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ABSTRACT: We report on ab initio calculations of the optical properties of the lead
chalcogenides PbS, PbSe, and PbTe performed with a relativistic full-potential linear
muffin-tin orbital method within the local density approximation. Our calculated spectra
are in excellent agreement with recent ellipsometry measurements. The origin of the
peaks in the spectra is discussed, as well as the effects of increasing the chalcogen atomic

number.
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Introduction

T he IV-VI semiconductors PbS, PbSe, and
PbTe, generally known as lead salts, have
been the subject of a vast amount of theoretical
and experimental work during the past decades,
motivated in part by their technological useful-
ness, but also by their unusual and interesting
physical properties among semiconductors. These
include soft zone-center transverse optical phonon
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frequency, ferroelectricity, large optical dielectric
constant, and a narrow fundamental energy gap
whose temperature coefficient dE,/dT is positive
[1, 2]. The lead salts are of importance in infrared
detectors, in light-emitting devices, and more re-
cently as infrared lasers in fiber optics, as thermo-
electric materials, in solar energy panels, and in
window coatings [3-6].

All three lead salts are stable in the rocksalt
structure at ambient temperature and pressure,
with lattice parameter 5.94 A for PbS, 6.13 A for
PbSe, and 6.46 A for PbTe. Furthermore, they all
have a direct minimum energy band gap of around
0.3 eV at the L point in the Brillouin zone (BZ).

Very recently, spectroscopic ellipsometry (SE)
measurements for a rather wide energy range were
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reported for PbSe and PbTe; see Refs. [7] and [8],
respectively. High precision experimental determi-
nation of the dielectric function of PbSe in a more
narrow energy range have also been performed by
Globus, Olesk, and Olesk [9]. They used parallel
measurements of the optical transmission and re-
flection on thin films of PbSe. The big advantage of
the SE technique, and other parallel measurement
techniques, is that both the real and imaginary
parts of the dielectric functions are obtained di-
rectly on a wavelength-by-wavelength basis, with-
out having to employ multiple, nonsimultaneous,
measurements or resort to Kramers—Kronig analy-
sis. This means that several sources of error can be
avoided, for instance the uncertainty in the abso-
lute amplitude caused by the extrapolations neces-
sary for the Kramers—Kronig transformation of ex-
perimental reflectivity spectra. These attractive
features make comparisons with SE measure-
ments, and probably also with other types of paral-
lel measurement techniques, ideal for evaluating
how well our theoretical method succeeds in re-
producing optical spectra. The present calcula-
tional method has previously been used, with pos-
itive results, to calculate the optical spectra of
several systems, e.g., ZrN and related systems [10]
and CeN [11].

The electronic structure of the IV-VI semicon-
ducting compounds have been quite extensively
studied in the past. However, no ab initio calcula-
tion of the optical properties have yet been per-
formed for these materials. The band structures of
the lead salts have been calculated using many
different methods such as the empirical pseudopo-
tential method [12, 13], the augmented plane wave
method [14], the orthogonalized plane wave
method [15], tight binding [16], and linear combi-
nation of atomic orbitals [17]. All of them give
results with several features in common, for exam-
ple, the direct gap at the L point in the Brillouin
zone. The optical spectra of the lead salts have
previously been calculated using the empirical
pseudopotential method [13].

Details of Calculations

In the density functional method used in the
present study, the Kohn-Sham equations [18] are
solved for a general potential without any shape
approximation [19]. For the density functional, we
used the local density approximation (LDA) in the

Hedin—Lundqvist parametrization. We also tested
the more advanced Perdew—Wang generalized
gradient approximation (GGA) [20] to the density
functional. However, this more advanced scheme
caused virtually no change of the optical proper-
ties relative to the LDA. In the present method,
space is divided into nonoverlapping spheres
(called atomic or muffin-tin spheres [21]) sur-
rounding each atomic site, and an interstitial
region. The basis functions used are energy-inde-
pendent Bloch functions, whose construction is
somewhat different in the atomic spheres and in
the interstitial. Together with the variational prin-
ciple, this leads to the secular equations becoming
linear in energy and reducing to generalized eigen-
value equations, which can be solved by diagonal-
ization. In the interstitial region, the charge density
is slowly varying, and the natural basis is plane
waves or Hankel and Neumann functions. A basis
function in the interstitial is therefore expressed as
a Bloch sum of Hankel and Neumann functions
which in turn is represented as a Fourier series.
Formally, a basis function in the interstitial is de-
fined by the Bloch function of solutions to the
spherical Helmholtz equation with nonzero kinetic
energy k’, or a linear combination of such solu-
tions for different kinetic energies. The Fourier
representation of this basis function is taken from
the Fourier series of a function matching the basis
in the interstitial region but not inside the atomic
spheres, a so-called pseudowave function, whose
exact shape inside the muffin-tin sphere is of no
importance for the final solution as long as it is
continuous and differentiable at the sphere bound-
ary and matches the true basis function in the
interstitial. It must also have zero slope at the
origin of each sphere.

Inside the atomic spheres, where the charge
density varies rapidly, the basis functions are Bloch
functions of radial functions times spherical har-
monics. The radial part of a basis function is con-
structed from the numerical solutions ¢,(E,, r) of
the radial Schrodinger equation in a spherical po-
tential at the fixed energy E,, and their energy
derivatives ¢,(E,, r). Here, the index L stands for
a collection of quantum numbers: the principal
quantum number #, the orbital quantum number
I, azimuthal quantum number m, and the kinetic
energy . The treatment of the entire basis set
within one single energy panel allows all states,
including the pseudocore states, to hybridize fully
with each other. The method is linear, i.e., the
basis functions are constructed by expanding
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around fixed energies E,. Such an approach nor-
mally leads to linearization errors for higher lying
bands. However, this difficulty is to a large extent
overcome in the present calculation by allowing
for an extended basis set where every orbital is
described by several kinetic energies in the inter-
stitial region.

The expressions for the crystal wave functions
in the muffin-tin spheres are matched to the inter-
stitial crystal wave function at the sphere bound-
aries so that the total crystal wave function be-
comes continuous and differentiable in all space.

The potential used for solving the radial
Schrodinger equation above is obtained from the
charge density by solving Poissons equation. In the
first iteration, this density is taken as overlapping
atomic charge densities. A new charge density is
then constructed from the eigenvectors obtained
through the variational procedure, and a new solu-
tion is obtained. The procedure can then be re-
peated until some criterion for self-consistency is
met.

The integration over the Brillouin zone in the
ground-state calculation was performed using the
special point sampling [22]. Furthermore, spin-orbit
coupling is included in all calculations presented
here.

We adopted the dipole approximation in our
optical calculations, i.e.,, the momentum transfer
from the initial state to the final state was ne-
glected. The dielectric function was calculated in
the momentum representation, which requires ma-
trix elements of the momentum p between occu-
pied and unoccupied states. Thus, the components
of the imaginary, or absorptive, part of the dielec-
tric function, ei/(w), was calculated from
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where e and m is the electron charge and mass,
respectively, w is the frequency of the incoming
electromagnetic radiation, V is the volume of the
unit cell, (p,, p,, p,) = p is the momentum opera-
tor, kno) the crystal wave function, correspond-
ing to eigenvalue E,, with crystal momentum k
and spin o. Finally, f,, is the Fermi distribution
function ensuring that only transitions from occu-
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pied to unoccupied states are counted, and
8(E,, — E, — hw) is the condition for total en-
ergy conservation.

The evaluation of the matrix elements in the
above equation involves integration in real space.
This integration is done over the muffin-tin spheres
and the interstitial separately. Inside the muffin-tin
spheres, it is natural to use spherical coordinates
for the integration. The integral can be expressed
as a radial function times the angular integral.
Integration over the angular coordinates in real
space, assuming the electric dipole approximation,
gives rise to the electric dipole selection rules, i.e.,
that some of the angular integrals are exactly zero.
The nonzero angular integrals can be expressed
exactly using Gaunt coefficients and spherical har-
monics. The radial integral is, of course, intrinsi-
cally numerical and is evaluated by performing
the differentiation numerically, followed by inte-
gration. The volume integral in the interstitial can
be rewritten as a surface integral over the muffin-
tin spheres using Green'’s formula. Explicit expres-
sions regarding this integration can be found in
Ref. [23].

The summation over the Brillouin zone is calcu-
lated using linear interpolation on a mesh of uni-
formly distributed points, ie., the tetrahedron
method. Since all information in the problem is
contained within the irreducible wedge of the Bril-
louin zone (IBZ), Eq. (1) is evaluated in the IBZ,
giving €,(w, IBZ). The total imaginary part of the
dielectric function €,(w) is then obtained by per-
forming all symmetry operations on €,(w,BZ),
summing up and dividing by the number of sym-
metry operations, i.e.,

ZTG 2( w/ IBZ)C?i/ (2)

L=

1
ez(w) = N

where N is the number of symmetry operations
and .% represents the ith symmetry operation.
When the crystal symmetry is cubic, as in the
present case, the dielectric tensor becomes diago-
nal, and may therefore be represented by a scalar,
€(w) instead of €(w) with components €'/(w). We
will use this simplified notation in the following.
The real, or dispersive, part of e(w), i.e., €(w),
was obtained by Kramers—Kronig transformation
of the imaginary part over the energy range of 0-3
Ry. This energy interval was seen to give conver-
gence in the Kramers—Kronig transformation, as
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checked by performing the transformation twice
and comparing the result with the untransformed
original spectrum.

Results and Discussion

Before turning to the optical results, we first
discuss the electronic structure and bonding mech-
anism in these compounds.

The total state densities for all three compounds
are shown in Fig. 1. As seen in this figure, the total
state densities (DOS) are quite similar for all three
compounds, with some smaller differences in the
details. The first structure encountered in the DOS,
if we start from the left, is a narrow peak centered
around —13 eV for PbS and PbSe and —11 eV for
PbTe. This peak consists almost entirely of chalco-
gen s states (see Fig. 2) where the partial state
densities (PDOS) are shown. Furthermore, this
peak corresponds to the lowest lying band in Fig-
ure 3, and its width originates mainly from the
region around the I' point in the BZ, since only
there the dispersion of this band is appreciable.

[\
T

O

DOS (states/eV)
) o

LA

-15 -10 -5 0 5 10 15 20 25
Energy (eV)

FIGURE 1. Total DOS (in states per electron volt and
formula unit) for PbS, PbSe, and PbTe. The Fermi energy
is at zero.

The narrow structure centered at 7 eV below the
Fermi level consists predominantly of Pb 65 states
but also of chalcogenide s and p states, as is
apparent from Figure 2. This structure is highest in
PbTe and smallest in PbS and corresponds to the
rather flat, next lowest lying band shown in the
band structures in Figure 3. From the band struc-
tures we also see that the width of this peak
originates from the disperson in the region near T’,
and also to some extent from the region around X.
In all three compounds, the structure at —7 eV is
well separated from the next broader structure,
situated between —5 eV and the Fermi level. This
structure consists mostly of chalcogen p states but
also to some extent of Pb 6s and 6p states; see
Figure 2. The d contribution to this structure is
very small, just as for the lower, s-dominated,
peaks. In PbS and PbSe, there is a valley in this
structure at about 1 eV below the Fermi level. In
PbTe, this valley is almost gone. The k-resolved
origin of this difference can be elucidated from
Figure 3, where the band structures of all three
compounds are shown. Comparing the band struc-
tures around the L point about 1 eV below the
Fermi level, we see that two bands are degenerate
in this region for PbS but not so for PbTe. In PbSe,
they are almost degenerate. Continuing upward in
energy, we see that all three compounds have a
distinct energy gap at the Fermi level. Also, from
the partial state densities in Figure 2, it is seen that
just below the Fermi level, the bands are domi-
nated by chalcogen p states, with some contribu-
tion coming from the Pb 6p states. In the region
above the Fermi level, p states also dominate, but
the roles played by the Pb 6p states and chalcogen
p states are roughly reversed. Thus, just above the
Fermi level the Pb 6p states dominate. In total, the
broad structure extending from the Fermi level
and up to around 20-25 eV consists of Pb 6p and
6d states, and chalcogen p and d states, in about
equal amounts. In the low-energy part of this
structure, the p states dominate as already men-
tioned, whereas the d states are concentrated to
the energy region above 5 eV. In the region around
4-5 eV above the Fermi level two rather sharp
peaks can be observed in the state density of all
three compounds. The larger of these peaks is
observable in the p and d partial state densities of
both Pb and the chalcogenide. Flat bands in this
energy region, corresponding to the peaks, can be
found in the [ XT'] part of the band structures in
Figure 3 and in the diamond-shaped faces of the
Brillouin zone, i.e., those faces that have X as
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FIGURE 2. Partial s, p, and d DOS (in states per electron volt and for (a) PbS, (b) PbSe, and (c) PbTe. The Fermi

energy is at zero.
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FIGURE 3. Band structure of (a) PbS, (b) PbSe, and (c) PbTe along high symmetry directions in the Brillouin zone.

The Fermi energy is at zero.
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central point. Distinctive structures in the DOS
above 5 eV are one broad peak at around 12 eV
and another family of higher peaks at 15 eV, at
least in PbS and PbSe. These structures come pre-
dominantly from the chalcogen d states. For PbTe,
however, this part of the DOS is rather featureless.

From the partial state densities, it is clear that
the main bonding mechanism in the lead salts is
hybridization between the Pb 6p states and the
chalcogen p states. The bond is both ionic and
covalent in character, covalent since the Pb 6p
states and the chalcogenide p states are strongly
hybridized and degenerate over a large part of
their extension, and ionic since the relative amount
of Pb 6p states and chalcogen p states is different
above and below the Fermi level. Below the Fermi
level, the chalcogen p states dominate, whereas
above, the Pb 6p states dominate. From simple
argumentation using the relative electronegativity
of the chalcogen and Pb, we expect that PbS should
be the most ionic and PbTe the most covalent of
the three systems since Pb has an electronegativity
(according to Pauling) of 1.8, and S, Se, and Te
have electronegativities 2.5, 2.4, and 2.1, respec-
tively. This conclusion compares well with what
we expect from Figure 2. The inmixing of Pb 6p
states below the Fermi level increases from PbS to
PbTe, which corresponds to making PbTe the most
covalent of these compounds and PbS the most
ionic. A more quantitative analysis of this can be
done by integrating the partial state densities, giv-
ing the number of states inside each muffin-tin
sphere. However, it is important to be aware of
that the absolute numbers will depend on the
absolute and relative sizes of the muffin-tin
spheres. In the present calculation, the Pb sphere
and the chalcogenide sphere are of equal size and
almost touching for each compound. Thus, the
absolute size of the spheres in PbTe is larger than
in PbS since the lattice parameter is larger in the
former compound, and the sphere size does not
correspond to the atomic radii of the elements.
Integration of the site-decomposed DOS reveals
that in PbS there are about 4 more valence elec-
trons in the chalcogenide sphere than in the Pb
sphere. In PbTe, this number is reduced to 2.6. The
main contribution to the difference between these
two numbers comes from the p states (1.1 elec-
trons), with a small contribution from the d states
(0.3 electrons) and a negligible contribution from
the s states. Note, however, that since the sulfur
atom is smaller than the tellurium atom, the above

CALCULATIONS OF LEAD CHALCOGENIDES

numbers exaggerate somewhat the difference in
ionicity between the PbS and PbTe.

Finally, it is interesting to compare our calcu-
lated gaps with experimental data. Since quasi-
particle excitations are not taken into account in
density functional theory (DFT), the energy gap
calculated from DFT, often called the Kohn—Sham
gap, tends to be smaller than the experimental one.
In some cases, even the wrong ground state is
predicted, as, e.g., in Ge, where the energy gap is
around 0.7 eV, whereas the LDA Kohn—Sham gap
is slightly negative at ambient pressure [24]. Ex-
perimentally, it is well known that the lead salts
have a narrow, direct gap at the L point [25]. This
is also what we find. At liquid helium tempera-
ture, the experimental energy gaps are 0.286, 0.165,
and 0.19 eV for PbS, PbSe, and PbTe, respectively
[26]. At ambient temperature, i.e., the temperature
used in the ellipsometry measurements, the energy
gaps are larger: 0.41 for PbS, 0.27 for PbSe, and
0.31 for PbTS [26]. In our DFT calculations we have
obtained direct Kohn—Sham energy gaps of 0.069
eV for PbS, 0.141 eV for PbSe, and 0.032 eV for
PbTe.

Our theoretically calculated absorptive part of
the dielectric functions for PbSe and PbTe are
shown and compared to experimental spectra [7-9]
in Figure 4. For PbS, several measurements of the
reflectivity have been published, but as yet no
ellipsometry measurement has been performed. Of
course, we could have chosen to compare our
calculated spectra also with results from reflectiv-
ity measurements. Our reasons for not doing so
are as follows. Obviously, the dielectric functions
obtained from reflectivity measurements and from
ellipsometry differ in important respects. Com-
pare, for instance, the absolute amplitudes of the
dielectric functions measured with ellipsometry [7,
8] to the dielectric functions calculated from reflec-
tivity experiments [13, 27]. First of all, the latter
amplitudes are much smaller. For PbTe, Cardona
and Greenway [27] report a maximum amplitude
for €, of 25, and Kohn et al. [13] report a maxi-
mum amplitude of 7, whereas Suzuki et al. [7, 8],
using ellipsometry, find an amplitude close to 50.
The small amplitudes could be due to uncon-
trolled intensity losses in the reflectivity measure-
ments, perhaps originating from surface rough-
ness, or they could be due to the extrapolations
necessary for the Kramers—Kronig transformation,
as explained above. Maybe more important is the
fact that the trend when changing chalcogen is
opposite in the reflectivity measurements com-
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FIGURE 4. Calculated and experimental absorptive part
of the dielectric function. The calculated spectra have
not been broadened. The experimental spectra for PbSe
are taken from Refs. [7] and [9], and the experimental
spectrum for PbTe is from Ref. [8]. No ellipsometry
measurement has yet been performed on PbS.

pared to the ellipsometry measurements. Kohn
et al. [13] find that the maximum amplitude of e,
decreases from PbS to PbTe, whereas Suzuki et al.
[7, 8] report a larger amplitude for PbTe than for
PbSe. We therefore conclude that, in order to ob-
tain a meaningful comparison, it is important to
use experimental results where the crystals have
been built and surface treated in a similar fashion,
and ideally also where the same experimental
equipment and method has been used. Also, it
seems that the experimental results reported in
Refs. [7-9] for these systems are of superior qual-
ity. We base this conclusion mainly on the fact that
these measurements report the highest amplitudes
for €,. Note, however, that the maxima of the
spectra occur at the virtually same energies in all
measurements made. We will make use of this fact
below.

We now turn to an analysis of the optical spec-
tra. The absorptive part of the dielectric function,
€,, is shown in Figure 4. The calculated spectra
have been rigidly shifted in order to correct for the

DFT underestimation of the band gaps. Thus, ¢,
has been shifted 0.3 eV for PbS and PbSe, and 0.15
eV for PbTe. In this way, the maxima of our
calculated €, coincide with the maxima of the
measured spectra. The calculated spectra are not
broadened, and thus have more structure than the
experimental spectra. It is seen that e, is rather
similar for all three lead salts. The main feature is
a broad peak with maximum around 3 eV for PbS,
2.6 eV for PbSe, and 2 eV for PbTe. The maximum
amplitude is almost twice as high for PbTe com-
pared to PbS. Also, for PbTe the main peak is
much more narrow. In the experimental spectra in
Figure 4 for PbSe and PbTe, a shoulder around 1.5
eV is clearly visible. For PbS, no such shoulder is
visible. The peak as well as the shoulder is excel-
lently reproduced in the calculations, as are the
general form of the spectra. The maximum ampli-
tudes of the calculated spectra are significantly
higher than in the experimental spectra. This is so
because the calculated spectra are unbroadened. In
order to compare amplitudes of experimental and
calculated spectra, it is better to compare integrals
of the spectra instead of maximal amplitudes. If
we do this, we find that also the amplitudes are
excellently reproduced in our calculations. Broad-
ening is probably also the reason why the bumps
at 4 eV in the PbS spectrum and 3 eV in the PbTe
spectrum are not visible in the experimental spec-
tra. Our calculated spectra are also very similar to
the spectra in Ref. [13], which were obtained with
the empirical pseudopotential method.

The trends in €, as a function of chalcogen may
be linked to the trends observed in the DOS and
band structures. Compare the highest lying va-
lence bands (HVB) for the three systems and also
the lowest lying conduction bands (LCB). Our
band-resolved optical calculations show that tran-
sitions between these two bands account for al-
most all structure in the optical spectra at energies
below 6 eV. In PbTe, these bands have clearly less
dispersion than in PbS. This is the reason why the
main peak moves to lower energy and becomes
sharper as the chalcogen column is traversed
downward. From the partial state densities in Fig-
ure 2, it is rather obvious that the p states play a
major role in these optical transitions, both as
initial and final states. Of the s states, the Pb states
primarily serve as initial states, whereas the
chalcogen states are mostly final states. The Pb and
chalcogen d states are primarily final states.

Optical transitions between bands that are par-
allel or nearly so in an appreciable part of the BZ
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tend to result in peaks in the optical spectrum. The
HVB and LCB in our calculations are in fact quasi
parallel in appreciable regions on and around the
Jones zone plane [28], which for systems with
face-centered cubic (fcc) symmetry and 10 valence
electrons per unit cell includes the k points W, L,
and (330). Transitions in this region account for
both the main peak as well as the shoulder. Gener-
ally, the Jones zone is defined as the higher order
BZ in the extended zone scheme that exactly con-
tains all the occupied Bloch states. The basic idea
behind the concept of the Jones zone, then, is that
it is a simple way of finding the planes which are
most cut by the free electron Fermi sphere. The
Jones zone bands between W and L are visible in
Figure 3.

Next, we consider the dispersive part of the
dielectric function, e, for the three lead salts; see
Figure 5. The calculated spectra have been ob-
tained by Kramers—Kronig transformation of the
shifted e, spectra. The main features are a shoul-
der at lower energies, a rather steep decrease be-
tween 2 and 3 eV, after which €; becomes nega-

calc.

Energy (eV)

FIGURE 5. Calculated and experimental dispersive part
of the dielectric function. The calculated spectra have
not been broadened. The experimental spectrum for
PbSe is taken from Ref. [7], and the experimental
spectrum for PbTe is from Ref. [8]. No ellipsometry
measurement has yet been performed on PbS.
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tive, a minimum, and then a slow increase toward
zero at higher energies. All these features are very
well reproduced in the calculated spectra. The
structures are more pronounced in the calculated
spectra since these are not broadened.

Finally, we shortly discuss some of the spectra
obtainable from the dielectric function. Neither of
these spectra are shown here. As seen in Figure 5,
€, is zero at 3.1, 2.7, and 2.0 eV for PbS, PbSe, and
PbTe, respectively. In k, i.e., the imaginary part of
the refractive index, we find local maxima at these
energies. On the contrary, in the energy loss spec-
tra, no maximum is present at these energies, since
€, is still large at these energies. Higher up, how-
ever, at around 14 eV, all three lead salts show a
large peak in the energy loss spectrum. This peak
corresponds to €, going through zero once again,
this time becoming positive. At such high energies
€, is small, and thus the amplitude of the energy
loss may become large.

Conclusions

In conclusion, we have shown that the optical
properties of the lead salts PbS, PbSe, and PbTe
are excellently reproduced using density func-
tional theory, if we allow for a rigid shift of the
band structure, the so-called scissors operator. Not
only the general form but also the absolute ampli-
tudes are very well reproduced in our calculations.
The agreement on the amplitudes, which has not
been obtained before, is not so much a result of
better calculational methods but is mainly due to
improved experimental techniques. Furthermore,
we have identified the microscopic origin of the
main features in the optical spectra and found that
transitions between the highest lying valence band
and the lowest lying conduction band are respon-
sible for most of the optical absorption in these
systems. These bands are quasi-parallel on and in
the vicinity of the (311) plane in the BZ, and thus it
is this region of the BZ that is the most interesting
as regards optical properties of the lead salts.
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