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Full-Pose Tracking Control for Aerial Robotic

Systems with Laterally-Bounded Input Force
Antonio Franchi, Senior Member, IEEE, Ruggero Carli, Member, IEEE, Davide Bicego, and Markus Ryll,

Member, IEEE

Abstract—A class of abstract aerial robotic systems is intro-
duced, the Laterally Bounded Force (LBF) vehicles, in which
most of the control authority is expressed along a principal
thrust direction, while along the lateral directions a (smaller and
possibly null) force may be exploited to achieve full-pose tracking.
This class approximates platforms endowed with non-collinear
rotors that can modify the orientation of the total thrust in body
frame. The proposed SE(3)-based control strategy achieves, if
made possible by the force constraints, the independent tracking
of position-plus-orientation trajectories. The method, which is
proven using a Lyapunov technique, deals seamlessly with both
under- and fully-actuated platforms, and guarantees at least the
position tracking in the case of an unfeasible full-pose reference
trajectory. Several experimental tests are presented, that clearly
show the approach practicability and the sharp improvement
with respect to state of-the-art.

I. INTRODUCTION

In the last years we have seen advancements in control,

perception and actuation allowing unmanned aerial vehicles

(UAVs) to perform very agile maneuvers [1], as well as com-

plex missions solely or in swarms and heterogenous groups.

Originally performed missions have been contactless as, e.g.,

environmental monitoring and search and rescue. Nowadays

UAVs are as well utilized as aerial robots to perform direct

physical interaction – UAVs grasp, transport, and manipulate

our environment, as shown by several research projects on

aerial manipulation 1, and can also physically interact through

cables [2], [3] in order to perform unprecedented maneu-

vers [4].

Standard multi-rotors (quadrotors, hexarotors, etc.) have

collinear propellers generating forces that are all aligned to

one direction in body frame, which makes them under-actuated

systems: the total control force can be produced only along

that direction. In order to follow a generic position trajectory

the total force direction in world frame is changed by rotating

the whole vehicle. Maneuvers in which rotation and translation

are completely independent are precluded to such platforms,

which constitutes a serious problem in the case that, e.g.,

the platform has to move through a hostile and cluttered
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ambient or resist a wind gust while keeping a desired attitude.

Such an underactuation even deteriorates the potentiality to

interact with the environment by rapidly exerting forces in an

arbitrarily-chosen direction of the space while keeping a pre-

specified orientation.

The major solution to overcome the aforementioned issues

has been to mount rotors in a tilted way such that the thrusts

of the propellers are not collinear anymore. In this way, the

direction of the total force can be changed by selecting the

intensity of the force produced by each propeller, without

the need of reorienting the whole vehicle. If the propellers

are at least six, and the tilting directions do not generate a

singular configuration, then direction and intensity of both the

instantaneous total control moment and total control force are

controllable at will. This idea has been implemented in several

real platforms and is becoming more and more popular in

the aerial vehicles and robotics communities. For example,

results achieved in [5] show an improvement in resisting an

opposing wrench, while the works done in [6]–[8] show that

such idea allows to decouple the tracking of a desired position

and orientation.

These new kind of multi-directional thrust platforms (some-

times referred to as fully-actuated) call for new methods to

control them efficiently and to reliably cope with the added

complexity of the platforms and of the larger set of tasks

in which they can be employed, when compared to standard

collinear multi-rotors. To fill this gap, in this paper we propose

a novel method for controlling such platforms while taking

into account the most limiting input bounds they have to

cope with, i.e., lateral input force. The proposed controller

ensures, in nominal conditions, the tracking of a full-6D pose

reference trajectory (position plus orientation). If the reference

orientation and the force needed to track the position trajectory

do not comply with the platform constraints, the proposed

strategy gives priority to the tracking of the positional part

while also tracking the feasible orientation that is the closest

to the reference one. This choice is supported by, e.g., the

fact that in typical applications a wrong position tracking is

more likely to lead to an obstacle crash than a non-perfect

orientation tracking.

In order to attain generality, the proposed method is de-

signed to work with a large variety of different platforms

which include not only the fully-actuated but also the under-

actuated (collinear propeller) case. In this way we both max-

imize the breadth of the impact of the proposed methodology

to new full-actuated platforms and we also maintain back-

compatibility with standard platforms. This last feature makes
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the proposed method also suitable to control vectored-thrust

vehicles that can transit from an under-actuated to a fully-

actuated configuration while flying – as, e.g., the one presented

in [9]. The proposed method is universal and does not need

any switching between two different controllers for each

configuration.

Additionally, we envision that the proposed method will find

large application in the new emerging topic of aerial robotic

physical interaction. A striking example of this application has

been shown in [10], where an admittance control framework

has been built around the controller developed in this paper,

and real experiments in contact with the environment are

shown.

Motivations and State of the Art: To optimize the use

of available energy, common multi-rotor platforms are de-

signed with all collinear rotors, at the expense of under-

actuation. For these platforms several controllers have been

proposed like, e.g., the ones based on the dynamic feedback

linearization [11], cascaded/backstepping ones [12], [13], and

geometric ones on SE(3) [14], [15] (see [16] for a review).

Recently, new concepts have been developed where the use

of non-collinear propellers [5], [6], [17] allows the orientation

of the total thrust to deviate from its principal direction.

However, in order to minimize the waste of energy caused by

the appearance of internal forces, the maximum component

of the total thrust along the lateral direction is typically

kept (by design) much lower than the maximum allowed

component along the vertical one. We call these kind of

platforms aerial vehicles with laterally-bounded force (LBF):

they are characterized by a principal direction of thrust along

which most of the thrust can be exerted. A certain amount

of thrust (typically smaller) can be exerted along any non-

principal (lateral) directions. This model includes: i) the stan-

dard underactuated multi-rotor vehicle where thrust is possible

only along the principal direction, and ii) the isotropically

fully-actuated platforms where a large amount of total thrust

in the lateral directions is applicable [7], [8].

An underactuated LBF platform is not able to track a

generic full-pose trajectory, i.e., with independent position

and orientation in SE(3). The rotation about any axis that is

orthogonal to the principal fixed total thrust direction must

follow the evolution over time of the position trajectory,

according to the well-known differential flatness property [1],

[11]. Therefore an underactuated multi-rotor aerial platform

can only track a 4D-pose trajectory (i.e., position plus the

rotation about the principal direction). On the contrary, a

‘fully-actuated’ LBF platform can exert some force in the

lateral direction thus allowing the tracking of a generic full-

pose (6D) trajectory. However, due to the bounded thrust along

the lateral directions, it is not possible to track any full-pose

trajectory. The larger the bounds the higher the ability of the

platform to track any trajectory, the lower the bounds the more

the platform resembles an underactuated multi-rotor and thus

it becomes almost unable to track a full-pose trajectory but

only a 4D-pose one.

The easiest approach to control fully-actuated platforms

is the inverse dynamics approach. First, a control wrench is

computed in order to track the desired trajectory by cancelling
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Fig. 1. A drawing illustrating the main quantities of an LBF Aerial Vehicle,
the main frames involved, the laterally bounded input sets and the full-pose
6D reference trajectory.

the nonlinear dynamical effects and trying to zero the position

and orientation errors. Then the thrust inputs for each propeller

are computed from the control wrench by simply inverting the

control allocation matrix. This method has been first proposed

in [6] and then used also in [7] (with pseudo-inversion, in

place of inversion, to allocate the input redundancy) and in [8].

The limitation of this control approach is to neglect input

saturation, which may easily lead to an unstable behavior

if, e.g., the full-pose trajectory to be followed is not input-

feasible. A preliminary attempt to solve these issue in a special

case has been done in [18], where a weighted pseudoinversion

is used to allocate the 6 inputs of a coplanar hexarotor in order

to obtain a lower dimensional task (4D) output (the total thrust

and the 3 moment components). Another control approach is

presented in [17], which is however specific to that octorotor

platform, it does not consider input bounds either, and is

based on a particular Euler angle representation. Finally, [19]

presents an approach that also uses Euler and is based on the

reference governor. The method is tested only in simulation

and for constant position and attitude references.

In this paper we present a geometric tracking controller

for time-varying references that is instead very general and

applicable to any LBF vehicle, thus also taking into account

the bounds on the lateral control force. The method is not

prone to local orientation representation singularities since it

is natively designed in SE(3).
The remaining part of the paper is structured as follows.

Section II presents the generic model. The proposed control

method is introduced in Sec. III. Section IV shows the full

computation of the generic controller in a meaningful case,

while results of several experiments are shown in Sec. V.

Finally we conclude the paper and give an outline of further

possible extensions in Sec. VI.

II. LATERALLY-BOUNDED FORCE AERIAL VEHICLES

An LBF platform is a rigid body to which gravity and con-

trol generalized forces are applied. For the sake of compact-

ness, all the main symbols used in the paper are summarized

in Table I and Fig. 1.

The vehicle orientation kinematics is described by Ṙ =
R[ωωω], where [ωωω]× ∈ so(3) is the skew symmetric matrix

associated to ωωω . The control inputs u1 = [u1 u2 u3]
T ∈R

3 and

u2 = [u4 u5 u6]
T ∈R

3 are the input force and moment applied
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TABLE I
MAIN SYMBOLS USED IN THE PAPER

Definition Symbol

World Inertial Frame: FW = OW ,{xW ,yW ,zW } FW

Attached Body Frame: FB = OB,{xB,yB,zB} FB

Position of OB in FW , coincident with the Center of Mass (CoM) p

Rotation matrix mapping coordinates in FB to coordinates in FW R
Configuration of the vehicle q = (p,R)
Angular velocity of FB w.r.t FW expr. in FB ωωω
Mass of the vehicle m

Vehicle’s Inertia matrix w.r.t to OB expressed in FB J

Control force applied at the CoM expressed in FB u1

Control moment applied at the CoM expressed in FB u2

Feasible set of the control force u1 U1

Feasible set of the projection of u1 on the xy plane in FB Uxy

i-th vector of the canonical basis of R3 with i = 1,2,3 ei

Reference position for p at time t pr(t)
Reference rotation matrix for R at time t Rr(t)

Reference control force to be applied at OB fr(t) at time t

Set of orientations in SO(3) that allow the application of fr(t) R(fr)
Subset of R(fr) that minimizes a certain cost w.r.t. Rr R(fr,Rr)
Desired rotation matrix in R(fr,Rr) Rd

to the vehicle expressed in FB. The following constraint

applies

[u1 u2]
T ∈Uxy ⊂ R

2, (1)

where the laterally bounding set Uxy is a set that contains the

origin. We define U1 = {u1 ∈R3 | [u1 u2]
T ∈Uxy,u3≥ 0}. Note

that Uxy can be constant or even be changing depending of

u3, as shown in Figure 1. The dynamics of the aerial platform

is then

mp̈ =−mge3 +Ru1, Jω̇ωω =−ωωω×Jωωω +u2. (2)

Some particularly relevant cases of LBF follow.

Case 1 (Underactuated aerial vehicle) When Uxy = {0}
the total force is always oriented as Re3 and model (2) be-

comes the underactuated quadrotor model considered in [11],

[13], [15]. Case 2: (Conic LBF) When Uxy = {[u1 u2]
T ∈

R
2 | u2

1 + u2
2 ≤ (tanα)2u2

3}, model (2) approximates the case

of hexarotors with tilted propellers [5], [6], [9], for which the

set of allowable U1 forces has the pseudo-inverted-pyramidal

shape. The quantity α is a parameter that represents the tilting

angle of the propellers (hexarotor).

Case 3: (Cylindric LBF) When

Uxy = {[u1 u2]
T ∈ R

2 | u2
1 +u2

2 ≤ r2
xy}, (3)

model (2) approximates the case of an multirotor with nm

main propellers pointing up and ns secondary less powerful

propellers tilted 90 degrees w.r.t. the main ones, like the one

presented in [17], for which the set of allowable U1 forces

can be approximated by a pseudo-cylindric shape

III. FULL-POSE GEOMETRIC CONTROL ON SE(3)

Let be given a full-pose trajectory qr(t) = (pr(t),Rr(t)) :

[t0, t f ]→ SE(3), where pr(t) ∈ R
3 is the reference position

trajectory and Rr(t)∈ SO(3) is the reference attitude trajectory.

Inverting (2), the nominal inputs to track qr(t) are obtained as

ur
1 = RT

r (mge3 +mp̈r) and ur
2 = ωωωr×Jωωωr +Jω̇ωωr, where ωωωr is

defined by [ωωωr]× = RT
r Ṙr.

Definition 1. qr(t) is feasible if ur
1(t) ∈U1 ∀t ∈ [t0, t f ].

Exact full-pose (6D) tracking is possible only if qr(t)
is feasible. However in real world it is not granted that

qr(t) will be such for the particular LBF platform in use.

For this reason, we propose a controller that works (in the

sense that the tracking of pr(t) is still guaranteed and no

singularity appears) even if qr(t) is not feasible. Consider

the position error ep = p−pr, velocity error ev = ṗ− ṗr, and

two positive definite gain matrices Kp and Kv. Then consider

fr = mp̈r + mge3 −Kpep −Kvev, representing the reference

total control force that ideally one would like to apply to the

aerial vehicle CoM if the system would be completely fully

actuated, i.e., if U1 = R
3.

The set of orientations that allow to apply fr to the

CoM of the LBF aerial vehicle is defined as R(fr) = {R ∈
SO(3) |RT fr ∈U1}. For an underactuated collinear multi-rotor

system the set R(fr) is formed by any R such that Re3 and fr

are parallel, i.e., Re3× fr = 0. For a generic LBF aerial vehicle

the set R(fr) may contain also R’s for which Re3× fr 6= 0.

Therefore we have the following.

Proposition 1. The set R(fr) is always nonempty ∀ fr ∈ R
3.

Proof. If fr 6= 0 then, by definition of R(fr) and U1, R(fr)⊃{

R ∈ SO(3) |Re3 =
fr
‖fr‖

}

6= /0. If fr = 0 then R(fr) = SO(3).

The proposed controller exploits a cascaded structure2 by

choosing, at each time t, a desired orientation Rd ∈ SO(3) that

belongs to R(fr) and also minimizes a given cost function

w.r.t. Rr. Then one can use the fully actuated rotational

dynamics to track Rd and, in turn, track the reference position

pr. If qr is feasible then Rd will exponentially converge

to Rr. Otherwise, only the best feasible orientation will be

obtained. Therefore the controller implicitly prioritizes the

position trajectory tracking against the orientation one.

Define R(fr,Rr)⊂R(fr) as the set of rotation matrices that

solve minR′∈R(fr) J(Rr,R
′), where J : SO(3)×SO(3)→R≥0 is

an arbitraily chosen cost function that represents the degree of

similarity between Rr and R′ one is interested in. The elements

in R(fr,Rr) represent orientations of the LBF that allow to

apply fr and minimize the function J w.r.t. Rr.

Consider that, at each time t a desired orientation Rd ∈
R(fr,Rr) is chosen. Furthermore, whenever Rr ∈ R(fr,Rr)
then Rd must be chosen equal to Rr. Then define the rotation

error eR = 1
2
(RT

d R−RT Rd)
∨, and the angular velocity error

eω = ωωω−RT Rdωωωd where •∨ is the inverse map of [⋆]×, and

ωωωd is the angular velocity associated to Rd . Consider then the

following control law

u1 = satUxy

(
(fT

r Re1)e1 +(fT
r Re2)e2

)
+(fT

r Re3)e3 (4)

u2 = ωωω×Jωωω−KReR−Kω eω −J
(
[ωωω]×RT Rdωωωd−RT Rdω̇ωωd

)

(5)

where satUxy
(x) is a vector in Uxy with the same direction of

x, that minimizes the distance from x. KR = kRI and Kω = kω I

are the gain matrices with kR > 0 and kω > 0.

2Notice that even if a cascaded structure is used, there is no time-scale
separation assumption in the proposed controller.
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Notice that only in the very special case in which Uxy =
{0} the control in (4)–(5) resembles the one in [15] while its

form is in general very different from it. Another difference

with [15] is that the computation of Rd in [15] is done from the

position trajectory using the differential flatness property while

here is computed ensuring input feasibility and minimizing J

w.r.t. Rr.

In order to prove the convergence properties of the pro-

posed controller let us consider the following error function

between two rotation matrixes R1 and R2 to be d(R1,R2) =
1
2
tr
(
I−RT

2 R1

)
.

Theorem 1. Assume that Rd(t) ∈R(fr(t)) for any t and that

ωωωd(t) and ω̇ωωd(t) are well defined for any t. Consider the

control u1 and u2 defined at (4) and (5).

Assume that the initial condition satisfies

d (R(0),Rd(0))< 2, (6)

‖eω(0)‖2 <
2

λmin(J)
kR (1−d (R(0),Rd(0))) (7)

Then, the zero equilibrium of the tracking errors eR, eω , ep

and ev is exponentially stable. The region of attraction is

characterized by (6) and (7).

Proof. The proof is divided into two parts. We first show that,

if the R(0) and eω(0) satisfy, respectively, (6) and (7), then

R(t) converges exponentially to Rd(t), in the sense that the

function d (R(t),Rd(t)) goes exponentially to zero. Secondly,

we characterize the translational error dynamics and, based

on the fact that R(t) converges exponentially to Rd(t), we

show that also ep and ev goes exponentially to zero. The time

derivative of eω is

Jėω = Jω̇ωω +J
(
[ωωω]×RT Rdωωωd−RT Rdω̇ωωd

)
. (8)

Plugging the rotational part of (2) into (8) and substituting u2

from (5), we get Jėω =−kReR−kω eω . In [15], it is shown, by

exhibiting a suitable Lyapunov function, that, under conditions

in (6) and in (7), the zero equilibrium of the attitude tracking

error eR, eω is exponentially stable and that there exist two

positive constants α,β such that

d (R(t),Rd(t))< αe−β td (R(0),Rd(0)) . (9)

We determine now the error dynamics of the translational

dynamics. Substituting u1 from (4) in the translational part

of (2) we obtain

mp̈ =−mge3 + fr +Ru1− fr = mp̈r−Kpep−Kvev + γγγ,

where γ = Ru1− fr. It easily follows that

mėv =−Kpep−Kvev + γγγ. (10)

Consider (9) and observe that, since Rd ∈R(fr) for any t, we

have that there exist two positive constants C, ρ such that

‖γγγ(t)‖ ≤Ce−ρt‖γγγ(0)‖.

Let x = [ev ep]
T

then, (10) can be written in vector form as

ẋ = Ax+Bγγγ (11)

Reference
fr

Des. Ori.
Optimization

pr, ṗr, p̈r

fr

Rr

Force
Projection

(4)

Attitude
Controller

(5)
Rd

ωd, ω̇d

fr

u1

u2

LBFA
Dyn.
Model

p, ṗ

R,ω

ω

R

Rp, ṗ

(1)-(2)

Force

Fig. 2. Block diagram of the proposed geometric controller with the references
to the corresponding equations in the text.

where

A =
1

m

[
−Kv −Kp

I 0

]

, B =
1

m

[
I

0

]

.

Since Kv,Kp are both positive definite matrices, we have that

A is a Hurwitz matrix.

Observe that (11) is the cascade of a linear stable system

and an exponential stable signal. Then, the statement of the

Theorem follows from a technical refinement of Lemma 4.7 in

[20], i.e., the cascade of a asymptotically stable linear system

and of an exponentially stable system is exponentially stable.

A block diagram that shows the main subsystems of the

proposed control architecture is provided in Fig. 2.

Theorem 1 ensures, under mild conditions, the exponential

stability of ep, ev, eR, and eω . Notice that this results holds

regardless of the feasibility of qr. If qr is also feasible then

exponential tracking of qr by q is also guaranteed. In order to

formally state this fact let us define the errors eRr =
1
2
(RT

r Rd−
RT

d Rr)
∨, and eωr = ωωωd−RdRT

r ωωωr.
In next result we characterize the convergence of the above

errors to zero provided that the reference trajectory qr(t)
is feasible and satisfies the additional property that ur

1 is

sufficiently inside U1, meaning that there exists a time instant

t̄ and a positive number ε such that the distance of ur
1 from

the boundary of U1 is greater than ε > 0 for all t > t̄, i,e,

dist(ur
1(t),∂U1)> ε, ∀ t > t̄. (12)

Corollary 1. Assume qr(t) is a feasible trajectory and that it

satisfies the additional property in (12). Assume that Rd(t) ∈
R(fr(t)) for any t and that ωωωd(t) and ω̇ωωd(t) are well defined

for any t. Consider the control u1 and u2 defined at (4) and

(5). Assume that the initial condition satisfies (6) and (7). Then

the zero equilibrium of the tracking errors eR, eω , ep and ev is

exponentially stable and there exists a time instant t̄ ≥ t0 such

that eRr(t) = eωr(t) = 0 for all t > t̄ . The region of attraction

is characterized by (6) and (7).

Remark 1. The proposed controller (in particular the attitude

controller (5)) relies on the availability of ωωωd , and ω̇ωωd .

These quantities depend in turn on Rd which is the output

of an optimization algorithm executed at each control step.

In order for ωωωd and ω̇ωωd to be well defined and available the

optimization must ensure a sufficient smoothness of Rd . This

could be enforced by adding, e.g., a regularization term in

the cost function J. If in the real case at hand this is not

possible (or not implementable), then at each time instant in
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which Rd is not smooth the attitude controller will undergo

a new transient phase. In practice, see Sec. V, we have

experimentally ascertain that the presence of a few isolated

non-smooth instants does not constitute at all a real problem

for the stability of the implementation and that regularization

is actually not needed for practical stabilization.

IV. COMPUTATION OF Rd FOR AN IMPORTANT CASE

The proposed control method is kept on purpose general

regarding two main features: the choice of Uxy in (1) and the

choice of the cost function J. The former allows the method to

be used for a large set of aerial vehicles with different actuation

capabilities. The latter allows the engineer to customize the

definition of similarity between two orientations in order to

comply with the particular task at hand. In this section we

illustrate how these two general features are particularized for

a specific meaningful case.

In particular, we consider the case of Uxy defined in (3) and

the following choice of cost function J

J(Rr,R
′) = 1−bT

3rb
′
3, (13)

where Rr = [b1r b2r b3r] and R′ = [b′1 b′2 b′3]. The cost function

J in (13) is minimized whenever b3r = b′3 and maximized

whenever b3r = −b′3. In the following we show how it is

possible to efficiently compute an Rd that belongs to R(fr,Rr)
and is also equal to Rr if Rr ∈ R(fr,Rr). These are in fact

the requirements needed for Rd in order for Theorems 1 and

Corollary 1 to be valid.

Let us start by instantiating R(fr) for this particular case.

From simple geometrical considerations on the cylindrical

shape of the set U1 it is easy to see that

R(fr) =
{

R′ ∈ SO(3) | fT
r b′3 ≥

√

‖fr‖2− r2
xy

}

, (14)

which states that the vector fr must lie within the cylinder of

radius rxy generated about the axis b′3.

Using (13) and (14) we can rewrite the minimization

problem in terms of the only variable b′3, instead of the whole

matrix R′, as

min
fT
r b′3≥
√
‖fr‖2−r2

xy,

‖b′3‖2=1

−bT
3rb
′
3, (15)

where r2
xy, fT

r and bT
3r are the givens of the problem.

In the case that fT
r b3r ≥

√

‖fr‖2− r2
xy then b′3 = b3r is the

solution to (15). Otherwise, let us write b′3 as the sum of two

components b′3 = b′
3‖+b′3⊥, where b′

3‖ is parallel to the plane

spanned by b3r and fr, while b′3⊥ is perpendicular to it, i.e.,

is parallel to b3r× fr. It is easy to see that the cost function

in (15), i.e., bT
3rb
′
3, is not affected by b′3⊥, in fact bT

3rb
′
3 =

bT
3rb
′
3⊥+bT

3rb
′
3‖ = 0+bT

3rb
′
3‖. The vector b′

3‖ can be written

using the Rodrigues’ rotation formula as b′
3‖(θ) = b3r cosθ +

(k×b3r)sinθ +k(k ·b3r)(1− cosθ), where k = b3r×fr

‖b3r×fr‖ and

θ is the rotation angle that univocally defines b′
3‖. Noting that

the constraint ‖b′3‖2 = 1 is automatically verified by b′
3‖(θ)

Algorithm 1: Bisection used to solve problem (16)

Data: n (number of iterations ∝ solution accuracy)
Data: b3r, fr, and rxy (givens of the problem)

1 k← b3r×fr

‖b3r×fr‖ , θmax← arcsin(‖k‖), tθ ← θmax/2

2 for i = 1 to n do

3 if fT
r b′

3‖(θ)≥
√

‖fr‖2− r2
xy then θ ← θ − 1

2
θmax

2i

4 else θ ← θ + 1
2

θmax

2i

5 return θ

for any θ , we further simplify (15) in terms of the only scalar

variable θ as

min
fT
r b′

3‖(θ)≥
√
‖fr‖2−r2

xy

−bT
3r b′3‖(θ). (16)

Given that the feasible set is connected, the minimization

problem (16) can be efficiently solved numerically using a

bisection method (as the one shown in Algorithm 1).

In order to finally compute Rd from b3d we suggest

to employ the following formula, as done in [15]: Rd =
[
(b3d×b1r)×b3d
︸ ︷︷ ︸

b1d

b3d×b1r
︸ ︷︷ ︸

b2d

b3d

]
. Finally, we note that if

Rr ∈R(fr,Rr) then fT
r b3r ≥

√

‖fr‖2− r2
xy which, as we previ-

ously said, implies that b3d = b3r. Then, it results Rd = Rr, as

asked by the second requirement on the computation of Rd .

The described algorithm takes a negligible time to be run

on a standard computer, thus allowing a real time numerical

control implementation at frequencies that are way below 1 ms

for each control loop, if needed by the application. In case of

different sets Uxy and different cost functions J either similar

efficient approaches can be used or the method presented here

can be used as a conservative approximation.

V. EXPERIMENTS

1) Experimental Setup: The LBF platform used to perform

the experiments is the Tilt-Hex robot, an in-house developed

fully actuated vehicle (see Fig. 4). The Tilt-Hex is an example

of a platform that can be controlled by the full-pose geometric

controller presented in Sec. III. We carefully chose the Tilt-

Hex to perform the experiments as the platform is able to

emulate different values of rxy ∈ [0,rxymax ] (see (3)), which

means that we can emulate seamlessly underactuated and fully

actuated platforms. Furthermore, the Tilt-Hex can emulate

for validation purposes the cylindric force constraint of (3)

by choosing rxy small enough and avoiding trajectories that

require extreme values of u3, see Fig. 3.

All components of the Tilt-Hex are off-the-shelf available or

3D printable. The diameter of the Tilt-Hex (distance between

two propeller hubs) is 0.8m. The total mass, including a

2200 mAh battery, is m = 1.8kg. The propellers are tilted

first about the axis that connects the rotor with the center of

the hexarotor shape (α = ±35◦), then about the axis that is

perpendicular to the previous rotation axis and e3 (β = 25◦).
These angles ensure a balanced selection between large lateral

forces and inefficient losses as a result of internal forces.
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Fig. 3. Left: The blue volume encloses the set of feasible forces at hovering,
obeying the constraints of minimal and maximum rotor spinning velocity for
the Tilt-Hex. The red plane visualizes the cut of the sectional view of the plot
on the right. Right: lower part of the cut of the left figure. The red cylinder
visualizes the volume of the imposed cylindric force constraint, whose radius
can be shrunk at will to have rxy ∈ [0,rxymax ]. Notice that the cylinder is fully
inside the volume of feasible forces. The black dot in the center visualizes
the force needed to hover horizontally, i.e., the nominal working point.

The 30.5 cm propeller blades are powered by MK3638

brushless motors provided by MikroKopter. The maximum

lift force of a single motor-propeller combination is 12N.

The electronic speed controller (ESC) driving the motor is a

BL-Ctrl-2.0 from MikroKopter. The controller, running on the

ESC, is an in-house development [21] that controls the pro-

peller rotational speed in closed loop at a variable frequency

(e.g., when the propeller rotation speed is 70 Hz the control

frequency is 3.29 kHz). An inertial measurement unit (IMU)

provides accelerometer and gyroscope measurements (500Hz)

and a marker-based motion capture system provides position

and orientation measurements (100Hz) of the platform. The

motion capture and IMU measurements are fused via a UKF

state estimator to obtain the full state at 500Hz.

In the real implementation we have omitted, on purpose,

all the terms in which ωd and ω̇d appear in the control (or

equivalently, we have considered as if, virtually, ωd = 0).

We have done so in order to assess the level of practical

importance of those terms and how the controller is in practice

robust to the non-correct evaluation of these terms. As it will

be seen next it turned out that the tracking performance is

still very good even without those terms, therefore one can

still obtain acceptable result by neglecting them. However,

as requested from the theory and also seen in preliminary

simulations which we performed but are not reported in the

paper for lack of space and also because much less significant

than real experiments, a perfect tracking is guaranteed only if

those terms are considered.

Finally, the controller has been implemented in Matlab-

Simulink and runs at 500Hz on a stationary base PC connected

to the Tilt-Hex through a serial cable. As the computational

effort of the controller is very low (considerably below 1 ms

per control loop) it could be ported easily to an on-board

system. Based on our experience with a similar porting, we

expect the performances of an onboard implementation to be

much better than the Matlab-Simulink implementation, thanks

to the possibility of reaching a faster control frequency (larger

Fig. 4. The Tilt-Hex performing Exp. 1.1 at different time instances: Left t =
15.4s; middle t = 37.7s; right t = 47.9s. Although the reference orientation is
constant and horizontal the Tilt-Hex adapts it orientation to allow for following
the reference position.

than 1kHz) and almost real-time capabilities (latency below

1 ms). The presence of the cable is clearly disturbing for

the tracking purpose since it produces an unmodeled wrench.

Furthermore, the oscillations of the cable are rather erratic

and therefore hard to model and compensate. Therefore, all

considered, the experiments proposed in Section V-2 represent

a worst case scenario from this point of view, in the sense that

an onboard implementation can only perform better than what

we tested.

2) Experimental Validations: We conducted three ex-

perimental validation campaigns, in which the tasks has

been always to follow a given reference qr(t) = (pr(t) =
[prx(t) pry(t) prz(t)]

T ,Rr(t)). In the Experimental Batch 1 the

value of rxy in (3) and of Rr is kept constant and three

experiments are perfomed: Exp. 1.1, Exp. 1.2 and Exp. 1.3,

which are detailed in the following. In the Experiment 2, Rr

varies over time. Finally, in the Experiment 3 is rxy that varies

over time.

For the reader’s visual convenience the rotation matrices

used internally by the controller, have been converted in the

plots to roll-pitch-yaw angles, with the convention R• →
φ•,θ•,ψ•. In plots where data are very noisy a filtered version

(darker color) is presented together with the original data

(lighter color in background). We shall refer to the plots in

a figure directly by the name of plotted signal, which is easily

understandable from the legends present in each plot.

The interested reader is referred to the multimedia attach-

ment of this paper to fully enjoy the videos all the experiments.

Furthermore, all the experimental data (with suitable scripts

to plot them) are provided for download at the following link

http://homepages.laas.fr/afranchi/files/2017/dataset1.zip.

3) Experimental Batch 1: In this batch we impose pry(t) =
0m and prz(t) = 1m, while prx(t) oscillates sinusoidally be-

tween −1.2 m and 1.2 m with time-varying frequency, chosen

such that the envelope of p̈rx(t) is first quasi-linearly increasing

from 0 m/s2 up to 5.9 m/s2 and then quasi-linearly decreasing

down to 0 m/s2 – see the corresponding signals in Fig. 5. On

the other side we set Rr(t) = I3×3.

In Exp. 1.1 a value of rxy = 3N has been selected, which fits

well inside the actual maximum lateral force of the Tilt-Hex

given its mass of m = 1.8kg. This means that in the parts of

the trajectory in which | p̈rx | > 3N
1.8kg

= 1.66m/s2 we expect

the controller to let the platform deviate from Rr in order

to track the high lateral acceleration. On the other side we

expect a good independent tracking of position and orientation

when p̈rx ≤ 1.66m/s2. In fact, Exp.1.1 is meant to illustrate

the canonical behavior of proposed controller when controlling

a fully-actuated LBF platform.
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Fig. 5. Exp. 1.1: Desired position: sinusoidal motion along the xW axis with
constant amplitude and triangular (first increasing then decreasing) frequency.
Desired orientation: constantly horizontal. Lateral force bound: constant rxy =
3N.

In Exp. 1.2 we tell the controller that rxy = 0N (underactu-

ated aerial vehicle). Therefore we expect the controller to let

the platform deviate almost always from Rr. This experiment

is meant to show that the proposed controller can handle the

(classic) underactuated case, thus not requiring the user to

switch between different controllers.

In Exp. 1.3 we replace our controller with the state-of-the-

art controller presented in [6], a controller that does not take

into account the input saturations. This experiment is meant

to show how the proposed controller outperforms the state of

the art controllers in terms of robustness and stability.

Experiment 1.1: Fig. 5 visualizes the main results of

Exp 1.1. There are three clearly distinct temporal phases

separated by the vertical dashed lines in the plots and defined

by t ∈ T1 = [0s,25.8s], t ∈ T2 = [25.8s,74s], and t ∈ T3 =
[74s,95s], respectively.

In the first and third phases qr(t) is always feasible. In fact

|p̈rx | is always below 1.66m/s2, see discussion above. In the

second phase, instead, qr(t) is not always feasible and in the

middle of the second phase, in the neighborhood of t = 49s,

qr(t) is mostly unfeasible, since | p̈rx | has peaks of 5.9m/s2

(3.5 times the maximum lateral acceleration attainable while

keeping a horizontal orientation).

Accordingly to what expected, in the ‘feasible’ phases (T1

and T3) both the orientation and position tracking errors w.r.t.

qr(t), are relatively low. In particular we have ‖p(t)−pr(t)‖<
0.02m and |θ(t)−θr(t)|< 1.7◦ and zero average for the two

errors. In the ‘unfeasible’ phase (T2), the position tracking

is still good (‖p(t)− pr(t)‖ < 0.06m) while Rd(t) sensibly

deviates from Rr(t) with a peak overshooting 20◦ for |θd(t)−
θr(t)|. In fact, tilting is the only way by which the platform can

track the desired position, given the lateral force bounds. It is

interesting to note that not only the reference position is well

tracked along the whole experiment, but also the translational

velocity and acceleration are.

One can also appreciate how the controller keeps always the

lateral force u1,u2 within the requested bounds and at the same

time touches and stays on the bounds several times for several

seconds. This is a clear index that the controller exploits at best

the platform capabilities. Comparing the plots one can notice

also how when the lateral force is saturated, the controller

exploits the platform tilting in order to compensate for the

partial loss of control authority and attain the force required

to produce the needed acceleration.

Figure 4 shows the Tilt-Hex performing Exp. 1.1 in three

different time instants. Furthermore, we encourage the reader

to watch the multimedia attachment showing this and the other

experiments. Finally, for the sake of completeness, we present

also the actual six rotor spinning frequencies w1, . . . ,w6.

Experiment 1.2: To test the behavior of the controller with

an underactuated aerial system, in Exp. 1.2 we set rxy = 0N and

let the controller track the same trajectory of Exp 1.1. In this

way the Tilt-Hex should behave like a collinear, underactuated,

multi-rotor. Figure 6 shows the main plots, while the plots that

are similar to the ones in Fig. 5 are omitted.

Contrarily to Exp. 1.1, in Exp. 1.2, phases T1 and T2 do

not exists. The whole experiment is a long unfeasible phase

due to the constraint rxy = 0N, which makes impossible, at

any time, to track the constant Rr(t) = I3×3 while following

the sinusoidal reference position trajectory. The orientation

tracking of Exp. 1.2 is compared to the one Exp. 1.1. In

the period of time T1 defined for Exp. 1.1, |θ(t)− θr(t)| in

Exp. 1.2, reaches 11◦, i.e., 6.5 times the peak of Exp. 1.1 in

the same period. In the period of time T2, |θ(t)− θr(t)| in

Exp. 1.2, reaches 31◦ i.e., about 1.5 times the peak of Exp. 1.1

in the same period. Regarding the translational behavior, the

peak of the position tracking error is about 3 times larger (in

the period T1) and 1.4 times larger (in the period T2), when

compared to the error peak of Exp. 1.1 in the same periods.

This is due to the fact that full actuation helps in minimizing

the position tracking error too. Furthermore, we can see that
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Fig. 6. Exp. 1.2: Same desired trajectory as in Exp.1.1 but with rxy = 0.

that the inputs u1 and u2 remain zero as expected during the

full trajectory tracking, as required. Finally, for completeness,

we present also in this case the six rotor spinning frequencies

w1, . . . ,w6.

Experiment 1.3: In order to compare with the state-of-the-

art methods such as [6], in Exp. 1.3 we tested the controller

with a saturated rotor spinning velocity with the minimum and

maximum values in Exp. 1.1 (43Hz≤wi ≤ 83Hz, i∈ [1 . . .6]).
The results are depicted in Fig. 7. The platform tracks well the

reference trajectory till the input reaches its limit (t=34 s) (see

the dashed horizontal lines in the plot of w1, . . . ,w6). After

that time the controller asks for spinning velocities outside

the limits, which are hardly saturated. The trajectory track-

ing performance decreases rapidly, until the system becomes

completely unstable diverging from the reference position

(||p−pr||> 0.5m) and reference velocity (||ṗ− ṗr||> 1.2m/s)

such that we had to abort the experiment. This experiment

clearly shows how our controller outperforms a state-of-the-

art controller in terms of performances and, most important of

all, stability and safety.

4) Experiment 2: To present the full capabilities of the full

pose controller on LBF vehicles, in Exp. 2 we set pr(t) as

in Exp. 1.1, but we additionally ask the platform to follow a

Rr(t) generated applying to I3×3 a sinusoidal rotation about

the yW axis (with an amplitude of 10◦). This rotational motion

is particularly chosen such that the orientation of the Tilt-Hex

is in opposition of phase with respect to the orientation that an

underactuated vehicle would need in order to track pr(t) (i.e.,

the top part of the platform facing outwards at the two ends

of the position trajectory, while for, e.g., a quadrotor the top

would face always toward the center of the position trajectory).

Also in this case, see Fig. 8, the reference-to-actual position er-

ror and the desired-to-actual orientation error remain bounded

and small. The maximum lateral thrust is reached sooner than

Exp. 1.1 (at t = 10s), due to the special inclination required.

This results in an earlier adaptation of Rd . As expected, at
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Fig. 7. Exp. 1.3: Same desired trajectory as in Exp.1.1 but with saturated
rotor spinning velocity w (saturation indicated by dashed grey lines in plot
five). The experiment is automatically stopped after about 39 s because the
system becomes visibly unstable.

the time of highest accelerations (45s≤ t ≤ 55s) θd is almost

inverted with respect to θr.

5) Experiment 3: The conclusive Exp. 3 has been designed

to stress the fact that the presented controller can seamlessly

work with under and fully-actuated platforms and moreover

with platforms that can actively change between these two

configurations during flight, as the one presented in [9]. The

plots of are reported in Fig. 9.

The steady state pr(t) consists out of two regular sinusoidal

motions along the xW and yW axes with an amplitude of

1.3m and 0.5m, respectively, and constant frequencies, while

Rr(t)= I3×3 is constant. The lateral force bound rxy is changed

over time, in particular, it is rxy(t) = 0N for t ∈ [0s,18s],
rxy(t) = 10N for t ∈ [38s,56s], and it is linearly increasing

from 0 N to 10 N for t ∈ [18s,38s].

As it should be, the position tracking is always good.

However, initially, the system cannot track at the same time the

reference position and the reference orientation. Until t = 34s

the system is partially fully actuated (w.r.t. the trajectory to

be followed). The orientation tracking gradually improves. At

t = 34s, rxy is large enough to track the reference orientation

at any time. The behavior of rxy is visualized with the dashed

lines in the plot of u1, u2, which are always kept within the

bounds. The fact that the lateral force bound changes over time

does not deterioriate the behavior of the controller, which is

instead able to cope with the time-varying constraint exploiting

the platform capability always at its best.
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Fig. 8. Exp. 2: Desired position: as in Exp. 1.1. Desired orientation: sinusoidal
rotation about the yW axis in opposition of phase w.r.t. a hypothetical quadro-
tor following the desired position. Lateral force bound: constant rxy = 3N.

Finally, notice how the ranges of the propeller spinning

frequencies utilized by the controller (w1 . . .w6) naturally in-

creases with the increase of rxy(t) at the benefit of completely

tracking the full pose reference trajectory.

VI. CONCLUSIONS

In this paper we introduced the new class of Laterally-

Bounded Force (LBF) aerial vehicles. This class is general

enough to encompass a large variety of recently conceived

aerial vehicles having the possibility to actuate the thrust in a

direction other than the principal one. Common underactuated

platforms are included in this class as a degenerate (but

fully admissible) case. For this class of vehicles we proposed

a geometric controller in SE(3) that is able to let it track

any feasible full-pose (6D) trajectory. The controller adapts

seamlessly to the case the trajectory is (or becomes) not

feasible or that the platform is (or becomes) underactuated.

Being defined in SE(3) the controller is not prone to the

singularities of local chart orientation representations. The

practicability of the theory has been shown in real experiments.

Furthermore this controller has been already used as inner

loop controller for other projects involving also aerial physical

interaction, as, e.g., in [10].

In future we plan to study adaptive and robust techniques

to deal with parameter uncertainties and malfunction of some

of the actuators.
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Fig. 9. Exp. 3: Desired position: composition of two sinusoidal motions along
xB and yB, with constant amplitudes and frequencies. Desired orientation:
constant and horizontal. Lateral force bound: rxy linearly increasing from 0 N
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