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ABSTRACT

A model of the earth can be described using a Fourier basis

represented by its wavenumber content. In full-waveform in-

version (FWI), the wavenumber description of the model is

natural because our Born-approximation-based velocity up-

dates are made up of wavefields. Our objective in FWI is to

access all the model wavenumbers available in our limited

aperture and bandwidth recorded data that are not yet accu-

rately present in the initial velocity model. To invert for

those model wavenumbers, we need to locate their imprint

in the data. Thus, I review the relation between the model

wavenumber buildup and the inversion process. Specifically,

I emphasize a focus on the model wavenumber components

and identified their individual influence on the data.

Missing the energy for a single vertical low-model wavenum-

ber from the residual between the true Marmousi model and

some initial linearly increasing velocity model produced a

worse least-squares fit to the data than the initial model itself,

in which all the residual model wavenumbers were missing.

This stern realization validated the importance of wavenumber

continuation, specifically starting from the low-model wave-

numbers, to higher (resolution) wavenumbers, especially those

attained in an order dictated by the scattering angle filter. A

numerical Marmousi example determined the important role

that the scattering angle filter played in managing the wave-

number continuation from low to high. An application on

the SEG2014 blind test data set with frequencies lower than

7 Hz muted out further validated the versatility of the scatter-

ing angle filtering.

INTRODUCTION

Seismic data are inherently dependent on the short-wavelength

components of the earth model for the presence of the majority

of the recorded events, and they are dependent on the long-wave-

length components for the geometrical shapes of such events. We

usually use the geometrical features of the wavefield to extract the

long-wavelength components first, which are in turn used to place

the scattered events in their accurate positions in what we typically

refer to as imaging. Likewise, in linearized inversion, we use the

extracted smooth model from analyzing the geometrical behavior

of the wavefield (using, for example, migration velocity analysis

[MVA]) to iteratively place the perturbations in their accurate loca-

tions in the velocity model. Alternatively, we can obtain background

velocity information from the data, if sufficiently low frequencies

are available, in an iterative process in what we refer to as frequency

continuation in full-waveform inversion (FWI; Bunks et al., 1995;

Pratt et al., 1996; Virieux and Operto, 2009). The key element in the

inversion process, using either the geometrical features of the wave-

field or low frequencies, is the model wavenumber buildup strategy.

Thus, FWI conventionally requires that every model wavenumber

component is placed in the model within a half cycle of its true

location, and such placement is usually controlled by the lower

wavenumbers. For a certain, initially inaccurate, propagator (back-

ground) velocity, this can be achieved if the injected model wave-

number is low. These added low wavenumbers tend to improve the

propagator velocity, so that higher wavenumbers may meet the

threshold of a half cycle. From the data stand point, the wavenum-

ber continuation is commonly controlled by inverting first for low

frequencies and large offset-to-depth ratios (Bunks et al., 1995;

Pratt et al., 1996; Virieux and Operto, 2009; achieved in one form

by damping later arrivals; Jang et al., 2009).

Recently, many have explored the wavenumber continuation

theme from the model stand point, instead of the data (Albertin et al.,
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2013; Almomin and Biondi, 2013; Tang et al., 2013), specifically,

by conditioning and filtering the gradient. Despite the value of data

decimation and selection, the real objective of this process is far

more apparent in the model domain and specifically at the gradient

level (Sirgue and Pratt, 2004). Such developments resulted in a

more direct control of the model wavenumber update, independent

of frequency, given by the scattering angle filter (Alkhalifah,

2014b). The scattering-angle filtering provided a directionally inde-

pendent filter (with respect to dip) of the gradient valid for FWI and

MVA gradients. Unlike a classic smoothing operator, the scattering

angle filter is governed by a physical quantity of the scattering proc-

ess providing low wavenumbers along even complex raypaths, re-

sulting from a complex background velocity (such as having salt

bodies). This is provided by its velocity-dependent smoothing op-

erator, more easily implemented in the wavenumber domain and an

extended normalized time-lag axis. However, proper wavenumber

continuation also requires the proper extraction of such model

wavenumbers from the data. To do so, we need to use data-based

inversion, as well as those that rely on the image (Fleury and Per-

rone, 2012; Ma et al., 2012; Xu et al., 2012; Almomin and Biondi,

2013; Wang et al., 2013; Alkhalifah and Wu, 2016). Low-wave-

number information extracted directly from the data residual typi-

cally has mild depth penetration limited by the penetration of the

diving waves. However, we can also extract low wavenumbers from

the data by imaging the reflections. We can either use extended im-

ages for classic MVA (Al-Yahya, 1989; Symes and Kern, 1992;

Plessix et al., 1995; Clement et al., 2001) or apply a demigration

to implement what is referred to as reflection-waveform inversion

(RWI; Chavent and Plessix, 1999; Clement et al., 2001).

The most influential model wavenumbers in the data are the zero

to low wavenumbers. On the other hand, the influence of the high

wavenumbers is localized in the data as scattering, yet FWI has a

hard time inverting for the low wavenumbers because the update

process (the linear form) is based on scattering theory. The un-

wrapped phase of the depth model wavenumber allows us to move

the influence of low wavenumbers to the sensitivity range of FWI

(Alkhalifah, 2014a). Often missing in such arguments is a reason-

able account of the true impact of various model wavenumbers in

the data, and conversely, the source of such model wavenumbers

within the data considering the multitude of inversion techniques

available, including those that use the image. In this paper, I review

the model wavenumber linearized relation to the data, and I analyze

the extracted wavenumbers that we may obtain from image-based

methods, such as RWI, and specifically, from classic FWI. We will

then look at the scattering angle filter as an approach to control such

wavenumbers regardless of their source. An application of the FWI

based on the scattering angle filter on the SEG2014 data set will

highlight some of its features.

FWI AND RWI GRADIENTS

Although FWI inverts for the background velocity (low-wave-

number components) using direct and diving waves, RWI inverts

for the background velocity along the reflection wavepaths. In ad-

dition, FWI and RWI try to predict single and double scattering lo-

cations, respectively. With low enough frequencies, the background

and scattering components in both cases could exert the proper con-

tinuation in wavenumbers. For FWI, this continuation, as we will

see later, is dominated by the vertical wavenumber component.

For RWI, such continuation is dominated by the near-horizontal

wavenumber component due to the vertical wavepath. However,

with dipping reflectors, we can have continuations between the

RWI-produced and the FWI-produced wavenumbers. To under-

stand the role of RWI and FWI, let us look into their gradients.

Starting from the definition of the classic FWI objective function

given by Tarantola (1984)

EFWIðmÞ ¼
X

i

jdoi − dsiðmÞj2; (1)

where i is the source index, do is the observed data, ds ¼
usðx; y; z ¼ 0; tÞ is the modeled synthetic data, and mðxÞ is (any

form of) the velocity model described in space using the vector

x ¼ fx; y; zg, along the Cartesian coordinates, with t as time. From

this point on, and for simplicity, but without loss of generality,

I represent wavefields and data in the frequency domain. In this case,

the modeled wavefield us satisfies the following wave equation:

LðmÞusi ¼ fðωÞδðx − xsiÞ; (2)

for a particular source location xsi , and f is the source function given

in the frequency domain with

LðmÞ ¼ L�ðmÞ ¼ ∇2 þ ω2mðxÞ; (3)

where L is the Helmholtz operator, which in this case is self-adjoint,

ω is the angular frequency, and ∇2 is the Laplacian operator. The

gradient corresponding to such an objective function is given by (Tar-

antola, 1984)

RFWIðxÞ ¼ ω2
X

i

usiðxÞur1iðxÞ (4)

with

LðmÞur1i ¼
X

j

δðx − xrjÞðdoij − dsijÞ�; (5)

where xrj are the locations of the receivers, and j is the receiver

index.

On the other hand, we can produce data directly from an

image and use the following objective functional (Clement et al.,

2001):

ERWIðm; IÞ ¼
X

i

jdoi − dmi
ðm; IÞj2; (6)

where dm is the (Born approximation) modeled data from the im-

age. The image IðxÞ satisfies

IðxÞ ¼
X

i

usiðxÞuaiðxÞ; (7)

where the receiver wavefield uai is given by
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L�ðmÞuai ¼
X

j

δðx − xrjÞd�oij ; (8)

and thus

LðmÞδusi ¼ IðxÞusiðxÞ (9)

and dmi
¼ δusiðxriÞ. In this case, to obtain mainly low-wavenumber

gradients along the wavepath from RWI, dmi
should match doi at

zero offset, or in other words, we should use true amplitude or least-

squares migration to obtain IðxÞ. As Alkhalifah and Wu (2016)

show, such least-squares migration should focus only on the

near-zero-offset data.

The gradient corresponding to this objective functional is given

by (Clement et al., 2001)

RRWIðxÞ ¼ ω2
X

i

ðusiðxÞδuriðxÞ þ ur2iðxÞδusiðxÞÞ; (10)

where

LðmÞuri ¼
X

j

δðx − xrjÞðdoij − dmij
Þ� (11)

and

LðmÞδuri ¼ IðxÞuriðxÞ: (12)

Using the perturbed wavefield δusi , we can predict part of the

double scattering image by correlating this wavefield with the

receiver wavefield uaiðxÞ. The other part is obtained from crosscor-

relating δuri with usi . In other words, such an image is equal to

ðRRWIðxÞÞ∕ω2. This image can serve as a source for double-scat-

tered energy and data. This will allow us to invert for the double

scattering information including the low-wavenumber components

given by the wavepath between two scatterers.

THE MODEL WAVENUMBER

In FWI, the model wavenumber vector describes the resolution

and dip of a potential scattering point. Based on the adjoint Born

scattering approximation, which involves the interaction of the two

locally planer wavefields using a crosscorrelation process (often

used to obtain a velocity gradient), the resulting wavenumber vector

is given by (Miller et al., 1987; Jin et al., 1992; Thierry et al., 1999)

km ¼ ks þ kr ¼ 2
ω

v
cos

θ

2
n; (13)

which depends on, among other things, the angular frequency ω

with a direction guided by a unit vector n normal to a potential re-

flector. Here, ks and kr are the source and receiver (or any state and

adjoint state) wavefield wavenumber vectors, respectively, at the

model point, with θ as the angle between these vectors (the scatter-

ing angle), and v ¼ 1∕ð ffiffiffiffi

m
p Þ is the velocity at the model point.

This relation holds for interaction between any two wavefields

including single-scattered wavefields, such as in RWI. For mono-

chromatic wavefields of 10 Hz frequency from each of the source

and receiver for a background linearly increasing velocity model,

the FWI gradient is given in Figure 1a. We refer to this function

as the sensitivity kernel. The wavenumber magnitude and direction

corresponding to this gradient is shown in Figure 1b. Along the div-

ing wavepath between the source and receiver, the wavenumber

tends to zero. Otherwise, in the region between the source and

receiver, the wavenumber vector points vertically. Therefore, most

of the resolution in the model for this setup is in the vertical direc-

tion. For the RWI case, we plot the source side (Figure 2a) and the

receiver side (Figure 2b) gradients separately for a point scatterer in

the middle near the bottom of the model. The gradients of the source

and receiver sides are added to the update, so the wavenumbers cor-

responding to each of them are actually independent. As expected,

the model wavenumber vector points mostly in a near-horizontal

direction especially around the wavepath.

FROM MODEL WAVENUMBERS TO DATA

To search where in the data space we can extract the model wave-

numbers, let us examine the data sensitivity (or specifically calcu-

late the objective function) to specific wavenumbers in the model. I

will use the Marmousi model for this experiment as shown in

Figure 3a. I first consider a potential initial velocity model given

by a velocity linearly increasing with depth given by v0ðzÞ ¼
1500þ z m∕s, as shown in Figure 3b. The difference between

the initial velocity and the true velocity is the residual (Δv) velocity

that we hope to extract from FWI (and RWI). We will first inves-

tigate the sensitivity of the objective function to the absence of cer-

Figure 1. (a) A density plot of the gradient for a source and
receiver given by the black dots for monochromatic wavefields
(10 Hz frequency) corresponding to a standard FWI. (b) The model
wavenumber vector magnitude and direction of the sensitivity
kernel.
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tain vertical wavenumbers in this residual. Thus, Figure 3c shows

the Marmousi velocity model after removing the energy corre-

sponding to the vertical wavenumber sample 0.33 km−1 (or

3 km wavelength). The coarsely gridded model is represented by

39 discrete depth model wavenumbers. Evidence of the lack of this

wavenumber from the residual (ΔVðkzÞ − ΔVð0.33Þ, where ΔV is

the vertical Fourier transform of Δv) part can be somewhat seen in

the model (Figure 3c), as long wavelength variations. Figure 4a–4c

shows the shot gathers generated for a source located at 5600 m

corresponding to the velocity models shown in Figure 3a–3c,

Figure 2. (a) The model wavenumber magnitude and direction for
the source side of the RWI gradient for monochromatic wavefields.
(b) The model wavenumber magnitude and direction for the
receiver side of the RWI gradient for monochromatic wavefields.

Figure 3. (a) The Marmousi velocity model sampled at 0.04 km
literally and vertically. (b) A linearly increasing velocity model
v0ðzÞ ¼ 1.5þ z km∕s. (c) A velocity model constructed from mut-
ing the energy corresponding to the wavenumber 0.33 km−1 from
the residual between the Marmousi model and v0ðzÞ.

Figure 4. Shot gathers corresponding (a) to the original Marmousi
model shown in Figure 3a, (b) to the linearly increasing velocity
model shown in Figure 3b, and (c) to the model shown in Figure 3c.
Shot surface location is 5.6 km.
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respectively. The source is given by a Ricker wavelet with a peak

frequency of 10 Hz, with a spectrum, shown in Figure 5a (dotted

curve), mapped to wavenumber using a (representative) velocity of

3 km∕s. Figure 5b (solid) shows the objective function given by the

least-squares fit for models, in which Δv is missing the energy cor-

responding to the wavenumber given by the horizontal axis, and

compared with the objective function (dashed curve) for the linear

velocity model in Figure 3b, all normalized by the maximum

objective value for these models. The shot gather emerging from

the model with the missing 0.33 km−1 vertical wavenumber (Fig-

ure 4c) looks far more similar to the true Marmousi shot gather

(Figure 4a) than that produced from the linear velocity model (Fig-

ure 4b). Yet, the objective function given in Figure 5b indicates a

larger misfit. Imagine, compared with the linear velocity model, we

have all but one of the 39 discrete vertical wavenumbers of the

residual in place compared with having none in the case of the linear

velocity medium, and yet the misfit is worse. If we look closely to

the synthetic data, we realize that despite generating most of the

reflections, they are shifted by about a half cycle, causing a larger

misfit. This demonstrates the importance of getting the low wave-

numbers of the model accurately in place prior to extracting the high

wavenumbers – a well-known fact about FWI, but clearly empha-

sized by this example. Missing the higher model wavenumbers has

smaller influence on the data, and we almost get a perfect fit, zero-

objective value at that end. Despite that the residual (Δv) includes

low wavenumbers that have larger magnitude, as shown in Fig-

ure 5a, which is generally expected, the response of the data to miss-

ing the high wavenumbers is even further muted by the nature of the

source wavelet. Thus, the source wavelet acts as an additional filter

at the high end of the wavenumber spectrum. As displayed, it is

actually a direct filter with respect to the areas of velocity equal

or higher than 3 km∕s, the mapping velocity between frequency

and wavenumber. Figure 5c shows the objective function (solid

curve) corresponding to having only one of the 39 wavenumbers

representing Δv accurate, whereas the dashed straight horizontal

line shows the objective function of the linear velocity model, both

normalized by the highest value. Having only one accurate wave-

number produces a worse misfit than having none of the wave-

numbers correct. This demonstrates the level of nonlinearity in

FWI with respect to the velocity model. Interestingly, the inter-

mediate wavenumbers produces the largest misfit when we have

them right. Despite the complexity in attaining middle wavenum-

bers, they seemingly have a big influence on the data in the neg-

ative direction. So having accurate middle wavenumbers present

in the model prior to getting the low wavenumbers in place can be

detrimental.

FILTERING THE GRADIENT

We can control the wavenumbers admitted to the gradient using

wavenumber filters or the scattering angle filter. The scattering an-

gle filter provides a control that is optimal for the considered fre-

quency and velocity. In other words, by allowing only large

scattering angles to contribute, we are forcing wave path updates

that include the resolution provided by the available frequencies.

Such resolution, as equation 13 clearly demonstrates, is inversely

proportional to the velocity. This is naturally expected because

higher velocities admit waves with longer wavelengths, and thus

less resolution. Scattering angle filtering explicitly honors these

physical realities.

To access the scattering angle information, we naturally need to

extend the gradient. Khalil et al. (2013) suggest a velocity normal-

ized time lag ζ ¼ ðvðxÞτÞ∕4, where τ is the conventional time-lag

Figure 5. (a) The source wavelet spectrum mapped from frequency
to wavenumber using a velocity of 3 km∕s (dotted curve), and the
average vertical wavenumber spectrum of the velocity residual Δv
(dashed curve). (b) The objective function corresponding to a model
with the residual missing the wavenumber given by the horizontal
axis (solid). (c) The objective function corresponding to a model
with the residual having only the wavenumber given by the hori-
zontal axis (solid). In panels (b and c), the dashed straight line cor-
responds to the objective function value for the background velocity
(Figure 3b). All vertical axes are normalized by the largest value.
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variable. Applying it to the gradients in equations 4 and 10 in the

frequency domain yields (Alkhalifah, 2014b)

RFWIðx; ζÞ ¼ ω2
X

i

usiðxÞuriðxÞe
−4iω ζ

vðxÞ and

RRWIðx; ζÞ ¼ ω2
X

i

ðusiðxÞδuriðxÞ

þ uriðxÞδusiðxÞÞe
−4iω ζ

vðxÞ: (14)

With distance units, the modified time-lag extension admits a

velocity-free relation between the scattering angle and the gradient

wavenumber. Specifically, the scattering angle θ is then given by the

following formula:

cos2
θ

2
¼ jkj2

k2ζ
; (15)

where k is the space wavenumber vector and kζ is the wavenumber

(Fourier transform) corresponding to ζ. As a result, we can use the

fast Fourier transform to map to angle gathers, as the mapping equa-

tion 15 is free of spatial dependency. However, instead, we use

equation 15 to filter out energy corresponding to low scattering an-

gle θ, and sum directly the rest over kζ (the zero ζ imaging con-

dition). Finally, we inverse Fourier transform the gradient back

to space.

Because kζ ¼ ðω∕vÞ, we can insert it directly into equation 13 to
obtain

km ¼ 2kζ cos
θ

2
n; (16)

which shows that kζ provides control of the model wavenumber

regardless of frequency.

THE SCATTERING ANGLE WAVENUMBER

CONTINUATION

The scattering angle filter, as described above, offers an oppor-

tunity to control the wavenumbers we inject into the model from

the gradients. It is not a direct control, such as a simple filter, it

is, however, tied to the background velocity providing more

smoothness at higher background velocities considering the longer

wavelengths and less smoothness at lower velocities. A schematic

plot of wavenumber continuation based on scattering angle filtering

regardless of frequency is shown in Figure 6, following in the foot-

steps of Sirgue and Pratt (2004) for frequencies.

Using the Marmousi velocity model, and specifically the resid-

uals established in the earlier example, Δvðx; zÞ ¼ vðx; zÞ − v0ðzÞ
(Figure 3a and 3b), we look at the least-squares fit objective as the

function of a continuation in wavenumber contribution from low to

high. I compare that with a similar continuation using scattering

angles from large to small. I map the wavenumber to scattering an-

gle using a constant velocity, and thus, can plot them both in

Figure 7 for comparison. Despite the use of the exact velocity

residual as gradient, the wavenumber continuation offers a local

minimum in the center at approximately a 100° scattering angle.

Such local minimum is not present in the scattering angle continu-

ation. The objective function for the background, linear velocity in-

crease, and model (normalized) is one.

To understand this phenomenon, I compare the resulting velocity

models from adding the velocity residuals with the background

velocity through wavenumber continuation and scattering angle fil-

tering. I will label both using the equivalent scattering angle for a

constant velocity, so we can compare them at the same level. Fig-

ure 8a shows a vertical profile of the scattering-angle-filtered

residual added to the linearly increasing background velocity model

(dashed curve) along with the true Marmousi velocity at location

5.2 km (solid curve). In this case, we have effectively dropped

the higher wavenumbers, but such a drop is background velocity

dependent. If we compare this with an equivalent plot (Figure 8b),

in which the filtering is done using pure wavenumber cutoff (dashed

curve), we notice that the two curves have minor, but critical,

differences. While for the scattering angle filtering, we have a better

fit to the Marmousi actual values (solid curve) up shallow, due to

higher resolution, we have a better fit (and higher resolution) for the

wavenumber filtering at depth. However, considering that seismic

velocity inversion tend to favor a top-to-bottom approach, having

higher resolution in the shallow part provided by scattering angle

Figure 6. A schematic plot depicting the progress in scattering
angle from high to low to allow for a proper wavenumber con-
tinuation.

Figure 7. The objective function as a function of scattering angle
for a continuation in terms of scattering angle from diving waves
(180°) to reflections (solid curve) compared with a continuation in
terms of wavenumber filtering from low to high mapped to scatter-
ing angle for comparison (dashed curve).
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filtering improves convergence and provides a more natural

buildup. As a result, with scattering angle filtering, we avoided local

minima to the continuation as apparent in Figure 7.

THE SEG2014 BLIND TEST EXAMPLE

The SEG2014 data set was built by Chevron and distributed with-

out the true model as a test for FWI, in which the results were dis-

cussed in a workshop at the SEG annual meeting in 2014. In

addition to the data, we were provided with an initial velocity model

that captures accurately the topography of the sea bottom and is

laterally homogeneous below the sea bottom as shown in Figure 9a.

The initial velocity model also sets for us the model region that ex-

tends 6 km deep. We were, also, provided the true velocity at one

lateral location extending to a depth of 1–2.4 km, resembling infor-

mation we may have from a well. We use this well velocity here

only to check the accuracy of the inverted velocity models at that

location.

Here, we invert for the model for frequencies exceeding 7 Hz. In

other words, we mute out the low frequencies to make the problem

more realistic and to highlight the power of scattering angle filter-

ing. A representative shot gather, in which low frequencies are

muted, is shown in Figure 9b. The objective of FWI is to find

the model that would produce shot gathers that fit those, such as

the one in Figure 9b. We first focus on frequencies ranging from

7 to 8 Hz using a frequency-domain FWI (Pratt et al., 1996). This

range, considering the noise in the data, provides the necessary sig-

nal-to-noise ratio capable of admitting plausible gradients. We use

the scattering angle filter to administrate the wavenumber continu-

ation for this frequency range. Starting from allowing just the large

(more than 178°) scattering angle energy to contribute to the gra-

dient and slowly relaxing the filter to include lower (100°) scattering

angles in 50 iterations, we end up with the velocity model shown in

Figure 10a. As expected, this velocity model is generally smooth

considering the filtering; however, it includes many important fea-

tures of the model. Allowing the smaller scattering angles (down to

zero) to contribute, we end up with the velocity model in Figure 10b.

Considering our starting frequency of 7 Hz, the inversion managed

to capture most of the features of the true velocity especially up

Figure 9. (a) The initial velocity model provided with the data set.
(b) A representative shot gather from the SEG2014 blind test data
set with frequencies less than 7 Hz muted.

Figure 8. A velocity profile from the Marmousi at
location 5.2 km (solid curves) compared with
a smoothed residual added to the linearly increas-
ing background velocity (dashed curves) with
smoothing administrated using (a) scattering angle
filtering and (b) wavenumber filtering at the same
equivalent scattering angle.
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shallow. Comparison of a profile of this model with the provided

true velocity at the location of the presumed well (Figure 10c)

demonstrates that we ended up with a smooth version of the true

model, at least at this location down to 2.4 km depth. Taking the

inversion to higher frequencies (13 Hz) admits higher resolution

velocity shown in Figure 11a, with a better fit to the well (Fig-

ure 11b). Using the inverted model to generate synthetic data al-

lows us to compare it with the provided data as shown in

Figure 12b. We have managed to reproduce most to the diving

wave information accurately, as well as reflections down to ap-

proximately 4 s. The scattering angle filter allowed us to build

a reasonably accurate velocity model starting with a frequency

of 7 Hz. No MVA-based methods were used here.

CONCLUSIONS

The purpose of this study is to highlight the importance of rec-

ognizing the role of model wavenumbers in FWI and RWI and more

importantly finding the proper approach to control such wavenum-

bers. This relatively short paper provides a summary of what can be

extracted from analyzing the influence of the low and high wave-

numbers in the data. A single low wavenumber missing from the

Figure 10. (a) The inverted velocity model after
50 iterations with gradients that include up to
100° scattering angle energy. (b) The inverted
velocity after an additional 50 iterations and
allowing all scattering angles to contribute for
the 7–8 Hz data. (c) A comparison with the pro-
vided true velocity at the presumed well location.
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velocity residual is capable of inducing a larger misfit compared

with even missing all the wavenumbers. A fact that could only fur-

ther support the notion of wavenumber continuation. However, scat-

tering angle continuation provides a better approach to orderly

filling in the missing wavenumbers than common wavenumber fil-

tering because the latter has its roots in the physical meaning of the

scattering angle.
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