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ABSTRACT: In commercial livestock populations,

QTL detection methods often use existing half-sib fam-

ily structures and ignore additional relationships

within and between families. We reanalyzed the data

from a large QTL confirmation experiment with 10 pig

lines and 10 chromosome regions using identity-by-de-

scent (IBD) scores and variance component analyses.

The IBD scores were obtained using a Monte Carlo

Markov Chain method, as implemented in the LOKI

software, and were used to model a putative QTL in a

mixed animal model. The analyses revealed 61 QTL at

a nominal 5% level (out of 650 tests). Twenty-seven

QTL mapped to areas where QTL have been reported,

Key Words: Best Linear Unbiased Prediction, Genomes, Least Squares, Pigs,

Quantitative Trait Loci, Variance Components
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Introduction

Although methodology to detect or evaluate QTL in

arbitrary pedigrees was proposed as early as 1989 by
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and eight of these exceeded the threshold to claim con-
firmed linkage (P < 0.01). Forty-two of the putative
QTL were detected previously using half-sib analyses,
whereas 46 QTL previously identified by half-sib analy-
ses could not be confirmed using the variance compo-
nent approach. Some of the differences could be traced
back to the underlying assumptions between the two
methods. Using a deterministic approach to estimate
IBD scores on a subset of the data gave very similar
results to LOKI. We have demonstrated the feasibility
of applying variance component QTL analysis to a large
amount of data, equivalent to a genome scan. In many
situations, the deterministic IBD approach offers a fast
alternative to LOKI.

Fernando and Grossman, most QTL detection studies

in livestock have been carried out by experimental F2

and backcross designs (poultry, pigs) or by using ex-

isting half-sib family structures (cattle). For successful

implementation of marker-assisted selection (MAS),

segregation of QTL must be confirmed within commer-

cial populations. The method proposed by Fernando

and Grossman (1989) is based on a variance compo-

nents (VC) model, where both the allelic QTL effects

and the polygenic components are assumed to be nor-

mally distributed. The covariance between individuals
for a putative QTL is modeled by the probabilities that
they share alleles identity by descent (IBD), based on
linked marker genotypes. George et al. (2000) described
a two-step VC approach for arbitrary pedigrees where
IBD scores are estimated using a Monte Carlo Markov
Chain (MCMC) approach (Heath, 1997) and used to
detect QTL in a mixed-inheritance model using AS-
REML (Gilmour et al., 1998). In an attempt to avoid
the computational demand and potential convergence
problems of the MCMC methods, Pong-Wong et al.
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Table 1. Overview of populations and their abbreviations

Name Description

H1 Hampshire line from Sygen International PLC, Abingdon, U.K.

H2 Hampshire line from Quality Genetics, Kävlinge, Sweden

L1 Landrace line from Quality Genetics, Kävlinge, Sweden

L2 Landrace line from Institut de Recerca i Tecnologia Agroalimentàries, IRTA, Lleida, Spain

LW1 Large White line from Sygen International PLC, Abingdon, U.K.

LW2 Large White line from Cooperativa Agricola y Ganadera de Lleida, COPAGA, Lleida, Spain

LW3 Large White line from Quality Genetics, Kävlinge, Sweden

M Meishan line from Sygen International PLC, Abingdon, U.K.

P1 Pietrain line from Sygen International PLC, Abingdon, U.K.

P2 Pietrain line from Cooperativa Agricola y Ganadera de Lleida, COPAGA, Lleida, Spain

(2001) proposed a deterministic approach (DET) to esti-

mate IBD scores, which combines the methods of Wang

et al. (1995) and Knott and Haley (1998). Sørensen et

al. (2002) subsequently showed a correlation of more

than 0.95 between the IBD scores using either MCMC

or DET when simulating microsatellite data.

Variance component methods have been promising

when tested on simulated data, but there are few re-

ports of their application to real data. In the present

study, we tested the applicability of the VC methods to

real data by reanalyzing a QTL confirmation experi-

ment and compared this to results obtained by half-sib

(HS) regression models. We also compared the perfor-

mance of the MCMC (Heath, 1997) and DET (Pong-

Wong et al., 2001) methods to estimate IBD scores with

regard to their performance in QTL detection.

Material and Methods

Resource Populations

Data were made available through the European

Commission-funded PigQTech confirmation experi-

ment involving three countries, contributing a total of

10 commercial pig breeds (contract No. BIO4-CT97-

2243). Animals were from Large White, Landrace,

Hampshire, Pietrain, and Meishan synthetic lines that

were supplied by PIC International (UK), Quality Ge-

netics (Sweden), IRTA (Spain), and Copaga (Spain).

All animals had data on growth and fatness, but the

Spanish data also included carcass and meat quality

data. Tables 1 and 2 contain an overview of the popula-

tions and the traits, whereas Evans et al. (2002; 2003)

present details on the experimental design. When the

experiment was designed, regions on chromosome

(SSC) 2, 3, 4, 7, 8, 10, and 13 were chosen as candidate

regions because they had published QTL for growth

and/or fatness. Three regions on chromosome 1, 6, and

9 were selected as control regions because when the

experiment started, no QTL were published for these

regions. The Sygen populations were not typed for the

candidate region on SSC2 but for an additional candi-

date region on SSC1q instead. The chromosomal re-

gions are in Table 3. In each of the chromosomal regions

(Table 3), two to three microsatellite markers were se-

lected for each population, based on heterozygosity in

the sires. Genotypes were available on 71 boars, their

mates, and nearly 4,500 offspring for 10 chromo-

somal regions.

Quantitative Trait Locus Analyses

The data were initially analyzed under a HS ap-

proach following Knott et al. (1996) using the QTL ex-

press software available at http://qtl.cap.ed.ac.uk/

(Seaton et al., 2002), and as reported by Evans et al.
(2002; 2003). These results will be used for comparisons
in the present study, but detailed results can be found
in Evans et al. (2003).

Quantitative trait locus analyses were performed
within breed and company, resulting in 650 region ×

trait × population analyses. Variance component analy-
ses were performed at 1 to 5 cM intervals along every
candidate region. On average, four positions were eval-
uated for every candidate region. Following the two-
step approach proposed by George et al. (2000), the IBD
scores were estimated for all positions within the two-
generation pedigree of every population. These IBD
scores were subsequently used to model the covariance
for a putative QTL in a random mixed model. The IBD
scores were estimated using an adapted version of the
QTL mapping software LOKI (Heath, 1997). This pro-
gram uses a MCMC approach to obtain IBD scores in
arbitrary pedigrees with missing marker data and un-
known haplotypes. Thompson and Heath (1999) pres-
ent a detailed description of the method, whereas
George et al. (2000) give an overview of IBD estimation
methods in arbitrary pedigrees. We did not evaluate
convergence of the MCMC sampler, but instead, we
used 10,000 iterations for every position, which is sub-
stantially more than the recommended figure of 10
times the number of animals in the pedigree.

For 15 population × region combinations, the estima-
tion of IBD scores was repeated using the DET approach
proposed by Pong-Wong et al. (2001). Their approach
combines the recursive algorithm of Wang et al. (1995)
with the DET approach to estimate IBD between sibs
from Knott and Haley (1998). To prevent complicated
integration over all possible haplotype phases, the
Wang et al. (1995) algorithm is only implemented for
nearest phase-known markers.
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Table 2. Overview of traits and contributing populations

Name Description and populations for which data available

Growth Life daily gain (all populations) and gain during test (H1, LW1, and P1)

Fatness Ultrasonic back fat thickness (all populations)a

Weight Live weight and carcass weight (L2, LW2, P2)

Length Carcass length (L2, LW2, P2)

G2 Carcass fatness (L2, LW2, P2)

Fom Fat on muscle (L2, LW2, P2)

PH45ld PH, 45 min after slaughter on longissimus dorsi muscle (L2, LW2, P2)

PH45sm PH, 45 min after slaughter on longissimus semimembranaceus muscle (L2, LW2, P2)

PH24ld PH, 24 h after slaughter on longissimus dorsi muscle (L2, LW2, P2)

PH24sm PH, 24 h after slaughter on longissimus semimembranaceus muscles (L2, LW2, P2)

CE45ld Electric conductivity, 45 min after slaughter on longissimus dorsi muscle (L2, LW2, P2)

CE45sm Electric conductivity, 45 min after slaughter on longissimus semimembranaceus muscle (L2, LW2, P2)

CE24ld Electric conductivity, 24 h after slaughter on longissimus dorsi muscle (L2, LW2, P2)

CE24sm Electric conductivity, 24 h after slaughter on longissimus semimembranaceus muscles (L2, LW2, P2)

aAll populations have single scores for the P2 position (average of two measurements at the middle of the loin, 65 mm from the midline),
except the Sygen Meishan-derived pigs (M), who have three scores (C: middle of eye muscle, K: end of loin muscle, L: minimum back fat
thickness at the loin muscle).

In the second step, an animal model for the quantita-

tive trait, including a random QTL effect, is fitted for

every position:

y = Xβ + Zu + Zv + Wc + e [1]

where y is a (m × 1) vector of phenotypes, X is a (m ×

s) design matrix, β is a (s × 1) vector of fixed effects

(e.g., sex), Z is an (m × q) incidence matrix relating

animals to phenotypes, u is a (q × 1) vector of polygenic

effects, v is a (q × 1) vector of additive genotypic QTL

effects, W is an (m × q) incidence matrix relating litters

to phenotypes, c is the (q × 1) vector of random litter

effects, and e is a residual vector. The random genetic

effects u, v, and c are assumed to be distributed as

multivariate normal densities with mean zero and vari-

ances Aσ
2
u, Gσ

2
v, and Iσ2

c, respectively. Matrix A is the

standard additive genetic relationship matrix and G is

the (q × q) (co)variance matrix for the additive QTL

effects, represented by the proportion of alleles IBD

(George et al., 2000). The VC analyses were performed

using ASREML (Gilmour et al., 1998). A test statistic

for a given location was obtained by running an animal

model without a QTL effect:

y = Xβ + Zu + Wc + e [2]

Twice the difference between the logarithms of the like-

lihood of (1) vs. (2) was used as a log likelihood ratio

(LR) test. For hypothesis testing, we imposed a nominal

threshold of 5% by assuming that the LR would follow

a mixture of a χ
2 distribution with 1 df and a peak at

zero (Self and Liang, 1987). This may seem anticonser-

vative because we tested multiple positions for every

candidate region. To claim significant linkage for new

QTL, Lander and Kruglyak (1995) advocated the use

of genome-wide thresholds. However, for many regions

and traits in the present study, we aimed to confirm

published QTL within commercial lines. For this pur-

pose, Lander and Kruglyak (1995) recommended the

use of 0.01 nominal P-values to claim “confirmed link-

age.” The same authors also stated that any evidence

for QTL exceeding the nominal 5% level should still be

reported, even though this is not convincing evidence

for the existence of a QTL. To facilitate the comparison

between the two methods, we used the 5% nominal level

as the basis for detection of a putative QTL. Compari-

sons were also made at the 1 and 0.1% level to evaluate

the effect of statistical stringency on the results.

Results and Discussion

Results of Variance Component Analyses

The VC analyses of all populations and candidate

regions for the traits that were available (between 2

and 14 traits/population) revealed 61 QTL exceeding

the nominal 5% threshold (Table 3). Electric conductiv-

ity 24 h after slaughter in the longissimus dorsi was

the only trait showing no QTL. For 27 of the putative

trait regions, QTL have been reported in the literature

(Bidanel and Rothschild, 2002). Imposing a nominal P-

value of 0.01, confirmed linkage (Lander and Kruglyak,

1995) can be claimed for eight QTL affecting growth,

(carcass) fatness, weight, or pH (Table 3). Nearly all the

putative growth- and fatness-related QTL were already

reported in the literature, whereas none of the six puta-

tive QTL affecting carcass length were published (Table

3, Bidanel and Rothschild, 2002). For other traits, such

as pH, electric conductivity, and “fat over meat,” com-

parison to published results was hampered because

studies including these traits are sparse and trait defi-

nitions vary. Although three regions on SSC1, SSC6,

and SSC9 were selected as control regions, Bidanel and

Rothschild (2002) summarized several growth, fatness,

and meat quality QTL in these regions on SSC1 and

SSC6. For the SSC9 region, however, there are no pub-

lished QTL for the traits considered in this study. With
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Figure 1. Scatter plot of transformed P-values of 650 trait × region evaluations comparing results from the half-sib
regression analyses to those of the variance component analyses (VCA) using Monte Carlo Markov Chain (MCMC)-
derived identity-by-descent (IBD) scores. The horizontal and vertical lines denote the 0.1% (dashed lines), 1% (dotted
lines), and 5% (solid lines) thresholds for variance component and half-sib analyses, respectively. A trend line, which
captures approximately 50% of the variation, is added for comparison. Analyses represented by filled circles have
been repeated separately using deterministic IBD methods (Figure 2).

only one “control” region remaining, a meaningful com-

parison between candidate and control regions was not

feasible. The most significant QTL (P < 0.001) was found

for carcass fatness (G2) on SSC2 in the Spanish Large

White. The QTL with the largest effect, which explained

30% of the phenotypic variance for the pH of the longis-

simus dorsi muscle 45 min after slaughter, was found

on SSC6 in the Spanish Pietrain lines. This QTL is

probably due to the Halothane mutation, a major gene

that causes porcine stress syndrome and has large

pleiotropic effects on carcass traits (Fujii et al., 1991).

Evans et al. (2003) detected a Halothane effect in the

Spanish Large White population, where one of the sires

tested heterozygous for this mutation, but not in the

Spanish Pietrain lines. Within breeds, there are no QTL

that are present in multiple populations of that breed

(Table 3). In contrast, Nagamine et al. (2003) report

the same QTL on SSC4 and SSC7 segregating in popu-

lations from five different U.K. breeding companies.

The lack of correspondence between populations of the

same breed in our data could reflect different breeding

goals in the three countries where the lines were bred.

Differences Between Half-Sib
and Variance Component Results

Figure 1 shows a comparison between the results

obtained with the VC analyses and those obtained with

the HS analyses by Evans et al. (2003). Note that the

slope of the trendline is less than unity, at least in part

as a result of a large number of VC analyses giving a

LR of zero (Figure 1). Using the nominal 5% significance

threshold, the two methods agree in showing 42 QTL

as significant. However, 19 QTL are detected only using

the VC analyses, whereas 46 QTL, detected by Evans

et al. (2003) using the HS analyses, were not confirmed

by the VC analyses. When comparing at the 1% level,

11 QTL were detected under both models, 17 under HS

only and 6 only under VC. At the 0.1% level, only three

QTL are significant under both models, whereas three

others are significant only under the HS model. The

comparison between the two methods with regard to

detection of QTL seems fairly robust to the choice of

threshold. This suggests that the discrepancies between

the results reflect something more than just differences

in Type-I error between the two methods. In both cases,

when only one method detected a QTL, the test statistic

for the other model varied between nearly significant

to completely insignificant (Figure 1). In order to under-

stand the discrepancies between the HS and VC results,

it is important to note the methodological differences

between the two methods. In the HS model, an allele

substitution effect is estimated as a fixed effect for every

sire, independent of the other half-sib families. The

maternally inherited QTL alleles are assumed to be

randomly distributed between half-sibs, and the mater-

nal genotypes are only used to increase the number of
offspring that are informative for the inheritance of the
sire allele. In the VC model, the variance explained
by the QTL is estimated across all animals, assuming
segregation of the QTL in both parents. From the 46
QTL that were only detected by the HS analyses, in 23
cases, only a single sire was inferred to be heterozygous
for the QTL, whereas in five other cases, only two out
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of the nine sires that made up the population were

heterozygous for the QTL. When a QTL is segregating

at such a low frequency, it could be missed by the VC

analyses because the power of detection depends on the

variance explained by the QTL across the population.

Alternatively, differences can arise from different al-

lele frequencies in the sire or the dams due to sampling

or selection. A QTL could be missed by the HS analyses

when none or few sires are segregating. A clear example

of this is the QTL for pH 45 min after slaughter in the

Spanish Pietrain line, which is probably a consequence

of the Halothane mutation. Although none of the five

Spanish Pietrain sires carried this mutation, 13 out of

60 dams were heterozygous. This explains why this

QTL was detected under the VC analyses, which incor-

porate information from within dam segregation, but

not under the paternal HS analysis. On the other hand,

when a QTL is detected in the sires but not segregating

in the dams, the QTL effect is “diluted” in the VC analy-

ses and may therefore be missed. We have looked at

this hypothesis for 17 putative QTL. This included the

Halothane effect in the Spanish Pietrain, whereas the

other 16 QTL were picked from the regions that had

been analyzed using both MCMC-derived and DET IBD

scores and represented one of the three categories: 1)

five QTL where identified both by HS and VC analyses,

2) six QTL were only detected under the HS analyses,

and 3) five QTL, which were only detected under the

VC analyses (using MCMC-derived IBD). These 16 QTL

are marked in Figure 2. For these putative QTL, the

HS analyses were repeated by fitting a QTL within

every maternal full-sib family of sufficient size. Assum-

ing that testing for a maternal QTL effect is indepen-

dent of testing a paternal QTL effect, we can combine

the two P-values using Fisher’s test:

− 2 ∑
2

i=1

Log(Pi) [3]

which follows a χ
2
4 distribution. The results for these

additional analyses are summarized in Table 4. For the

examples where both HS and VC methods detected a

QTL, the joint P-value is always <0.05, even though

there is significant evidence for a QTL in the dams in

only one example (Table 4). For the analyses where the

QTL is only detected under the HS analyses, none of

the maternal HS analyses shows any evidence for a

QTL. Although the joint P-values are still significant

for all but a single example (Table 4), they are larger

than those from the paternal HS analyses. For the ex-

amples where the HS showed no evidence for a QTL,

the maternal HS analyses showed significant evidence

in four out of six cases. The joint P-values were <0.05

for three cases, whereas all of them were <0.25 (Table

4). The comparison between the joint P-values and

those from the VC analyses is compromised by the fact

that results from the separate optimization of a pater-

nal and maternal model under HS are compared with

results from the joint optimization under the VC analy-

ses. Nevertheless, the joint P-values provide a better

comparison between the HS and VC results and give

insight into the mechanisms underlying any discrepan-

cies between the methods. Although we only looked at

17 cases, this provides some evidence that differences

in QTL allele frequencies between sexes cause discrep-

ancies between VC and HS analyses. These differences

are probably due to sampling but could also reflect ef-

fects of selection when the parents originate from spe-

cific dam and sire lines. Furthermore, differences be-

tween paternal and maternal models could be explained

by genomic imprinting, where the allele coming from

one parent is silenced in the offspring.

The stability of parameter estimates under the VC

analyses might also underlie some of the differences

between HS and VC results. The estimates for the three

variance components can differ greatly across regions

for the same trait. For instance, in the Spanish Large

White, a QTL was identified for G2 on SSC1, SSC2,

SSC4, and SSC6. Whereas the proportion of variance

explained by the QTL varied between 0.05 and 0.26 for

these regions, the polygenic heritability varied between

0.00 and 0.15. Even within the same region, VC esti-

mates can vary considerably, and the position with the

highest LR is often not the same location that gives the

highest variance component for the QTL. This is also

reflected by large (i.e., 10-fold) fluctuations in estimates

of VC resulting only in minute differences of the LR.

It must be noted that the estimate of the QTL variance

was more stable than those of litter and polygenic vari-

ance. This can be explained by the information underly-

ing the variance components: litter and polygenic vari-

ances are proportional to between family variance,

whereas QTL variance is estimated on the within-fam-

ily variance. For a litter, all animals have the same

values for the additive genetic relationship, whereas

they can have very different values for their IBD rela-

tionship at a given genome location.

To our knowledge, only Zhang et al. (1998) have com-

pared the performance of HS and VC analyses on real

data. They reported that both methods agree well with

regard to the QTL positions, but they did not compare

the significance of the QTL under the two methods,

although their Table 5 lists several cases where the

QTL was only detected under one of the methods. How-

ever, such a comparison would be complicated by the

fact that they derived the thresholds for the two meth-

ods in different ways. It must be noted that Zhang et al.

(1998) analyzed a single large granddaughter design,

whereas the present study looked at 10 moderately

sized HS designs.

Use of Deterministic Identity by Descent Scores

For 15 within-population regions, 127 analyses were

repeated with IBD scores obtained by the DET method.

These combinations, highlighted in Figure 1, were cho-

sen to represent all populations and to include a least

one putative QTL from either the HS or VC analyses
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Figure 2. Scatter plots of transformed P-values of 127 trait × region evaluations, comparing results of variance
component analyses (VCA) using deterministic identity-by-descent methods to half-sib regression analyses (A) and
the variance component analyses using identity-by-descent scores that were derived using Monte Carlo Markov Chain
methods (B). The horizontal and vertical lines denote the 5% thresholds. Trend lines, which capture 57% (A) and 87%
(B) of the variation, are added for comparison. Filled circles indicate positions that were reanalyzed subsequently
under a maternal half-sib model (Table 4).

for each within-population region. The 127 analyses

represent 15 cases where both VC and HS methods

detected a QTL, nine where VC detected a QTL and

HS did not, 15 where HS detected a QTL and VC did

not, and 88 cases where neither method identified a

QTL. The results of the VC analyses using deterministic

IBD are compared with both the original HS analyses

and the VC analyses using MCMC-derived IBD scores

in Figure 2. The VC results using deterministic IBD

methods agree very well with those obtained using

MCMC methods (Figure 2B). Given the close agreement

between the MCMC and DET methods to obtain IBD

scores, the latter should be preferred when analyzing

large amounts of data with relatively few missing mark-

ers. It must be noted that the population structure of the

present experiment is still fairly simple (few additional

links between families), and may therefore not offer the

best comparison between MCMC and DET.

A determining factor for the feasibility of genome

scans with VC analyses is the computation time that

is required. To analyze five positions in a candidate

region for a single trait, the complete analyses (includ-
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Table 4. Separate and combined P-values for paternal and maternal half-sib analyses
compared to the variance component analyses

Populationa SSCb Traitc Typed P siree P dame P jointe P VCe

P1 7 Growth C <0.001 0.121 <0.001 <0.001

LW2 9 PH24ld C 0.001 0.217 0.001 0.004

H2 13 Fatness C 0.001 0.291 0.002 0.013

P2 7 PH24sm C 0.050 0.032 0.012 0.019

LW2 2 CE24sm C 0.029 0.291 0.049 0.013

L2 7 PH24sm H 0.011 0.109 0.009 0.108

L2 7 PH45ld H 0.013 0.170 0.016 0.113

P2 7 PH45sm H 0.004 0.667 0.017 0.165

L2 2 Fom H 0.011 0.404 0.028 0.345

P2 7 CE45sm H 0.008 0.761 0.037 0.126

LW2 7 CE45sm H 0.035 0.826 0.131 0.440

P2 6 PH45ld V 0.45 0.005 0.016 0.02

P2 2 CE45ld V 0.560 <0.001 0.002 0.030

LW2 2 Fom V 0.077 0.029 0.016 0.028

P1 1 Fatness V 0.650 0.023 0.078 0.015

M 8 Growth V 0.268 0.086 0.110 0.040

LW2 2 PH24sm V 0.085 0.744 0.238 0.019

aSee Table 1 for details on populations.
bSSC = Region on chromosome.
cSee Table 2 for trait details.
dQTL detected under both models (C) or under HS (H) or VC (V) only.
eTabulated P-values not adjusted for multiple testing.

ing six ASREML runs) using DET were about nine

times faster than those using MCMC (175 and 1,664

central processing unit seconds on a DEC Alpha

XP1000 [Hewlett-Packard, Palo Alto, CA] with a 500-

MHz processor, respectively). When using DET, the AS-

REML analyses and the processing of the results be-

came the limiting factor in place of getting the IBD

scores. Bayesian analyses for arbitrary pedigrees have

also been proposed (Uimari et al. 1996; Bink and Van

Arendonk, 1999), but applications to real data are lim-

ited because of computational requirements of these

methods (Van Kaam et al., 2002). A major advantage

of the two-step approach (George et al., 2000), compared

with Bayesian methods (Bink and Van Arendonk,

1999), is that once the IBD scores are estimated, a large

number of traits or models can be evaluated without

the need to repeat the IBD estimation.

The two-step VC approach can accommodate arbi-

trary pedigrees and, when using ASREML, a wide

range of genetic and statistical models. These include

multivariate analyses, time series, and random regres-

sion models (Gilmour et al., 1998). A prerequisite for

using more complicated models is the availability of

sufficient amounts of data (i.e., large enough genotyped

pedigrees). The possibility of using up to six user-de-

fined covariance matrices in ASREML allows explora-

tion of alternative genetic models in addition to the

additive model used in the present study. Hanson et

al. (2001) proposed a framework to test for imprinting

in sib-pair studies using a VC approach. Shete and

Amos (2002) provided a formal derivation for the meth-

ods proposed by Hanson et al. (2001) and explored the

sensitivity of tests for imprinting to differences in re-

combination fractions between males and females. The

methods of Pong-Wong et al. (2001) allow for parent-

specific allelic IBD scores, which could subsequently be

used to model separate paternal and maternal QTL

effects. However, it is not clear how the sib-pair method-

ology generalizes to arbitrary pedigrees and how differ-

ences between maternal and paternal family sizes af-

fect the power to distinguish Mendelian from im-

printed QTL.

We have demonstrated the feasibility of QTL analysis

using VC on a large amount of real data, equivalent to

a full genome scan. The VC analyses performed well,

especially when considering that the marker informa-

tion was patchy (only 1 to 3 markers per region) and

that the number of phenotyped animals was relatively

small for reliable estimation of VC. Although the cur-

rent population structure seems sufficient to detect

QTL, larger populations are recommended for more re-

liable estimation of QTL effects.

Although the VC analyses showed few additional

QTL beyond the HS analyses, they provided useful in-

formation. The present results increased confidence in

those QTL that were detected by both methods and

warrant closer scrutiny of the ones that were detected

by only one of the methods. The experimental structure

was very simple and was designed to be analyzed under

a HS model. Advantages of VC methods could be more

prominent when phenotypes are also available on the

parents, because this information is ignored by the HS

methods. As more advanced methodology is becoming

available all the time, its usefulness can ultimately only

be assessed by the analysis of real data. This will also

facilitate further refinement of these methods. When

the family structure permits, we recommend HS regres-

sion models for the initial analyses of QTL experiments
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within commercial lines. The advantages are the com-

putational speed and straightforward interpretation of

HS analyses, which can be performed online using QTL

Express software (Seaton et al., 2002). Given the effort

and money that go into QTL mapping experiments,

alternative methods should always be explored to ex-

ploit all the information that is present in the experi-

ment. In this context, VC analyses are very useful to

reanalyze data because they take all additive genetic

relationships into account and provide QTL breeding

values for all animals. Any discrepancies between the

methods will point to QTL that need closer scrutiny.

Implications

The performance of variance components methods for

detecting quantitative trait loci was compared to that

of relatively simple half-sib methods using real data

from 10 populations of five different pig breeds. Vari-

ance component analyses are routinely used in animal

breeding for breeding value estimation, and inclusion

of quantitative trait loci effects will facilitate marker-

assisted selection. It was demonstrated that chromo-

some regions explaining more than 5% of the pheno-

typic variation could be detected in pedigrees of 500

offspring. There were some discrepancies between the

variance component and half-sib analyses, which could

partly be explained by differences underlying the two

methods. We believe the present results provide a step

forward in robust linkage analyses for outbred ped-

igrees.
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