
ARTICLE

Full-length transcriptome reconstruction reveals
a large diversity of RNA and protein isoforms
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Gene annotation is a critical resource in genomics research. Many computational approaches

have been developed to assemble transcriptomes based on high-throughput short-read

sequencing, however, only with limited accuracy. Here, we combine next-generation

and third-generation sequencing to reconstruct a full-length transcriptome in the rat hip-

pocampus, which is further validated using independent 5´ and 3´-end profiling approaches.

In total, we detect 28,268 full-length transcripts (FLTs), covering 6,380 RefSeq genes and

849 unannotated loci. Based on these FLTs, we discover co-occurring alternative RNA

processing events. Integrating with polysome profiling and ribosome footprinting data, we

predict isoform-specific translational status and reconstruct an open reading frame

(ORF)-eome. Notably, a high proportion of the predicted ORFs are validated by mass

spectrometry-based proteomics. Moreover, we identify isoforms with subcellular localization

pattern in neurons. Collectively, our data advance our knowledge of RNA and protein isoform

diversity in the rat brain and provide a rich resource for functional studies.
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T
he structural annotation of genes serves as an important
resource in the genomics era. Prior to the advent of next-
generation sequencing (NGS) technologies, gene annota-

tion proceeded relatively slow and largely relied on expressed
sequence tags (ESTs)1, protein sequences2, in silico prediction3,
and their combinations4. Recently, NGS-based RNA-seq has been
used to reconstruct transcriptomes by assembling sequencing
reads with5 or without6 reference genomes, largely expanding the
complexity of transcriptomes in human and other organisms7–9.
However, transcriptome diversity owing to alternative transcrip-
tion start sites, alternative splicing of exons, and/or the use of
different poly(A) sites is often difficult to capture and characterize
using NGS data, due to their relatively short read length (typi-
cally ≤ 400 nt)10 in comparison to the length of mature tran-
scripts (median > 2500 nt). Therefore, coupled alternative RNA
processing events that occur over long distances cannot be
simultaneously captured by single short reads11. In such cases,
transcriptome reconstruction algorithms cannot provide unam-
biguous solutions5. In general, the quality of isoform assembly is
inversely correlated with the transcriptome complexity12,13.

Despite the technical challenge, there is an ever-increasing
interest to investigate and determine transcripts in full-length,
which allows for the identification of coupled alternative RNA
processing events thereby discovering coordination between dif-
ferent regulatory processes, including coding capacity, RNA
localization, translation and stability. For example, it has been
reported that alternative splicing of internal/last exons is coupled
with alternative polyadenylation sites (pAs) to alter simulta-
neously coding sequences and 3′-untranslated regions (UTR)14,15.
Cis-elements residing in 3′ UTRs can affect RNA stability16,17,
translational efficiency18–20, and subcellular localization21–23;
therefore, such coupling could generate distinct protein isoforms
with differential translational efficiency from RNAs with differ-
ential stability and/or subcellular localization23–25. In addition,
the knowledge of full-length mRNA sequences or at least full-
length ORFs is essential to understand the complete amino acid
sequences of encoded proteins. Moreover, to what extent tran-
scriptome diversity is translated into proteome diversity is still
debated26–28. Clear, unbiased answers to the abovementioned
questions require the knowledge of full-length transcriptomes.

The more recently developed third generation sequencing (TGS)
technologies, including the Pacific Biosciences (PacBio)29–35 and
Oxford Nanopore36 platforms, can generate longer reads, reach-
ing up to tens or even hundreds of kilobases10,37. Such read
length is sufficient to cover most RNA transcripts in full length.
Although these technologies have recently been used to char-
acterize full-length transcripts either in a targeted manner or on a
genome-wide scale29–36, challenges exist in two respects. First, the
sequencing error rate of TGS is significantly higher than NGS,
which compromises read alignment or assembly31. One way to
increase the read accuracy is to sacrifice the advantage of read
length. For instance, PacBio can generate high-quality circular
consensus sequences (CCSs) by requiring the polymerase to run
through the sequencing insert multiple times. However, if
sequencing inserts are long, the polymerase may fail to go
through the insert multiple times, and only subreads, generated
by one-pass polymerase runs, are obtained. As a result, the CCS
sequences could be significantly shorter than the subreads32.
Alternatively, the same samples could be sequenced at the same
time by, for example, Illumina technology and thereafter the
high-quality Illumina reads could be used to correct the TGS
sequencing errors (e.g., LSC38, pacBioToCA31, proovread39, as
well as others reviewed and compared in ref. 40). Second, the TGS
throughput is significantly lower than that of Illumina41, which, if
used on a genome-wide scale, would be difficult to capture
transcripts of low abundance30. Moreover, what is often lacking

in previous TGS transcriptome studies, is the orthogonal valida-
tion of transcript ends29,32,42.

Although the rat has long been used as a model organism, its
gene annotation is not comparable with that of human and
mouse. This largely restricts its potential usage in many fields,
including molecular neurobiology given the highest tran-
scriptome complexity in neuronal tissues. To address this issue
and above-stated technical challenges, we develop a hybrid-
sequencing workflow for reconstructing full-length transcripts
(FLTs) and apply it to annotate the FLTs expressed in rat hip-
pocampus, which are then validated by orthogonal approaches.
With the FLT collection, we discover co-occurrence of alternative
RNA processing events. Furthermore, integrating with polysome
profiling and ribosome footprinting data, we provide insightful
observations on the isoform–specific translational status, as well
as ORFeome diversity. Importantly, a large fraction of our newly
identified ORFs are supported by mass spectrometry-based pro-
teomics datasets. Finally, we identify isoforms with specific sub-
cellular localization patterns in neurons. Altogether, our data
expand the current rat gene annotation and provide a rich
resource for future functional studies. Moreover, our pipeline can
be easily adapted to uncover the complex transcriptome/
ORFeome landscapes expressed in other tissues from other
organisms.

Results
A hybrid-sequencing workflow for FLT reconstruction. Aiming
for sequencing RNA transcripts in full length, we developed a
workflow that combines the unique technical strengths of Illu-
mina and PacBio sequencing technologies, i.e., high sequencing
accuracy and long read length, respectively. Our workflow has
two main features (Fig. 1a): First, cDNA normalization and size
fractionation to facilitate the profiling of diverse transcripts at an
affordable throughput; second, a computational approach to
correct PacBio sequencing errors by using Illumina reads.

We applied the workflow to adult rat hippocampal tissue. In
total, we sequenced four PacBio libraries of different cDNA sizes
(Supplementary Table 1). Incorporating the size fractionation
helps to avoid amplification and sequencing bias. While shorter-
than-expected subreads were observed to different extents in the
four libraries, the overall subread length showed a tendency to fit
the expected size (Supplementary Fig. 1a), and the reads were
predominantly derived from genes of the expected length
(Supplementary Fig. 1b). We speculated that those shorter-
than-expected reads were largely due to polymerase drop-off
during the PacBio sequencing; therefore these reads were not
used for FLT annotation (see the next section).

The cDNA in the PacBio library was normalized using a
duplex-specific nuclease43 (see Methods section). As a result, the
range of PacBio reads per gene spanned only three orders of
magnitude, considerably less than the seven orders of magnitude
of the gene expression dynamic range measured by Illumina
sequencing of the non-normalized library (Supplementary Fig. 1c,
d). As shown in Fig. 1b and Supplementary Fig. 1e, after the
cDNA normalization, those highly expressed transcripts, which
would otherwise consume many sequencing reads, were largely
depleted. Hence, after normalization we obtained more reads
from lowly expressed genes, enabling us to sample relatively rare
transcripts.

Using Illumina reads to correct PacBio sequencing errors (see
Methods section), we substantially improved the sequence
accuracy (Fig. 1c, Supplementary Fig. 1f for an example). As a
result, the percentage of alignable reads (Fig. 1d), alignment
coverage (Supplementary Fig. 1g) and precision of read alignment
at annotated splicing sites (Supplementary Fig. 1h) were
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improved. As genes of higher expression levels obtained more
Illumina reads for error correction, we observed a positive
correlation between the improved accuracy and the expression
levels, whereas the accuracy of the raw reads was independent of
gene expression (Fig. 1e). Except for genes expressed at very high
levels (FPKM > 100), the performance of error correction could
be further improved with higher Illumina sequencing depth.

After error correction, we aligned the PacBio reads against the
rat reference genome, identical alignments were collapsed, and
reads aligned to the same loci of the same strand were clustered
(see Methods section). Hereafter, we define collapsed reads as
transcripts, and read clusters as gene loci. At this stage, we
identified 102,377 transcripts from 22,629 gene loci.

High-confidence FLTs improve rat RNA isoform annotation.
To discard truncated reads caused by incomplete reverse tran-
scription or PacBio sequencing, we generated cap analysis gene
expression (CAGE) data19 (see Methods section) and used our
previously published 3′end sequencing (3′-seq) data from the rat
hippocampus23 to characterize the transcript 5′-ends and 3′-ends,
respectively (Fig. 2a). In total, the CAGE and 3′-seq data yielded
37,426 and 23,229 clusters, respectively. At the transcription start
sites (TSSs), we found a substantial overlap between our PacBio
transcript 5′-ends and CAGE clusters (Fig. 2b). Among the non-
overlapping ones, PacBio transcript 5′-ends were more frequently
located downstream of CAGE clusters, likely due to reverse
transcriptase or polymerase drop-off. A similar phenomenon was
observed when comparing to the annotated TSSs, though the

distance distribution was less sharp and there were fewer overlaps
within a 50-nt distance (Fig. 2b). In comparison to the 5′-ends,
better agreement was achieved at the transcript 3′-ends (Fig. 2c)
and again, there were more overlaps between PacBio transcript
3′-ends and 3′-seq clusters than that between PacBio transcript
3′-ends and annotated transcription end sites (TESs). Collec-
tively, these analyses showed the high concordance between
PacBio transcript ends and CAGE/3′-seq clusters, and indicated
the incompleteness of current rat TSS/TES annotation.

To determine high-confidence FLTs, we only retained
transcripts whose 5′-ends and 3′-ends were both within 50-nt
from CAGE and 3′-seq clusters. The final set contained 28,268
transcripts derived from 6,380 RefSeq gene loci and 849
unannotated loci, resulting in an average diversity of 3.91
isoforms per gene locus, a large increase in isoform diversity
compared to rat RefSeq/Ensembl annotation (Fig. 3a; see also
Supplementary Fig. 2a, b for comparison to mouse and human
gene annotation, respectively). For instance, our FLT contained
eight transcript isoforms of the gene Nrsn1 (Neurensin-1), which
started from two distinct TSSs validated by CAGE and ended at
one TES confirmed by 3′-seq (Fig. 2d). In comparison, the RefSeq
annotation contains only one isoform, and the annotated TES
was not used in our sample. In Rpl21 (large ribosomal subunit
protein 21), we found one additional distal TES and a number of
alternative first exons, whereas RefSeq contains only one
annotated isoform (Fig. 2e). Finally, for the gene Sirpa (signal
regulatory protein α), which encodes a transmembrane protein
predominantly expressed in neurons and present in dendritic
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Fig. 1 The hybrid sequencing workflow for FLT annotation. a The flow chart of the hybrid sequencing workflow, including the experimental procedures (blue

rectangles) comprised of PacBio sequencing and Illumina sequencing, and the computational components (pink rectangles) for Illumina-based PacBio error

correction, followed by full-length transcriptome reconstruction, transcript end validation, and isoform diversity characterization. b The ratio of PacBio read

count to gene expression level (estimated based on Illumina sequencing data) was plotted against the gene expression level. Highly expressed transcripts

were largely depleted in PacBio sequencing after the cDNA normalization. c Histograms compare PacBio read accuracy before and after the error

correction. After the correction, the final sequence accuracy was increased from 88.55% to 99.76%. The colors filled in the histograms are half-

transparent, so that dark red in the histograms indicates the overlay. d Bar plots showing the percentage of alignable reads before and after error correction

(72.8% vs. 98.2%). e The increased sequence accuracy after error correction was plotted against gene expression levels. Box edges represent quartiles,

whiskers represent extreme data points no more than 1.5 times the interquartile range. Source data for panel b are provided in a Source Data file
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and/or axonal regions44, we identified four isoforms with two
distinct 3′-ends, all divergent from the one annotated in RefSeq.
As shown in Fig. 2f, the inclusion of two internal exons 3 and
4 seems to be associated with a shortened 3′UTR, whereas the
choice of alternative 5′splice sites of exon 7 was independent of
the usage of the two alternative TESs.

We then checked whether any systematic biases were
introduced into our FLT transcripts. First, concerning the size
and position of exons and introns, we found no large differences
between our FLT and RefSeq/Ensembl annotation (Supplemen-
tary Fig. 2c, d). Then, we evaluated the 3-divisibility of cassette
exon length45 and found a significant enrichment of 3-divisible
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cassette exons in the coding region (Supplementary Fig. 2e),
suggesting that such cassette exons were selected to maintain ORF
integrity. In particular, cassette microexons of 3–27 nt in length
had a higher probability (98 out of 141) to be 3-divisible,
consistent with the observations by Irimia et al.46. Moreover, we
found a comparable conservation pattern at splicing sites, cassette
exons, retained introns, as well as tandem 5´UTRs and tandem 3′

UTRs between our FLT and RefSeq/Ensembl annotation
(Supplementary Fig. 2f–h). Finally, for both our FLT collection
and Ensembl annotation in mouse/human, the isoform diversity
in a gene was positively correlated with its maximum transcript
length and the maximum exon number (Supplementary Fig. 2i),
suggesting the observed diversity could be due, at least in part, to
an enhanced opportunity for a transcript to undergo alternative
RNA processing. Taken together, these analyses suggest no
obvious bias imposed by our FLT reconstruction process.

Co-occurrence of alternative RNA processing events. We
compared every FLT to the RefSeq transcript with the highest
similarity. Unexpectedly, of those derived from RefSeq gene loci,
93% deviated from the annotated transcripts by at least one
alternative RNA processing event (Fig. 3b, Supplementary
Fig. 3a). Deviation by multiple alternative events accounted for
61% of these transcript variants, with approximately 5% exhi-
biting greater than five alternative events. For these, accurate
assembly would be difficult, if not entirely impossible, to achieve
with conventional NGS methods.

Based on their alternative processing events, we grouped the
FLT variants into distinct categories (Fig. 3c, Supplementary
Fig. 3b) and investigated the enrichment or depletion of the co-
occurrence of all event pairs in those isoforms consisting of
multiple alternative events. Interestingly, we observed a signifi-
cant co-occurrence between alternative 5′-ends and 3′-ends,
whereas the alternative usage of transcript ends did not co-occur
with internal splicing events (Fig. 3d, Supplementary Fig. 3c).
Among internal splicing events, the co-occurrence happened only
between alternative 5′ and 3′ splice sites, and between multiple
intron retention events (Fig. 3d, Supplementary Fig. 3c). Taking
the most abundant isoforms in our FLTs as the reference for
analyzing alternative processing events, similar results were
observed (Supplementary Fig. 3f).

To further study the coordinated usage of transcript ends and
alternative splice sites, we split alternative first/last exons and
tandem 5′/3′UTRs into distal and proximal groups, and
alternative splice sites into upstream and downstream sites
(Supplementary Fig. 3d, e). For alternative TSS and TES, we
observed a small but significant co-occurrence between proximal
tandem 5′UTR and proximal tandem 3′UTR, and between distal
alternative first exons and distal tandem 3′UTR (Supplementary
Fig. 3d). Similarly, upstream/downstream alternative donor sites

tended to co-occur with downstream/upstream alternative
acceptor sites (Supplementary Fig. 3e), which suggested that the
observed co-occurrence between alternative splicing sites could
not simply be due to ambiguous splice junction assignments.

Diverse isoform-specific translational status. To address the
impact of the isoform diversity on translation, we performed
polysome profiling (polysome-seq), and deeply re-sequenced
previously generated ribosome footprinting (ribo-seq) libraries
from rat brains47 (see Methods section). Computationally, we
first predict isoforms with active translational status and then
reconstruct an ORFeome to investigate its diversity (Fig. 4a). The
purpose of the prediction of isoforms with translationally active
status was twofold: to dissect alternative events associated with
active translation, and to prioritize a set of transcripts for ORF
prediction.

To predict the translational status, we built supervised machine
learning models based on the polysome-seq data. The classifica-
tion models were trained by protein coding and noncoding
isoforms annotated in Ensembl with a cross-validation accuracy
of 86.31 ± 0.33% (see Methods section). Of the 28,268 FLTs, 3712
were excluded due to low expression level (Fig. 4b). For the
remaining 24,556 transcripts, the classifiers predicted 16,976 with
translationally active status, whereas the remaining 7580 (30.9%)
were translationally inactive (Fig. 4b). At gene level, among 7229
loci, 6670 had at least one translationally active isoform.

Comparing the type of alternative processing events between
isoforms with translationally active or inactive status, we found
that intron retention, exon skipping, and alternative 5′/3′ splicing
sites were depleted in the active transcripts (Fig. 4c), largely
because these events could likely disrupt the canonical ORFs by
introducing frameshifts (e.g., Supplementary Fig. 2e). Indeed, the
percentage of 3-divisible cassette exons in the CDS was
significantly higher in the active isoforms than in the inactive
ones (49.5% vs. 40.2%, p value= 0.039, Fisher’s exact test).
Moreover, the retained introns in the active transcripts were
significantly shorter than in the inactive ones (median= 102 vs.
129, p value= 7e−9, Mann–Whitney U test) and more biased
towards either 3′ or 5′ end to avoid occurrence in CDS regions (p
value= 5e−12, Kolmogorov–Smirnov test). In contrast, tandem
5′/3′ UTRs, which did not affect CDS, were enriched in
translationally active transcripts (Fig. 4c). In addition, alternative
first exons, which could either affect CDS or not, were distributed
similarly between the active and the inactive isoforms (Fig. 4c).

Discovery of ORF variants and novel ORFs. Previous studies
have shown that computational algorithms such as the ORFscore
are able to detect translating ORFs by leveraging the 3-nt peri-
odicity of Ribo-seq footprints48. Based on our data, we first

Fig. 2 The high-confidence set of FLTs. a The scheme of full-length transcript end validation and filtering, based on CAGE and 3′seq data. In the example

transcripts, the third and last transcripts from top to bottom are invalidated, due to their 5′-ends and 3′-ends are not supported by CAGE and 3′seq

clusters, respectively. These transcript fragments were excluded in the downstream analysis. b Histograms show the genomic distance between PacBio

transcript 5′ends and CAGE clusters, as well as the distance between PacBio transcript 5′ends and annotated gene TSSs. Positive distance indicates PacBio

transcript 5′ends located downstream of CAGE clusters (or annotated TSSs) and negative distance indicates PacBio transcript 5′ends located upstream of

CAGE clusters (or annotated TSSs). The inlet Venn diagram shows that there were more PacBio transcript 5´ends located within 50-nt from CAGE clusters

than located within 50-nt from annotated TSSs. c Histograms show the genomic distance between PacBio transcript 3′ends and 3′seq clusters, as well as

the distance between PacBio transcript 3′ends and annotated gene TESs. Positive distance indicates PacBio transcript 3′ends located downstream of 3′seq

clusters (or annotated TESs) and negative distance indicates PacBio transcript 3′ends located upstream of 3′seq clusters (or annotated TESs). The inlet

Venn diagram shows that there were more PacBio transcript 3′ends located within 50-nt from 3′seq clusters than located within 50-nt from annotated

TESs. d–f Three example genes of the high-confidence FLT. Tracks from top to bottom include genomic coordinates, CAGE clusters, 3′seq clusters, full-

length transcripts, and RefSeq genes. The three genes are d Nrsn1 (Neurensin-1), a gene specifically expressed in neurons, e Rpl21, the large ribosomal

subunit protein 21, and f Sirpa, signal regulatory protein α. Source data for panels b and c are provided in a Source Data file
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verified that ORFscores indeed had strong discriminative power
to separate ORFs used for translation (ORFscore > 5; Fig. 5a
right), ORFs in untranslated regions (−6 < ORFscore < 5; Fig. 5a
middle), and ORFs overlapping with translating ORFs but in
different frames (ORFscore <−6; Fig. 5a left). In addition, ORF

length has also been shown to be an important factor in coding
potential prediction49,50. Here as often used in previous studies, if
there were multiple ORFs in one transcript with ORFscore > 5,
the longest ORFs were kept. Indeed, the longest ORFs showed a
very similar distribution of ORFscores compared to the ORFs
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annotated in RefSeq (Supplementary Fig. 4a, b). With the ORF-
score threshold at 5, we detected translating ORFs in nearly all the
translationally active isoforms predicted by polysome-seq data
(16,753 out of 16,976, 98.7%; Fig. 4b). In the translationally
inactive isoforms we found that the longest ORFs were sig-
nificantly shorter and had significantly lower ORFscores (p <
2.2 × 10–16, Mann–Whitney U test; Supplementary Fig. 5a, b),
demonstrating that the polysome-seq prediction is well supported
by the independent ribo-seq data.

Next, we asked whether the translationally active transcripts
might be selected via coordinated RNA processing events to
protect their ORFs. For this purpose, we generated in silico all
possible isoforms by random selection of alternative exon blocks
to the scaffold comprising all constitutive exons. Comparing the
isoforms in the translationally active pool to all random isoforms,
we found that the translationally active isoform always achieved
higher ORFscores and longer ORF lengths (p < 2.2 × 10−16,
Mann–Whitney U test; Supplementary Fig. 5c, d), suggesting

that the capability to produce genuine proteins is enhanced by
proper RNA processing.

We then reconstructed the ORFeome. Since different RNA
isoforms may harbor the same ORF, we collapsed all putative
ORFs to form a unique set consisting of 13,093 ORFs from 6,560
gene loci, resulting in an average of 1.99 ORFs per gene.
Compared to 3.91 transcript isoforms per gene locus, the diversity
in ORF was almost halved. Nonetheless, the ORF diversity was
significantly higher than that in RefSeq (1.05) and Ensembl
(1.34). As shown in Figs. 5b, 60.1% genes in our FLT dataset
harbored more than one ORF, whereas only 3.6% and 25.8%
genes in RefSeq and Ensembl exhibited multiple ORFs,
respectively.

To further investigate how the putative ORFs varied from the
annotated ones, we defined various types of ORF variants and
novel ORFs, as shown in Fig. 5c. Interestingly, less than one third
of the putative ORFs were annotated in RefSeq (29.4%), whereas
the majority were ORF variants (61.1%) and about one tenth were
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novel (9.5%) (Fig. 5d). Of note, the percentage of our ORF
collection being annotated in RefSeq (29.4%) is dramatically
higher than that of our FLT collection (7%). This is because many
alternative RNA processing events, such as tandem UTRs, do not
affect ORFs (Fig. 5e–g).

Among the nine sub-categories of ORF variants, approximately
one quarter (25.8%) were N-terminal truncations (Fig. 5d), where
a start codon downstream of the annotated one was used. This
phenomenon is in concordance with our previous observation in
NIH-3T3 cells, where translation initiation site (TIS) profiling
detected a large number of TISs downstream of annotated ones19.
Mechanistically, this could be caused by using downstream
alternative first exons (Fig. 5f). In addition to N-terminal

truncated proteins, divergence from and extension to annotated
N-termini were also observed (5.45% and 3.59%, respectively).
These N-terminal variants were mainly caused by one or two
alterative events (Fig. 5e), including alternative first exons, and
exon skipping/intron retention which disturbed the sequences
around the annotated TISs (Fig. 5f, g). We speculate that many
protein isoforms with different N-termini might alter protein
localization due to the presence/absence of signal peptide
(Supplementary Data 1). The next categories of ORF variants
lay in internal parts, comprising internal deletion (14.9%),
insertion (5.0%), and divergence (4.3%). These were predomi-
nantly caused by inclusion/exclusion of cassette exons (Fig. 5f).
Moreover, we found 13.4% of ORF variants harbored different C-
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termini from annotated ones, largely caused by alternative last
exons or intron retentions near the stop codon (Fig. 5f). Finally,
complex combinations of different types of ORF variants also
existed in the dataset; these could be further classified into partial
in-frame (17.2%) and in-frame shifts (10.2%). Often, these ORF
variants lay in transcripts differing by at least two alternative
events (Fig. 5e, g).

Of the novel ORFs, the majority were ORFs derived from novel
gene loci (81.1%). The second sub-category was those overlapping
with annotated ORFs but in different frames (9.1%; Fig. 5d).
Finally, we found ORFs originating from regions annotated as
un-translated (4.3% from 3′UTRs, 3.1% from 5′UTRs and 0.6%
from introns), which tended to have short length and lower
ORFscores (Supplementary Fig. 6) but might produce smaller
peptides of functions48,51. Moreover, they also showed in general
lower PhyloCSF52 conservation scores (Supplementary Fig. 6e),
with a few exceptions indicating potentially conserved functions
(Supplementary Data 2)51,53.

Furthermore, we re-analyzed our previously generated mass
spectrometry (MS)-based proteomics datasets from rat primary
hippocampal neurons54 for peptides that support the recon-
structed ORFeome (see Methods section; Supplementary Data 3).
In order to avoid annotated ORFs confounding the validation of
ORF variants and novel ORFs, we excluded peptides matched to
RefSeq ORFs. Therefore, the resulting FLT-specific peptides could
not be found for ORF categories including RefSeq annotation, N-
terminal truncation and internal deletion. For the remaining
categories, we found varied percentages with FLT-specific peptide
matches (Fig. 6a, Supplementary Fig. 7a). In particular, in the
categories N-terminal extension, internal insertion and novel
ORFs in introns, the percentage of ORFs with supporting
peptides were comparable to that of the annotated ORFs.
Comparing the ORFs with supported peptides to those without
in each category, the peptide-supported ORFs had significantly
higher ORFscores (Fig. 6b). This is expected because mRNAs
with higher ORFscores would likely have higher ribosome
occupancy and/or a longer ORF length, resulting in a higher
number of detectable peptides. Furthermore, within the peptide-
matched ORFs, the number of peptide spectrum matches (PSMs),
matched peptides, and unique peptides all positively correlated
with the ORFscore (Supplementary Fig. 7b–d), implying that the
MS sampling depth might be a bottleneck for supporting ORFs
with low expression level and/or translational efficiency. Thus,
obtaining deeper MS-based proteomics data specific for low-
abundance proteins could further increase the percentage of
peptide-supported ORFs.

We then looked further into the novel ORFs detected in
introns and RefSeq-annotated UTRs. Among the peptide-
supported novel intronic ORFs, we found that their mouse and
human homologs were often annotated as separate genes with
distinct promoters, again demonstrating the incomplete rat
genome annotation. More interestingly, peptide evidence was
also found for novel ORFs located in the 5′UTR and 3′UTR
regions. If both the RefSeq annotated ORF and these UTR
encoded ORFs were translated from the same RNA transcript,
they were termed as bicistronic. This phenomenon is frequently
observed in bacteria, but is very rare in higher eukaryotes.
However, in the gene Rpp14 (encoding a subunit of RNase P),
where we only detected peptides supporting an unannotated ORF
in its 3′UTR (Fig. 6c; annotated spectra for the detected peptides
shown in Supplementary Fig. 8), an examination of its mouse and
human homologs revealed two distinct ORFs encoding proteins
with different functions–the protein HTD2, translated from the 3′

UTR of RPP14, is a mitochondrial dehydratase. Another example
is the gene Nudt13 (Nudix hydrolase 13), where we detected
peptide evidence for both its main ORF and its 3′UTR ORF

(Fig. 6d; annotated spectra for the detected peptides shown in
Supplementary Fig. 8). In contrast to the highly conserved main
ORF, the 3′UTR ORF is not conserved in other species. Whether
its function is specific to rat awaits future studies.

Compartment-localized FLTs in neurons. As protein translation
occurs in both neuronal cell bodies and processes55, we next
investigated which RNA isoforms were transported to neuronal
compartments. For this purpose, we divided rat hippocampal
slices into somata and neuropil compartments by microdissec-
tion, and profiled their transcriptomes using RNA-seq. Isoform
expression levels in the two compartments were quantified and
compared for neuronal genes23 in our FLT collection. Among
1,135 multi-isoform neuronal genes, we found 97 isoforms were
significantly enriched in the neuropil whereas 82 isoforms were
significantly enriched in the somata (Fig. 7a). As an example, we
detected an unannotated isoform in the neuropeptide-encoding
gene Tac3 that was enriched in the somatic transcriptome
(Fig. 7b). In another example Bin1, a gene expressed in many
tissues and associated with the Alzheimer’s disease56, we observed
that two of its five isoforms were specifically localized to somata
or neuropil (Fig. 7c). Interestingly, the skipping of exon 7 was
coupled with the complete exclusion of exons 13–16, and this
coordinated splicing may play dual roles, including determining
the isoform localization pattern and encoding two different
protein isoforms with potentially distinct functions. On average,
there was no significant difference in their expression levels
between neuropil-localized and somata-enriched isoforms
(Fig. 7d), indicating that, in general, transcript localization might
not be coupled with their expression levels.

Discussion
In this study, we provided a high-quality resource for gene
annotation in the rat hippocampus. Comparing to the RefSeq
(1.08 isoforms per gene) and Ensembl (1.43 isoforms per gene)
rat annotation, our FLTs’ diversity of 3.91 isoforms per gene is
more than twofold higher. However, this should be considered as
a conservative estimation of transcript isoform diversity. On one
hand, some of the PacBio transcripts we discarded could still be in
full-length, but their expression levels might be too low to have
detectable CAGE and 3′-seq clusters; on the other hand, our
approach does not cover extremely long transcripts in full length.
This problem is evident when we compared the percentage of
genes covered by our FLT transcripts across different lengths
(Supplementary Fig. 9): genes longer than 6000 nt were covered
with a much lower probability, likely due to the fall-off of reverse
transcriptase during the reverse transcription and/or polymerase
in the PacBio sequencing. Another factor that impacts the FLT
coverage is the transcript abundance. The cDNA normalization
applied in this study has largely eliminated this effect and many
transcripts of very low abundance were indeed recovered in full
length. These transcripts could be potentially transcriptional
noise present in all cells, or functional transcripts expressed only
in specific cells. Considering the latter possibility, combining our
approach with enrichment of distinct cell types or even a single-
cell RNA-seq strategy, as reported recently35, would further
expand our understanding of transcriptome diversity.

Based on our FLT data, we investigated the co-occurrence of
alternative RNA processing events at a genome-wide scale. The
observed co-occurrence of alternative transcript ends is in con-
cordance with the phenomena reported in yeast, where promoters
can drive alternative polyadenylation mediated by RNA binding
proteins57,58 or gene loops59. Alternatively, transcriptional
activity resulting from alternative promoters might also affect the
polyadenylation site choice60. Among the internal alternative
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splicing events, the co-occurrence of alternative donor and
acceptor splicing sites indicates that the choice of upstream splice
donor sites could influence the selection of downstream splice
acceptor sites. Whether this coordination is mediated by the same
trans-acting regulators warrants further studies. Finally, the
coupling between multiple retained introns indicates that splicing
out one intron may apply to other introns in the same gene,
suggesting that splicing efficiency is generally regulated in a gene-
specific manner61. Given that intron retention functionally

downregulates gene expression levels62, the re-occurrence of
intron retention in the same gene could possibly reassure such
regulatory effect.

As discussed previsouly18, polysome-seq and ribo-seq com-
plement each other. Here, we first used polysome-seq to predict
isoform-specific translational status, and then ribo-seq 3-nt per-
iodicity feature to recognize ORFs in isoforms with active
translational status. In this way, we largely avoided false positive
ORF predictions, which could be caused by shared ribosome
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footprinting signals in the overlapped regions between transla-
tionally active and inactive isoforms. Indeed, using ribosome
footprinting data, ORFs could be detected in 98.7% of the
translationally active isoforms defined by the polysome-seq,
demonstrating the success of our strategy. When we used random
combinations of alternative exons to mimic the ambiguous
transcriptome assembly, such transcript sets often yield shorter
ORFs and/or ORFs with lower ORFscores (Supplementary
Fig. 5c, d). Therefore, the non-full-length transcript annotation
can dramatically overstate the proportion of non-coding isoforms
and underestimate the ORF diversity.

So far, alternative RNA processing has been extensively studied
at RNA level, whereas the analysis at protein level is rather lim-
ited. This is mainly due to the technical challenges in measuring
multiple protein isoforms: Standard MS-based proteomics
involves digesting proteins into peptides, so that the information
from which protein isoform a given peptide was derived is lost.
As a result, only isoform-specific peptides can be used to
unambiguously support ORF variants. Currently, even deep
proteomic datasets can just cover a minor fraction of all existing
peptides and many isoform-specific peptides escape detection.
Therefore, only a small proportion of alternative ORFs have been
supported with peptides, and to what extent the RNA isoform
diversity can be translated into protein diversity remains
unclear27,28. In this study, of all the transcript isoforms with
sufficient abundance, 31.8% were predicted as translationally
inactive. In the remaining translating ones, 21.8% differ only in
UTRs whereas 78.2% encode distinct ORFs. As a result, a RNA
diversity of 3.91 transcript isoforms per gene dropped to a protein
diversity of 1.99 ORFs per gene. We validated a large number of
ORF variants and even novel ORFs by MS-based proteomics data.
In particular, nearly half of the novel intronic ORFs, the ORFs
with internal insertions or extended N-terminus were matched
with peptides, comparable to the RefSeq annotated ORFs. As
expected, ORFs with peptide evidence were biased towards those
with higher ORFscores, which is proportional to the expression
level, translational efficiency and the length of the ORF. This
again demonstrates the limited sensitivity of MS-based methods,
and indicates that deeper proteome sampling would be required
to gain further supports for predicted ORFs, particularly those of
lower abundance.

Finally, based on our FLTs, we found hundreds of isoforms
with distinct localization pattern in neurons. Of note, we very
likely understated the number of the compartment-enriched
isoforms, because we had to stringently control false positives
given the high uncertainty in inferring isoform expression level
based on short-read RNA-seq data. In terms of the mechanisms
and functions, it still awaits future studies how distinct transcripts
are chosen to localize and what roles these transcripts play at
distinct subcellular compartments.

Methods
Rat hippocampus samples. The procedures involving animal treatment and care
were conducted in conformity with the institutional guidelines that are in com-
pliance with national and international laws and policies (DIRECTIVE 2010/63/
EU; German animal welfare law; FELASA guidelines). Sprague Dawley rats were
housed in standard cages and fed standard lab chow and water ad libitum. Rat
hippocampal slices (500 μm) were prepared from four-week-old male animals23.
The somatic and the neuropil layer of the CA1 region were microdissected carefully
by hand from each slice44. Tissue pieces were first collected in RNAlater to stabilize
and protect RNA from degradation.

Total RNA Illumina sequencing. Total RNA from rat hippocampus samples was
extracted using TRIzol reagent (Life Technologies) following the manufacturer’s
protocol. Truseq Stranded mRNA sequencing libraries were prepared with 500 ng
total RNA according to the manufacturer’s protocol (Illumina). The libraries were
sequenced in single-end 1 × 150 nt manner on HiSeq 2000/2500 platform
(Illumina).

PacBio library preparation and sequencing. Starting from 700 ng total RNA,
polyA+ RNA selection was performed using Dynabeads® Oligo (dT)25 (Invitro-
gen). The polyA+ RNA was converted to cDNA using the Clontech SMARTer kit
for first-strand cDNA synthesis. The resulting cDNA was normalized using a
duplex-specific nuclease (DSN)43. In brief, the DSN normalization is based on the
denaturation-reassociation of double-stranded cDNA coupled with the degradation
of the double-stranded cDNA fraction formed by abundant transcripts63,64. Then,
PCR amplification of cDNA produced by the Clontech method (50× Advantage
2Polymerase mix) utilized a single primer (Supplementary Table 2) since both
ends of the cDNA share a common sequence. The PCR products were split into
four sections (QIAEX II® Gel Extraction Kit) according to double-strand DNA size
(i.e., <1 kb, 1–2 kb, 2–3 kb, and >3 kb), and a second round of PCR was done to
generate sufficient DNA for template preparation. SMRTbellTM template pre-
paration was done according to the manufacturer’s guidelines. Size selected
libraries were separately sequenced on PacBio RSII SMRT platform according to
the manufacturer’s instruction (Magbead mode for fragments >3 kb and Diffusion
mode for all other fragment sizes; SMRT Cell v3 with 1 × 180 min movie time). The
raw sequencing reads from the PacBio RSII SMRT cells were processed through
SMRT-Portal analysis suite (PacBio) to subread sequences for further processing.

Illumina-based error correction of PacBio sequencing reads. We used two
computational tools, IPEC and proovread39, to correct the sequencing errors in
PacBio by taking advantage of the more accurate Illumina sequencing. First, we
developed the method IPEC, which stands for Illumina-assisted PacBio Error
Correction, to augment the sequence accuracy of PacBio reads by using high
quality Illumina sequencing data. The method IPEC is an iterative correction
approach with seed-and-extension design. In each iteration, for each PacBio read
we search for local alignments with all Illumina reads using bowtie2 (with para-
meters: --local -D 40 -R 3 -N 1 -L 20 -i S,1,0.50 -k 5000 --no-head --ma 2 --mp 6 --
rdg 3,3 --rfg 3,3). Mismatches and indels within the local aligned region at the
PacBio read are corrected through voting by the multiple mapped Illumina reads.
The error-corrected regions serve as a seed for the local alignment in the next
iteration. Iteration stops when the accuracy of PacBio reads can no longer be
improved significantly. To ensure the best quality of PacBio read error correction,
we also processed our raw data by a comparable error correction method,
proovread, which is based on the correction-by-short-read-consensus approach39.
We ran proovread (version 2.13.10) with default parameters. As proovread requires
a large memory capacity when dealing with large datasets40, we split PacBio reads
into batches (every 100,000 PacBio reads per batch) when running proovread. After
aligning the PacBio reads corrected by the two methods in parallel, we selected the
best alignments (see below) and counted the number of correctly aligned bases to
estimate the accuracy of corrected PacBio reads.

Alignment of PacBio reads to the rat reference genome. Since the PacBio long
reads cover multiple exons, we used a splicing-aware aligner GMAP65 (version
2016–09–23) to align the PacBio reads against the rat reference genome (rn6,
downloaded from UCSC Genome Browser), with parameters --sampling 1 -B 2 --
min-intronlength 20 -n 0, and with four settings of the kmer size (-k) 9, 11, 13, and
15. Only the best alignments, i.e., the largest alignment with the lowest number of
mismatches against the reference genome, were kept. Overall, approximately 40%
of the final alignments were contributed by IPEC, and the other 60% came from
proovread.

Transcript collapsing and clustering. To extract a non-redundant collection of
RNA transcripts from PacBio reads, we developed an in-house approach with an
exon-centric clustering method. In brief, after aligning PacBio reads to the rat
reference genome (see above), we kept track of the exon combinations for all
PacBio reads mapped to the same putative gene locus. We then collapsed these
reads into a non-redundant set. Starting from the PacBio reads with the highest
number of exons, reads in the final non-redundant set were kept only if any of the
following three criteria was met: (i) the combinations of the exon-exon junctions
were not identified in the current set; (ii) 5′ end of the first exon was at least 100 nt
away from that of current set; and (iii) 3′ end of the last exon was at least 100 nt
away from that of the current set.

CAGE profiling of transcript 5´ends. To generate the CAGE libraries, 5 μg total
RNAs collected from rat hippocampus samples were reverse transcribed using
random primers (N15-oligo) tailed with 3ʹ part of Illumina TruSeq Universal
Adaptor sequence (P5). Thereafter, 5ʹcomplete single-stranded cDNAs were cap-
tured based on a protocol from Takahashi et al.66 with minor modifications. Cap
structure and 3ʹ ends of all RNAs were oxidized by NaIO4 on ice for 45 min,
followed by an overnight biotinylation with a long-arm biotin hydrazide at room
temperature. Single stranded RNA regions that were not covered by synthesized
cDNAs including the 3ʹ ends were cleaved using RNase I. The 5ʹ complete cDNAs
containing the biotinylated cap site were then captured with Dynabeads® M-280
Streptavidin (Life Technologies). RNAs were hydrolyzed with 50 mM NaOH and
single-stranded cDNAs were released from the beads. After ligation with double
stranded 5ʹ linkers with random overhangs (containing 3ʹ part of Illumina TruSeq
Universal Adaptor P7), cDNAs were amplified for 18 cycles using cap forward
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primer (containing P5) and cap reverse primer with barcode included. The
amplified libraries were sequenced in 2 × 100 nt manner on Illumina HiSeq 2000/
2500 platform. The primer sequences are listed in Supplementary Table 2.

CAGE data processing and cluster detection. The paired-end reads were first
subjected to adapter removal using flexbar67 with the following parameters: ‐u 2 ‐m
28 ‐ae RIGHT ‐at 2 ‐ao 1. Then, the first 10 nt of the 1st read was further removed
due to potentially high mismatches as derived from the random primer regions.
Read pairs that were concordantly mapped to reference sequences of rRNA, tRNA,
snRNA, snoRNA, and miscRNAs (available from Ensembl and RepeatMasker
annotation) using Bowtie 268 (version 2.1.0; in end-to-end and sensitive mode with
default parameters) were excluded. The remaining reads were then mapped to the
rat reference genome (rn6, downloaded from UCSC Genome Browser) using
Tophat269 (version 2.0.10) with the following parameters ‐‐mate‐inner‐dist 50 ‐‐

mate-std-dev 20 ‐N 3 ‐‐read‐gap‐length 2 ‐‐read‐edit‐dist 3 ‐min‐anchor 6 --
library‐type fr‐firststrand ‐‐segment‐mismatches 2 ‐‐segment‐length 25 with the
input of RefSeq and Ensembl rat gene annotations (downloaded from UCSC
Genome Browser and Ensembl FTP, respectively). Reads that were mapped to
multiple genomic loci or whose two ends were mapped to different chromosomes
were discarded in the following analysis.

CAGE clusters corresponding to transcription start sites (TSS) were detected19.
In brief, only the 5ʹ end positions of the 2nd reads of uniquely, concordantly
mapped read pairs (termed as tags hereafter) were used for determining TSS
cluster. In general, genomic positions with tags beyond local background and
within a distance of 20 nt were assigned into one cluster. Here, the local
background (bg) for each position was determined by the maximum of (i) local
expectation, that is the average tag coverage in the window of 500 nt centered at the
position, and (ii) expression background, that is the sequencing depth‐normalized
RNA‐seq read coverage within the window from 500 nt upstream to 1500 nt
downstream of the position.

Polysome profiling. Prior to lysis, rat brains were collected and snap frozen in
liquid nitrogen and stored at –80 °C. Frozen rat whole brains were pulverized
under liquid nitrogen and the powder lysed in lysis buffer (1 ml per 50 mg of tissue;
10 mM HEPES pH 7.4, 150 mM KCl, 10 mMMgCl2, 1% NP-40, 0.5 mM DTT, 100
μg ml−1 cycloheximide). After lysing, the cells by passing eight times through 26‐
gauge needle, the nuclei and the membrane debris were removed by centrifugation
(15,682 × g, 10 min, 4 °C). The supernatant was then layered onto a 10-ml linear
sucrose gradient (10–50% w v−1, supplemented with 10 mM HEPES pH 7.4,
150 mM KCl, 10 mM MgCl2, 0.5 mM DTT, 100 μg ml−1 cycloheximide) and
centrifuged (160,000 × g, 120 min, 4 °C) in an SW41Ti rotor (Beckman). Ribosome-
free, monosome, and polysome fractions were collected and digested with 200 μg
proteinase K in 1% SDS and for 30 min at 42 °C. RNA from polysome fractions
were recovered by extraction with an equal volume of acid phenol–chloroform
(pH 4.5), followed by ethanol precipitation. TruSeq Stranded Total RNA
libraries were prepared with 500 ng RNA according to the manufacturer’s protocol
(Illumina). The libraries were sequenced in 2 × 150 nt manner on HiSeq 4000
platform (Illumina).

Polysome profiling data processing. Similar to total RNA sequencing, the
sequencing reads were first subjected to adapter removal using flexbar67 with the
following parameters: ‐u 10 ‐m 36 ‐ae RIGHT ‐at 2 ‐ao 1. Then, polysome profiling
data were used to estimate isoform expression levels (see Isoform expression level
estimation).

Ribosome footprinting. We deeply re-sequenced previously generated ribosome
footprinting libraries on rat brains47. To prepare the libraries, rat brains were lysed
in the same way as for polysome profiling (see above). After lysis, ribosome‐
protected fragments were collected. In brief, cell lysate was treated with RNase I at
room temperature for 45 min. The nuclease digestion was stopped by adding
SUPERase In™ RNase inhibitor (Invitrogen) and then loaded onto a linear sucrose
gradient (10–50%). After ultra-centrifugation, monoribosome was recovered and
RNA was isolated as described for polysome profiling (see above). rRNA was
removed using Ribo‐Zero™ Magnetic Kit (Human/Mouse/Rat) (Epicentre). The
28–32‐nt ribosome‐protected fragments were purified through 15% wt vol−1

polyacrylamide TBE‐urea gel. The size-selected RNA was end-repaired by T4 PNK
for 1 h at 37 °C. The sequencing libraries were then generated using TruSeq Small
RNA Sample Preparation kit (Illumina) and sequenced in 1 × 50 nt manner on
Illumina HiSeq 2000 platform.

Ribosome footprinting data processing. Similar to total RNA sequencing, the
sequencing reads were first subjected to adapter removal using flexbar67 with the
following parameters: ‐u 2 ‐m 18 ‐ae RIGHT ‐at 2 ‐ao 4. Reads that were mapped
to the reference sequences of rRNA, tRNA, snRNA, snoRNA, and miscRNAs
(available from Ensembl and RepeatMasker annotation) using Bowtie 268 (version
2.1.0; in end-to-end and sensitive mode with default parameters) were excluded.
The remaining reads were then mapped to the rat reference genome (rn6, down-
loaded from UCSC Genome Browser) using Tophat269 (version 2.0.10) with fol-
lowing parameters ‐N 2 ‐‐read‐gap‐length 2 ‐‐read‐edit‐dist 3 ‐‐min‐anchor 6 ‐‐

library‐type fr‐secondstrand ‐‐segment‐mismatches 2 ‐‐segment‐length 20 with the
input of RefSeq and Ensembl rat gene models. Reads that were mapped to multiple
genomic loci were discarded in the downstream analysis.

Isoform expression level estimation. After processing sequencing reads with
flexbar67, we applied RSEM70 to estimate the expression levels of each isoform in a
gene. RSEM analysis included two major steps: (i) reference transcriptome
sequence index building, and (ii) read mapping and expression level inference. In
the first step, the sequences in our FLT was fed to the command line tool rsem-
prepare-reference. In the second step, with the command line tool rsem-calculate-
expression and arguments --paired-end --bowtie2, we went through bowtie2
mapping, alignment parsing, and isoform expression estimation by EM algorithm.

Translationally active isoform prediction. Mainly based on the polysome pro-
filing data, we trained a set of support vector machine (SVM) classifiers to predict
the translational status of each isoform in our FLT. SVM is a widely-used super-
vised machine learning approach, which tries to find a soft-margin hyperplane in
high-dimensional space shaped by support vectors to classify binary samples. To
build the SVM classifiers we took all expressed Ensembl isoforms as the training
set, and their translational status was annotated as transcript_biotype. Compared to
RefSeq, the Ensembl annotation contained a slightly higher number of isoforms
(Fig. 3a) and collected more non-coding transcripts (though many of them were
only based on computational predictions). We sorted Ensembl transcripts into two
classes regarding their translational status. The biotype protein_coding was taken
as translationally active, and others including lincRNA, retained_intron, pro-
cessed_transcript, nonsense_mediated_decay, and non_stop_decay as inactive.
Although the translationally inactive class included five biotypes, there were ~10-
fold more isoforms in the active class. To balance the sample size in the two classes,
we randomly subsampled the active isoforms. We repeated the subsampling 21
times, resulting in 21 pairs of inactive and active isoform sets. Then we built one
SVM classifier in each pair of two classes of samples: We extracted 13 features for
each sample (see below), chose the radial basis function as the kernel function of
SVM, and the parameters were optimized by grid search using the grid.py script in
10-fold cross validation (CV) mode. The above procedure gave us 21 classification
models, and the averaged 10-CV classification accuracy was 86.31%.

Out of the 28,268 isoforms in our FLT, 3712 were excluded for classification,
because the estimated expression level of these isoforms in all the three polysome-
profiling fractions was close to zero. For the remaining isoforms, the same features
as used in SVM training were extracted, which included 12 properties extracted
from the polysome profiling data, i.e., isoform expression levels in the three
fractions in two replicates (2 × 3), and ratios of isoforms abundance levels between
every two out of the three fractions in two replicates (2 × 3). In addition, the length
of the longest possible ORF in each isoform was chosen as the 13th feature. Then
the 21 trained SVM classifiers were applied to predict the translational status of the
isoforms in our FLT, and the final prediction labels were given by classifier voting.

Translating ORF detection. To determine the translating ORFs for the transla-
tionally active isoforms, we mainly used ORFscore, which was calculated from the
ribosome footprinting data. By post-processing ribosome footprinting reads, we
found only reads of length 28 nt, 29 nt, and 30 nt showed the typical 3-nt peri-
odicity in annotated ORFs, and the +12 nt position from the read 5′end was
corresponding to the P-site of the ribosome48. After designating each read as the
+12 nt position, we counted the number of reads mapped to each of the three
reading frames of one possible ORF, and calculated the ORFscore as follows48:

ORFscore ¼ log2
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 !

´
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where Fi is the number of reads in frame i, and F0 is the average number of
reads across all the three frames. We defined translating ORFs as ORFs with
ORFscore > 5; in cases where multiple ORFs with ORFscore > 5 in one isoform,
these ORFs were prioritized by their length.

Comparative analysis of isoform and ORF diversity. The number of gene loci in
our FLT comprising different numbers of transcript isoforms and ORFs was
counted, respectively. To compare the diversity to that of RefSeq and Ensembl
annotation, only the set of gene loci that overlapped with our FLT collection were
considered. To facilitate the analysis of alternative RNA processing events, we
developed a software toolkit named FuLeTA, available at https://github.com/
sunlightwang/FuLeTA.

Peptide search for ORF validation. To evaluate the reconstruction of the
ORFoeme based our FLT, bottom-up proteomics data from primary hippocampal
neurons54 were re-analyzed. The raw data are available via PRIDE with accession
number PXD008596 (untreated/t0 data files). Using the Thermo Proteome Dis-
covererTM (PD) software suite (version 2.3) with the MS-Amanda identification
algorithm71, these data were matched to a protein database based on 18,015 RefSeq
annotated ORFs, a database derived from our FLT-based ORFoeme comprising
10,775 sequences after excluding identical ones in RefSeq, and additionally a
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database containing common MS-contaminations. The searches allowed a pre-
cursor mass tolerance of 5 ppm and a fragment mass tolerance of 0.02 Da. Car-
bamidomethylation of Cysteine was set as a fixed modification and oxidation of
Methionine was set as variable modification. The parameters further included
tryptic peptides with up to two missed cleavages and a minimum of one unique
peptide per protein group. Percolator node, a machine learning tool in PD 2.3, was
used to estimate the number of false positive identifications72. A high confidence q-
value (i.e., false discovery rate) threshold of 0.01 was assigned to filter both the
peptide spectrum match (PSM) results and peptide results. We estimated the FDR
on the combined RefSeq/FLT database and also separately for the RefSeq and FLT
databases. At combined FDR 1%, we matched 56,233 and 2557 peptides in the
RefSeq and FLT databases, respectively; at split FDR 1%, we identified 53,684 and
2175 peptides in the RefSeq and FLT databases, respectively.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the raw sequencing data along with processed data are deposited into NCBI GEO

database with accession number GSE128136. MS-based proteomics data are available via

PRIDE with accession number PXD008596 (untreated/t0 data files). The source data

underlying Figs. 1b, 2b, 2c, 3a, 3d, 4c, 5b, 6b, 7a, and 7d and Supplementary Figs. 1c–e

are provided as a Source Data file. All other data are available from the corresponding

authors on reasonable request.

Code availability
Illumina-assisted PacBio Error Correction (IPEC) software is available at https://github.

com/arthuryxt/IPEC, and the toolkit for full-length transcriptome characterization is

provided at https://github.com/sunlightwang/FuLeTA for free for academic use. Other

analysis scripts/codes are available upon request.
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