TE-active context (Fig. 2e) and an even greater

role on transcriptionally competent TEs (Additional file 8:

Figure S7A), again demonstrating that this mechanism is

likely dependent on Pol II transcription of its target loci.

We next aimed to characterize the siRNAs that target

the DCL3-RdDM pathway. This is complicated by the

fact that DCL3-RdDM targeted TEs generally have low

siRNA mappability (0.78, while 1.0 equals all siRNAs
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map uniquely; see Additional file 2: Methods for explan-

ation of mappability calculation) and this complicates

the analysis of exactly which siRNAs are produced

from these loci. We chose in Fig. 3a to investigate

At5TE76210 because the methylation of the TE ex-

tends beyond the TE boundary into the single-copy

sequence of the At5g52070 gene (Fig. 3a, red box).

Therefore, we could unambiguously map siRNAs to

this region of the genome and determine which siRNAs

are driving its RdDM. We find that 24 nt siRNAs are

abundantly produced from this genic region in both wt

Col and ddm1, and the majority of these 24 nt siRNAs are

not dependent on Pol IV or RDR2 in the ddm1 TE-active

context (Fig. 3b). This continued production of 24 nt siR-

NAs in ddm1 pol IV or ddm1 rdr2 mutants correlates

with the continued targeting of this region by RdDM in

these mutants (Fig. 3a, red box). The 24 nt siRNAs and

RdDM of this region are only dependent on DCL3

(Fig. 3a–c) and thus this represents a mechanism of Pol

IV/RDR2-independent production of 24 nt siRNAs via

Fig. 3 Single-locus characterization of the DCL3-RdDM pathway. a CHH methylation of the AtCopia68 family fragmented TE At5TE76210 (blue

box), which is located in the second intron of the Agenet domain gene At5G52070. The CHH methylation pathway targeting this TE fragment is

additionally responsible for the CHH methylation of the adjacent genic introns and exon (red box), which contain small inverted repeat (IR) and

palindromic sequences. b Quantification of perfectly and uniquely mapping small RNAs generated from the single copy genic region from part A

(red box) that is targeted by DCL3-RdDM. c Single-locus bisulfite sequencing of biological replicate samples for the region of the At5G52070 gene

in the red box in (a). d Single-locus bisulfite sequencing of biological replicate samples for the DCL3-RdDM target TE At3TE40740 (AtSINE4). Error

bars in (c) and (d) indicate the 95 % confidence interval. Coloring of genotype labels is the same as in Fig. 2
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DCL3, which can target RdDM. The production of these

24 nt siRNAs is independent of RDR2 and RDR6 and

therefore this represents a distinct mechanism of 24 nt

siRNA production and RdDM from the previously de-

scribed RDR2-dependent or RDR6-dependent mecha-

nisms [39, 40]. In addition, we used biological replicates

and single-locus bisulfite sequencing to verify the activity

of the DCL3-RdDM pathway at the gene At5g52070 and a

distinct TE (At3TE40740 – AtSINE4) in the ddm1 TE-

active context (Fig. 3c, d), validating our MethylC-seq data

analysis and confirming that the DCL3-RdDM mechanism

is not an informatic outlier, but rather a distinct pathway

that regulates multiple TEs.

TE length is a key determinant for regulation by each

type of RdDM

To determine how individual TEs are selected to go

through different RdDM types, we analyzed individual

elements from the Athila6A subfamily of gypsy LTR

retrotransposons, which are strong targets of RDR6-

RdDM in the TE-active ddm1 context (Additional file 3:

Figure S2A, C) [12, 16]. The majority (we find 84.6 %) of

Athila6A elements are not targeted by RdDM in the TE-

silent context and the rest of Athila6A TEs are smaller

than 2.0 kb (the full-length Athila6A consensus element

is 11.6 kb) (Fig. 4a). This demonstrates that the TE

fragments which are too small to encode all of their own

proteins (and thus by definition are non-autonomous)

are either targets of RdDM or do not have detectable

levels of CHH methylation, while the large potentially

full-length elements are maintained in a silenced state by

CMT2-based maintenance of methylation [16] and not

RdDM (Fig. 4a). When transcriptionally activated, more

Athila6A elements are targeted by RdDM (62.7 %).

Although each RdDM mechanism targets some short TE

fragments, we find the median size of the Athila6A TE

that Pol IV-RdDM targets is a short 219 bp fragment, the

median size that DCL3-RdDM targets is an intermediate

sized 1.1 kb, while the median size that RDR6-RdDM

targets is 4.5 kb (Fig. 4a). These data suggest that different

RdDM mechanisms exist for long, intermediate, and short

TEs.

To investigate whether the trend of long TEs specific-

ally targeted by RDR6-RdDM is maintained genome-

wide, we categorized all TEs (without Athila6A) by

length. We find that almost all TEs with no detectable

CHH methylation are small (under 2.0 kb), while most

large TEs (>5 kb) undergo maintenance CHH methyla-

tion independent of RdDM in the TE-silent context

(Fig. 4b). Importantly, for large TEs there is a genome-

wide increase in their targeting by each type of RdDM in

the TE-active context: the medium and long TEs

(>2.0 kb) are statistically over-represented in the RDR6-

RdDM and DCL3-RdDM categories (compared to the

total genome TE size distribution) (Fig. 4b). Therefore,

we conclude that when expressed, long TEs are prefer-

entially targeted by the RDR6-RdDM and DCL3-RdDM

pathways. In addition, we investigated whether TE type,

proximity to a gene, position on the chromosome, or

copy number correlates with RdDM type (Additional

file 9: Figure S8). In contrast to TE size, we found

that these other factors do not account for the switch

from maintenance methylation in the TE-silent con-

text to RdDM in the TE-active context. We did ob-

serve trends such as that the TEs without CHH

methylation are typically small, high copy, and on the

chromosome arms very close to genes, and that the

TEs with CHH methylation that are not targeted by

RdDM in the TE-silent context (and therefore undergo

CMT2-based maintenance methylation) are primarily

centromeric/pericentromeric and are far from genes. Pol

IV-RdDM preferentially targets chromosome arm TEs

near genes, which correlates with previous data [7, 19, 22].

DCL3- and RDR6-RdDM preferentially target TEs far

from genes in the centromere/pericentromere and favor

the long LTR retrotransposons that are found at these re-

gions and dominate large plant genomes.

We next aimed to correlate the genetic structure of in-

dividual TEs with their specific RdDM regulatory path-

way. Most Arabidopsis TEs lack a detailed annotation

based on structure and RNA expression data. We char-

acterized the well-studied Athila6A consensus TE to de-

fine the transcriptional start sites, open reading frames

(ORFs), and intron (data summarized in Fig. 4c). We

aligned individual Athila6A TEs to the full-length anno-

tated consensus element and categorized them by the

CHH methylation pathway in either the TE-silent or TE-

active context (Fig. 4c). As in Fig. 4a, we find that in the

TE-silent context very few Athila6A elements are tar-

geted by RdDM and these are only small TE fragments.

In the TE-active context, the Athila6A elements are

spread among the various RdDM categories. Import-

antly, we find that all full-length elements are specifically

targeted by the RDR6-RdDM pathway (Fig. 4c). In

addition, Pol IV-RdDM only targets small LTR frag-

ments, while other fragmented or larger internally de-

leted elements are spread among all of the other CHH

methylation pathways, including RDR6-RdDM. Of the

known Athila6A features required for autonomous

transposition (production of all the necessary proteins

required for self-mobilization or mobilization of non-

autonomous elements), including LTRs, transcriptional

start sites, and ORFs, we find the probability of an element

to encode this feature correlates with its CHH methylation

pathway in the TE-active context (Fig. 4d). For example,

elements targeted by Pol IV-RdDM never (in our dataset)

contain any of the Athila6A internal coding region, while

elements targeted by DCL3-RdDM always have an internal
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deletion of the ENV ORF promoter. Of interest, nearly all

elements that retain the ENV ORF promoter are targeted

for RDR6-RdDM in our dataset, suggesting that this struc-

ture is directing RDR6-RdDM activity on these transcripts.

From these data we determine that RDR6-RdDM does not

specifically act only on full-length elements, but all full-

length and structurally autonomous Athila6A elements are

targeted specifically by RDR6-RdDM. Therefore, which

particular small RNA silencing pathway regulates each TE

is influenced by the TE's genetic structure.

Structurally autonomous TEs are preferentially targeted

by RDR6-RdDM

To determine if the trend of full-length Athila6A

elements preferentially targeted by RDR6-RdDM is

consistent with all LTR retrotransposons, we pro-

filed each LTR retrotransposon for the presence or

absence of seven domains essential for retrotranspo-

sition: 5’ LTR, GAG capsid protein, AP protease,

RT, RNaseH, INT protein, and 3′ LTR. We deter-

mined the probability of each RdDM pathway to

Fig. 4 TE size correlates with RdDM pathway. a Size distribution of Athila6A LTR retrotransposons categorized by their CHH methylation pathway.

The red arrow is the size of the Athila6A autonomous consensus element. Box plot whiskers represent 10th–90th percentile while the mean is

shown as a plus sign. n = number of TEs in each group. b Size categorization of all Arabidopsis TEs (excluding Athila6A elements). Asterisks

represent statistical significance of p < 0.001 using a Chi-squared test of homogeneity followed by a multiple comparison test for unequal sample

sizes. c Individual Athila6A element alignment with the annotated consensus sequence (cartoon at bottom). Each horizontal bar is one element

(144 analyzed in each context), where gaps in the bar are internal deletions or regions that do not match the consensus element. Bars are

color-coded for the category of CHH methylation in either the TE-silent (top) or TE-active (bottom) context. d Likelihood heat map of each of the

landmarks on the consensus element present in an Athila6A element for each specific CHH methylation pathway. The data refer to the TE-active

context only

Panda et al. Genome Biology  (2016) 17:170 Page 10 of 19



target a TE with these domains in the TE-active con-

text (Fig. 5a). We found that elements regulated by

RDR6-RdDM generally possess all of the internal

protein-coding regions, while particular TEs with the

GAG protein domain are more often targeted by

RDR6-RdDM. Similar to our finding with Athila6A, we

find that Pol IV-RdDM targets TEs that have a low prob-

ability of containing any of the internal retrotransposition-

essential domains and elements targeted by DCL3-RdDM

have a reduced probability of containing the protein-

coding regions GAG, RNaseH, or INT (Fig. 5a).

We next aimed to determine if LTR retrotransposons

with all of the domains required for retrotransposition

are targeted by one RdDM type. Few LTR retrotranspo-

sons have all seven of the domains defined in Fig. 5a, so

we clustered the TEs into categories of 1, 2–3, 4–5, and

6–7 domains (inset Fig. 5b). In the TE-silent context,

most of the TEs with 6–7 domains are not targeted by

RdDM and rather are subject to maintenance methyla-

tion. In the TE-active context, Pol IV-RdDM alone acts

on few 6–7 domain elements, while the RDR6-RdDM,

DCL3-RdDM and co-regulated Pol IV- and RDR6-

RdDM categories function on the majority of the ele-

ments with all the necessary domains required for

retrotransposition. Of note, a trend exists where the

higher number of retrotransposition-essential domains

an LTR-retrotransposon has, the less likely that TE is

to be targeted by Pol IV-RdDM in the TE-active

context. These trends remain consistent, but are not

further enriched, when the subset of transcriptionally

competent TEs is interrogated (Additional file 8:

Figure S7B).

Fig. 5 Expression-dependent forms of RdDM regulate structurally autonomous and near-complete active LTR retrotransposons. a Ratio of observed/

expected frequency heat map of each of the seven domains essential for LTR retrotransposition for each specific CHH methylation pathway. These data

refer to the TE-active context only. b The RdDM categorization of LTR retrotransposons (excluding ONSEN elements) based on the number of domains

essential for LTR retrotransposition listed in (a). Inset graph displays the total number of LTR retrotransposons in each category. c The change in RdDM

categorization for individual ONSEN family TEs from the wt Col to ddm1 backgrounds. Each ONSEN element is represented twice, once as an open dot

(wt Col background) and again as a closed dot (ddm1 background). Lines connecting an open dot to a closed dot represent shifts of individual ONSEN

elements from one CHH methylation category to another upon switching to the ddm1 background
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One outlier TE family to the trends observed in Fig. 5b

is ONSEN, a heat-activated Copia LTR retrotransposon

(Copia78) [14, 41]. For ONSEN, most elements with 6–7

essential retrotransposition domains are targeted by Pol

IV-RdDM in the wt Col background and they remain

targeted by Pol IV-RdDM in the ddm1 background

(Fig. 5c). Two ONSEN elements behave like most other

LTR retrotransposons and in the ddm1 background

switch to being regulated by RDR6-RdDM, but ONSEN

is unusual in the fact that many near-complete elements

remain Pol IV-RdDM targets in the ddm1 background.

Why the ONSEN family behaves differently than other

LTR retrotransposons is unclear, but it is likely due to

the fact that ONSEN is not transcriptionally activated in

ddm1 mutants that have not been heat-activated [14].

Full-length TEs are preferentially targeted for mRNA

cleavage and secondary siRNA production, driving

RDR6-RdDM

Key remaining questions are how and why long autono-

mous TEs are preferentially targeted by RDR6-RdDM.

To investigate this preference, we measured the length

of each TE compared to its autonomous consensus

element and categorized individual TEs as full-length or

TE fragments (see “Methods”). Creasy et al. found that

TE mRNAs are targeted for initial cleavage by

microRNA-like primary (not dependent on a RDR pro-

tein) small RNAs produced elsewhere in the genome

[29]. They also demonstrated that this cleavage is re-

sponsible for initiating RDR6-dependent RNAi and pro-

duction of 21–22 nt secondary siRNAs [29] and these

secondary siRNAs drive RDR6-RdDM [12, 16]. We used

this mRNA cleavage data from the same tissue of wt Col

TE-silent and ddm1 TE-active context genotypes to de-

termine if the preference of full-length TEs to enter

RDR6-RdDM is dictated on the mRNA-cleavage level.

Therefore, we compared the percentage of full-length

and fragmented TEs that are cleaved by primary small

RNAs. As expected, few TE mRNAs are cleaved in the

TE-silent context (Fig. 6a), since not many full-length

TEs are expressed in wt Col (Additional file 1: Figure S1).

In the TE-active context more TE mRNAs are expressed

and are cleaved and we detected that the cleaved TE

mRNAs are mostly from full-length TEs (Fig. 6b). This

trend holds true for all TE types and is not specific to LTR

retrotransposons (Additional file 10: Figure S9A, B).

Additionally, by comparing the cleavage data from rdr6

and ddm1 rdr6 mutants, we were able to categorize TEs

specifically targeted by primary small RNAs (not

dependent on RDR6) or secondary siRNAs (dependent on

RDR6) in both the TE-silent and TE-active backgrounds

(Fig. 6c). We find that the small amount of detectable TE

mRNA cleavage in the TE-silent context is occurring via

primary small RNAs and in the TE-active context both

primary and secondary small RNAs cause TE mRNA

cleavage (Fig. 6a, b).

We next aimed to determine if the preference for full-

length TE mRNA cleavage in the TE-active context re-

sults in secondary siRNA production from specifically

the full-length cleaved TEs. In the TE-silent context, TEs

that produce either cleaved or uncleaved mRNAs gener-

ate similar siRNA distributions, which are predomin-

antly 24 nt (Fig. 6d), demonstrating that in the TE-silent

context the small amount of TE cleavage does not lead

to additional siRNA production. In the TE-active

context, cleaved TE mRNAs generate RDR6-dependent

21–22 nt siRNAs, while as expected the uncleaved TE

mRNAs do not (Fig. 6d). In addition, it is only the TEs

with cleaved mRNAs in the TE-active context that are

subject to RDR6-RdDM without Pol IV-RdDM compen-

sation (Fig. 6e). Therefore, the reason most full-length

structurally autonomous TEs are targeted by RDR6-

RdDM in the TE-active context is: (1) full-length TEs are

preferentially cleaved by primary small RNAs (Fig. 6a,

b); (2) only cleaved TE mRNAs in the TE-active context

make RDR6-dependent secondary 21–22 nt siRNAs

(Fig. 6d); (3) only secondary 21–22 nt siRNA production

drives RDR6-RdDM [16].

New primary sRNAs that accumulate in the TE-active

context direct TE mRNA cleavage and drive

RDR6-RdDM specificity

Since cleavage of full-length TE mRNAs can be detected

in both the TE-silent and TE-active contexts (Fig. 6a, b),

we wondered why RDR6-RdDM is only activated in the

TE-active context. We therefore aimed to determine if

secondary siRNAs generated in the TE-active context

are from: (1) the same TE mRNAs cleaved in both the

TE-silent and TE-active context; or (2) from cleavage of

new TE mRNAs that were not expressed or uncleaved in

the TE-silent context. We found that there are new TEs

subject to mRNA cleavage in the TE-active context and

these mRNAs produce 21–22 nt secondary siRNAs (new

ddm1 cleaved, Fig. 6f ). Additionally, we found that for

the TE mRNAs that are cleaved in the TE-silent context

(which do not produce secondary siRNAs), in the

TE-active context these exact same TE mRNAs pro-

duce 21–22 nt secondary siRNAs (wt Col cleaved,

Fig. 6f ). Therefore, why does the same cleaved TE

mRNA not produce secondary siRNAs in the TE-silent

context while it efficiently produces secondary siRNAs in

the TE-active context? We generated four hypotheses: (1)

increased mRNA expression and hence increased mRNA

cleavage at the same site in the ddm1 TE-active context

drives secondary siRNA production; (2) equal numbers of

new TE mRNA primary cleavage sites accumulate in the

TE-active context, resulting in secondary siRNA produc-

tion; (3) cleavage by multiple primary sRNAs drives
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secondary siRNA production only in the TE-active context

[42]; and (4) the primary sRNAs directing TE mRNA

cleavage are 21 nt in the TE-silent context, but are 22 nt

in the TE-active context, a size shift that is known to in-

duce secondary siRNA production [29, 43]. We individu-

ally tested these hypotheses (Fig. 6g, h, Additional file 10:

Fig. 6 Full-length TEs are preferentially cleaved and produce secondary siRNAs, driving RDR6-RdDM. a Percentage of TEs with cleaved mRNAs in

the TE-silent context. b Percentage of TEs with cleaved mRNAs in the TE-active context. In (a) and (b) rdr6 mutants are used to determine which

cleavage events are due to primary small RNAs (not RDR6 dependent) or RDR6-dependent secondary siRNAs. c Venn diagram of cleaved TE

mRNAs in the TE-active context and their dependence on RDR6-generated secondary siRNAs. d siRNA production from small RNA-cleaved and

uncleaved TE mRNAs determined in parts (a–c). Labels above bars indicate the assayed genotype of small RNA alignment. e RdDM pathway

categorization of the TE categories shown in (d). f siRNA production in the TE-active context. Small RNA-cleaved and uncleaved TE mRNAs in the

TE-silent context are the same as in (d). “New ddm1 cleaved” refers to TE mRNAs that are cleaved in the TE-active context but were not cleaved

in the TE-silent context. g TE-active context siRNA production from TE mRNAs with new cleavage sites in the TE-active context compared to the

TE-silent context. “Cleavage sites retained & gained in ddm1” refers to TE mRNAs with new cleavage sites plus the retention of the same TE mRNA

cleavage sites from the TE-silent context. “Cleavage sites not retained & completely distinct in ddm1” refers to TE mRNAs with new cleavage sites

without retention of the same TE mRNA cleavage sites from the TE-silent context. h Of the “Cleavage sites not retained & completely distinct in

ddm1” TEs from (g), the number of cleavage sites on the same TE mRNA in the TE-silent and TE-active contexts. Weight of the arrow is determined by

how many TE mRNAs transition from 1–2 cleavage sites in the TE-silent context to other numbers of cleavage sites in the TE-active context. The

majority of TE mRNAs have one cleavage site in the TE-silent context and a different one cleavage site in the TE-active context
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Figure S9C, D) and found that TE mRNA cleavage occurs

at new distinct sites within the TE mRNAs, driving RDR6-

function and secondary siRNA production (Fig. 6g), while

the size of the siRNA, level of TE mRNA, and the number

of cleavage sites did not contribute (Fig. 6h, Additional file

10: Figure S9C, D). We observed that many TE mRNAs

are cleaved once in the TE-silent context and once in the

TE-active context, but the change in the primary sRNA

and/or cleavage site results in secondary siRNAs produc-

tion only in the TE-active context (Fig. 6g, h). Thus, new

primary small RNAs with the same size distribution ap-

pear in the TE-active context and cleave the same TE

mRNAs at new positions and are responsible for the TE

21–22 nt secondary siRNA production that drives RDR6-

RdDM of full-length elements specifically in the TE-active

context.

Discussion

DCL3-RdDM defines a new pathway of TE silencing

By using MethylC-seq and single-locus bisulfite sequen-

cing, we identified and confirmed a novel RdDM path-

way that acts via 24 nt siRNAs produced not from Pol

IV transcripts, but rather presumably from Pol II tran-

scripts cleaved by DCL3. This pathway is distinct from

the Pol II-RDR6-DCL3 or Dicer-independent pathways

previously described [35, 40]. On the whole-genome

level, we found that this pathway acts on transcription-

ally active TEs that are typically long but internally

deleted versions of the full-length autonomous element.

For Athila6A sub-family TEs, all individual TE targets of

DCL3-RdDM are missing the internal promoter region

(Fig. 4c, d), suggesting that the structure of the TE critic-

ally drives individual elements into this pathway. We fo-

cused on a single-locus example to define the precise

protein requirements for siRNA production and target-

ing of DCL3-RdDM and we find that the upstream por-

tion of the pathway is distinct from Pol IV-RdDM, while

the downstream portion of the pathway (involving Pol V,

AGO6, and DRM2) is conserved. We find that the

DCL3-RdDM pathway is independent of RDR2 and

RDR6, but it is unknown if this pathway functions

completely independently of RNA-dependent RNA

polymerization (RDR1, 3, 4, and 5 are untested). If

RDR-independent, this pathway may function on only

intra-molecular dsRNA generated from fold-back

RNA hairpins [44]. The At5g52070 methylated region

contains a short inverted repeat and a short palin-

drome sequence (Fig. 3a), but it is unknown if these

features or this locus produces a fold-back dsRNA

substrate for DCL3 processing. We investigated whether

DCL3-RdDM target TEs are associated with palindromes

or inverted repeats genome-wide; however, we did not de-

tect a correlation (data not shown). In addition, we do not

see an increase in 21–22 nt siRNA production in dcl3

mutants at the DCL3-RdDM target At5g52070 (Fig. 3b),

suggesting that multiple DCL proteins are not competing

for the same dsRNA substrate. These RNA substrates are

likely produced by Pol II, as we detect more DCL3-RdDM

in the TE-active context, DCL3-RdDM is enriched for tar-

gets in the transcriptionally competent TE subset, and the

24 nt siRNAs driving DCL3-RdDM are not dependent on

Pol IV or Pol V (Fig. 3b). However, key insights, such as

the developmental stage that DCL3-RdDM is active and

whether DCL3-RdDM functions in the initiation and/or

re-establishment of TE silencing, remain unknown.

Diversity of RdDM mechanisms

TEs are the genome-wide target of RdDM mechanisms

[19, 45]. In this study we investigated RdDM mecha-

nisms in both the wt TE-silent context, as well as a

ddm1 mutant context with genome-wide transcription-

ally active TEs. The ddm1 mutation prohibits the forma-

tion of the transcriptionally silenced state and hence the

cell is in a perpetual cycle of attempted targeting of re-

silencing via RdDM. This uncovered an unappreciated

diversity in RdDM mechanisms that function on TE tar-

gets in the TE-active context. It is now clear in the

RdDM field that many biogenesis mechanisms can pro-

duce small RNAs that are loaded into AGO proteins to

participate in RdDM, including Pol IV/RDR2 24 nt siR-

NAs (Pol IV-RdDM), Pol IV-independent 24 nt siRNAs

(DCL3-RdDM), 21–22 nt siRNAs via RDR6-RdDM, and

Dicer-independent siRNAs. We found that the specific

pathway targeting each TE is largely defined by the TE’s

structure. Our data demonstrate that the cell utilizes a

number of distinct pathways to direct DNA methylation

to active TEs; however, all of these mechanisms converge

on one downstream chromatin modifying complex that

includes Pol V and DRM2.

Pol IV transcribes silent TEs [5] and thus Pol IV-RdDM

functions in the TE-silent context to maintain DNA

methylation at particular short TEs near genes, which may

require constant re-targeting to maintain the boundary

between the heterochromatic TE fragment and the eu-

chromatic neighboring gene [8] (reviewed in [46]). In the

TE-silent context, RDR6-RdDM and DCL3-RdDM do not

function on many TEs, presumably due to the lack of Pol

II-derived transcripts. In contrast, in the TE-active con-

text, DCL3-RdDM and RDR6-RdDM function on 20 % of

assayed TEs (and 40 % of transcriptionally competent

TEs). In particular, DCL3- and RDR6-RdDM target long

TEs which are farther from genes (within the centro-

meres/pericentromeres); however, DCL3-RdDM targets

TEs with internal deletions, while full-length elements are

targeted specifically by RDR6-RdDM (at least for the well-

annotated Athila6A family). This phenomenon is likely

conserved in other plants, as in maize an active autono-

mous TE is regulated by RDR6-RdDM [47]. However,

Panda et al. Genome Biology  (2016) 17:170 Page 14 of 19



there are notable exceptions to these general trends, dem-

onstrating that cases exist where TE family-based regula-

tory dynamics can outweigh the TE size/structure-based

regulation shown in Figs. 4 and 5. For example, all RdDM

pathways regulate many small fragmented TEs (including

RDR6-RdDM), and many full-length ONSEN family TEs

are regulated by Pol IV-RdDM even in ddm1 mutants.

How and when TE family-based regulation outweighs

other trends in genome-wide regulation of TEs remains a

key question to be addressed.

Within the specific regulation of individual TE copies,

we found that RdDM mechanisms can compensate for

each other. In the TE-active context, when Pol IV is mu-

tated many TEs display CHH methylation that is now

dependent on RDR6 and vice versa Pol IV-RdDM com-

pensation is detected in rdr6 mutants. However, this

compensation effect was not detected unless both Pol IV

and RDR6 were mutated at the same time. This com-

pensation may be due to a competition between Pol IV

and Pol II for DNA substrates [37, 48]. Thus, only when

Pol IV is mutated would Pol II transcribe these TEs into

substrates for RDR6-RdDM.

Specificity of full-length TEs for RDR6-RdDM

Because many active full-length structurally autonomous

TEs are regulated by RDR6-RdDM, a major question

was what drives this specificity. Primary small RNAs are

produced either from TEs themselves or elsewhere in

the genome by a mechanism similar to microRNA pro-

duction [29]. Our analysis suggests a model whereby

full-length TEs are more likely regulated by RDR6-

RdDM due to the specificity of full-length TE mRNAs

for cleavage by primary sRNAs. Full-length TE mRNAs

may circumvent RNA surveillance mechanisms that

target short fragmented RNAs, allowing only the full-

length high-quality TE mRNAs to survive to the point

where they can be targeted by primary sRNAs (see

model in Fig. 7). The nature of the filter responsible for

shielding fragmented TE mRNAs from siRNA cleavage

is currently unknown (Fig. 7); however, it may be as sim-

ple as the nuclear envelope acting as a mRNA quality

control filter, allowing full-length TE mRNAs export into

the cytoplasm (for cleavage by sRNAs), while the frag-

mented TE mRNAs are not exported and instead de-

graded by alternative mechanisms. XRN endonuclease

and exosome RNA degradation competes with RNAi

[49] and the mRNAs produced from TE fragments may

be degraded by these mechanisms rather than be tar-

geted by a primary sRNAs and enter into RNAi. In the

TE-active context, once cleaved, the TE mRNAs are

targeted by RDR6 and abundant secondary siRNAs are

produced. These secondary siRNAs promote additional

rounds of RNAi of TE mRNAs (via AGO1), as well as

drive RDR6-RdDM (via AGO6).

A major question is why some mRNA cleavage events

from primary sRNAs generate secondary siRNAs while

others do not. For example, some TE mRNAs are

cleaved by primary sRNAs in both the TE-silent and TE-

active contexts; however, secondary siRNAs are only

produced in the TE-active context. We determined that

these TE mRNAs are cleaved at new positions by new

primary small RNAs in the TE-active context and this is

responsible for their secondary siRNA production via

RDR6. One hypothesis in the field is that the size of the

primary small RNA (21 vs. 22 nt) drives the distinction

between secondary siRNA production [43]; however, we

did not detect any size shift in the small RNAs (Fig. 6g, h

and Additional file 10: Figure S9D). Another hypoth-

esis is that multiple primary cleavage events on the

same mRNA triggers secondary siRNA production

[42]; however, we did not detect a correlation be-

tween multiple cleavage sites and secondary siRNA

production. Therefore, how RDR6 is recruited to

some cleaved transcripts to generate secondary siR-

NAs remains a key open question in the field.

Conclusions

The tight transcriptional silencing of TEs in the refer-

ence strain of Arabidopsis has produced a general lack

of appreciation for the diversity of RdDM mechanisms.

We focused on TE silencing mechanisms in both the

TE-silent and TE-active contexts and conclude that mul-

tiple small RNA-generating mechanisms can target

RdDM when TEs are transcriptionally active. This in-

cludes the DCL3-RdDM pathway, which processes 24 nt

siRNAs for RdDM independent of Pol IV. We found

that TE structure and length are key determinants for

RdDM pathway specificity and in particular RDR6-

RdDM targets many of the full-length and structurally

autonomous TEs in the genome. The targeting prefer-

ence of RDR6-RdDM for full-length autonomous TEs is

generated from the specificity of full-length TE mRNAs

to be cleaved by primary small RNAs and therefore this

RNA cleavage specificity drives the initiation of long-

term epigenetic repression of TE mobility.

Methods
Plant material

All plants used in this study are in the Col ecotype back-

ground of Arabidopsis thaliana. Plants were grown in

long-day (18-h light) conditions at 22 °C and stage 1–12

inflorescence tissue (staging as in [50]) was used for all

experiments and sequencing. The alleles of the mutants

are shown in Additional file 11: Table S1.

MethylC-seq

DNA was isolated using fractional precipitation followed

by phenol-chloroform extraction and RNase A treatment.
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A total of 1 ug of DNA was used to prepare libraries

as previously described [51]. Single-end Illumina se-

quencing of 150 bp was performed at the University

of Georgia Genomics Facility using an Illumina Next-

Seq500 instrument.

Mapping of MethylC-seq data

Sequencing reads were trimmed for adapters, prepro-

cessed to remove low quality reads, and aligned to the A.

thaliana TAIR10 reference genome as previously

described [52, 53]. Two strategies were performed to map

these data: (1) uniquely mapping: any reads that mapped

to more than one location were discarded (-m 1); and (2)

multi-mapping: reads that mapped to multiple locations

were retained (-a). Both strategies do not allow PCR

duplicated reads. We calculated the average TE mappabil-

ity from the uniquely mapping methylation dataset and

found 67.5 % of TEs are perfectly (100 %) mappable,

whereas another 32.1 % are semi-mappable, and 0.36 %

are not mappable (Additional file 2: Results and Methods

and Additional file 3: Figure S2). Therefore, if the read

length is long enough (in this study, the read size is

150 bp) and the repetitive fraction of a genome is small/

simple/divergent enough (the Arabidopsis genome), then

using the unique mapping strategy can provide sufficient

coverage and mappability to interrogate TE methylation

dynamics, with the added benefit of determining the

unique methylation states of individual TE copies. All data

analyses shown in this study (excluding Additional file 3:

Figure S2) are produced from the uniquely mapping strat-

egy. Sequencing and mapping statistics of our MethylC-

seq data is shown in Additional file 11: Table S1.

DMR identification

DMRs were identified between all datasets as previously

described [54]. The maximum physical distance to com-

bine two differentially methylated sites (DMSs) was set

to 250 bp. DMRs with at least four DMSs were reported

and used for subsequent analyses.

Methylation level calculation

The weighted methylation level of genomic features

(TE, gene, or DMR) was calculated as described pre-

viously [55].

Meta-plots

For each individual entity (TE, gene, or DMR), the aver-

age CHH methylation percentage was calculated in

100 bp windows across the length of the entity and a

2 kb neighboring region on either side. The entities are

either aligned at the 5′ end or the 3′ end and the aver-

age methylation percentage for all the elements was cal-

culated for each 100 bp window. For DMRs, there is no

defined 5′ or 3′ end and hence only one edge is shown.

For any given window, the variation in methylation

across all elements was used to calculate the 95 % confi-

dence interval.

RdDM mechanism categorization

Only those TEs which are covered (at least one re-

ported cytosine) in all genotypes were used for RdDM

categorization and further analysis. For each TE, we

calculated the average CHH methylation and only this

specific cytosine context was used for TE categorization.

TEs with less than 1 % CHH methylation in wt Col were

Fig. 7 Model of full-length TE specificity for RDR6-RdDM. Full-length TE mRNAs are specifically cleaved and degraded into secondary 21–22 nt

siRNAs, driving the specificity of RDR6-RdDM. An unknown filter blocks the mRNA cleavage, RNAi, and secondary siRNA production of mRNAs

from fragmented TEs
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classified into the “no CHH” category. For all the other

RdDM categories, the following criteria were used for

classification. Pol IV-RdDM: TEs that lose >2-fold methy-

lation in pol IV and pol V compared to wt Col but do not

lose >2-fold methylation in rdr6 or pol IV rdr6 compared

to wt Col or pol IV, respectively. RDR6-RdDM: TEs that

lose >2-fold CHH methylation in rdr6 and pol V com-

pared to wt Col, but not pol IV or pol IV rdr6 compared

to wt Col or rdr6, respectively. DCL3-RdDM: TEs that

lose >2-fold CHH methylation in dcl3 and pol V but not

in pol IV or rdr6 or pol IV rdr6 double mutants. The Pol

IV- and RDR6-RdDM co-regulated category: TEs that lose

CHH methylation in the pol IV rdr6 double mutant com-

pared to wt Col but do not belong to either Pol IV- or

RDR6-RdDM categories. No RdDM: TEs with greater

than 1 % CHH methylation but do not lose >2-fold CHH

methylation in a pol V mutant or could not be categorized

into any of the above-mentioned RdDM categories. For

the TE-active context, the corresponding ddm1 double

mutants were compared to the ddm1 single mutant for

categorization. The heat map shown in Fig. 2e was created

using the average methylation for each TE in each geno-

type using the heatmap.2 function of the gplots package in

R. The TEs were sorted by their average CHH methylation

in each RdDM category for either the TE-silent or

the TE-active context.

Small RNA data mapping

Small RNAs were isolated, sequenced, and processed

as in [16]. Low quality and reads from rRNA and

tRNAs were removed. Bowtie (version 1.1.1) [56] was

used to map the sRNAs to specific regions or the

whole genome. For sRNA production, only uniquely

and perfectly mapping reads were considered (bowtie

parameters: -v 0 -m 1). Reads per million (RPM) for

each size class of mapped sRNAs was calculated by

normalizing the number of raw mapped reads to the

total genome-matched (non-tRNA/rRNA) 18–28 nt

reads of the specific sRNA library. For reads per

kilobase per million (RPKM), the RPM value was nor-

malized to the total length of the region(s) that the

sRNAs were mapped to. Heat maps in Fig. 2 were

generated using the heatmap.2 function of gplots

package in R.

TE consensus element alignments

For Fig. 4, the Athila6A consensus sequence from GIRI

RepBase was used [57]. We aligned all the TAIR10 TEs

annotated as Athila6A to the consensus sequence using

Blastn. The number of TEs undergoing a specific RdDM

mechanism was calculated and the fraction of those TEs

having a specific Athila6A annotation feature is shown

in the likelihood map in Fig. 4d. In Fig. 6a–c, length of

each TE in the TAIR10 annotation was compared to its

specific autonomous consensus element sequence from

GIRI RepBase. TEs were divided into full-length (>80 %

of autonomous consensus element length) and TE frag-

ments (<20 % length).

LTR domain annotation and analysis

To identify the TEs with one or more of the essential

retrotransposition domains, the TAIR10 TE annotation

was used to predict all possible LTR retrotransposon

peptide fragments (all reading frames split by stop

codons). The peptides were used to query in the HMM

domain libraries [58] using hmmsearch [59]. Only hits

covering more than 90 % of the reference essential retro-

transposition HMM domains were considered. LTRs

were predicted using TRsearch from REPET [60], which

identifies LTR pairs within a single element. This identi-

fied 407 LTR pairs, which were used as a blastn library

to identify 894 single LTRs on fragmented elements.

LTRs found within the internal portion (farther than

50 bp from either end) of a TE element were discarded.

The frequency of each essential domain (number of TEs

with a specific domain/total number of TEs) was calcu-

lated for all TEs (expected frequency) and for TEs in

each specific RdDM category (observed frequency). The

ratio of observed over expected frequency is shown as a

heat map in Fig. 5a.

mRNA cleavage data analysis

Published and processed data that report the sRNA and

its detected PARE signature from [29] were used to assay

mRNA cleavage. Only cleavage sites with p value < 0.05

were considered. From this dataset, we determined if

one specific TE mRNA is being cleaved at one or mul-

tiple sites.

Identification of transcriptionally competent TEs

TEs were identified with at least one uniquely matching

RPM in ddm1 RNA-seq (GSE38286) [61], at least ten

uniquely matching RPM of 21–22 nt (Pol II-derived) siR-

NAs in ddm1 (GSE57191) [16], or any evidence of mRNA

cleavage in ddm1 or ddm1 rdr6 in GSE52342 [29].

Single-locus bisulfite sequencing

Bisulfite sequencing was done as in McCue et al. [16]

with the PCR primers shown in Additional file 12:

Table S2.

Additional files

Additional file 1: Figure S1. Steady-state TE mRNA accumulation in

ddm1 and the RdDM mutant pol V. Full-length TEs undergo a larger shift

in reactivation in ddm1 mutants compared to pol V mutants. In pol V

mutants, only a slight genome-wide activation of TEs is detected.

(PDF 164 kb)
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Additional file 2: Results and Methods. Detailed Results, Methods,

Figure Legends, and References to support the Supplemental Figures

and Tables. (PDF 141 kb)

Additional file 3: Figure S2. MethylC-seq has the resolution to assay

RDR6-RdDM on individual TE loci. Using our unique-mapping

approach and our MethylC-seq dataset, the highly repetitive TE

targets of RDR6-RdDM are assayable, which allows for locus-specific

analysis of TE methylation patterns. (PDF 188 kb)

Additional file 4: Figure S3. Validation of MethylC-seq data using

biological replicates of key genotypes. Analyses of biological replicates of

key samples showing the reproducibility of major conclusions from our

study. (PDF 317 kb)

Additional file 5: Figure S4. Overlap in DMRs and TEs regulated by

RdDM. Comparison of the relative efficacy of RdDM mechanisms in both

TE-silent and TE-active contexts. (PDF 176 kb)

Additional file 6: Figure S5. Genome-wide distribution of TE CG and

CHG methylation. Heatmap showing CG and CHG methylation for the

TEs categorized into different RdDM mechanisms based on CHH

methylation. (PDF 394 kb)

Additional file 7: Figure S6. Pol IV- and RDR6-RdDM compensate for

each other. Evidence of RdDM compensation is observed when both Pol

IV and RDR6 are mutated simultaneously in either TE-silent or TE-active

context. (PDF 105 kb)

Additional file 8: Figure S7. Enrichment of RDR6-RdDM and DCL3-RdDM

at transcriptionally competent TEs. We find that expression-dependent forms

of RdDM are enriched when investigating the transcriptionally competent

subset of TEs. (PDF 403 kb)

Additional file 9: Figure S8. Correlation between CHH methylation

pathway and TE location, type, and copy number. Genome-wide trends

exist for correlation of TE location, type, and copy number with the type

of RdDM mechanism. (PDF 141 kb)

Additional file 10: Figure S9. TE cleavage dynamics. Cleavage site

analyses demonstrate that size of the primary small RNAs and TE mRNA

accumulation level do not dictate secondary siRNA production.

(PDF 153 kb)

Additional file 11: Table S1. Mutant alleles and quality statistics of the

MethylC-seq data produced in this study. Reads from our MethylC-seq

dataset cover more than 96 % of all cytosines in the genome with a

roughly 25-fold coverage. (PDF 48 kb)

Additional file 12: Table S2. Primer sequences used in this report.

Primer sequences for single-locus bisulfite sequencing performed in

Fig. 3c, d are reported. (PDF 36 kb)
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