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SUMMARY 

In the field of database applications a considerable part of the business logic is implemented 
using a semi-declarative language: the Structured Query Language (SQL). Because of the 
different semantics of SQL compared to other procedural languages, the conventional coverage 
criteria for testing are not directly applicable. This paper presents a criterion specifically tailored 
for SQL queries (SQLFpc). It is based on Masking Modified Condition Decision Coverage 
(MCDC) or Full Predicate Coverage and takes into account a wide range of the syntax and 
semantics of SQL, including selection, joining, grouping, aggregations, subqueries, case 
expressions and null values. The criterion assesses the coverage of the test data in relation to the 
query that is executed and it is expressed as a set of rules that are automatically generated and 
efficiently evaluated against a test database. The use of the criterion is illustrated in a case study 
which includes complex queries. 
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1. INTRODUCTION 

Database applications involve the management of large amounts of data stored and organized in 
many tables. Although there have been developments in object oriented databases and more 
recently in eXtensible Markup Language (XML) databases, most applications still maintain the 
data using Relational Database Management Systems (DBMS) that provide a high performance 
and a high degree of scalability and dependability. Different solutions to manage the data have 
been developed (such as persistence systems or object/relational mappings). However, the 
Structured Query language (SQL) [1] is still widely used, especially when its full expressive 
power is needed [2]. On the other hand, SQL is a semi-declarative language which embodies a 
complex processing in each query: A single SELECT query may combine data from several 
tables, select data based on a logical expression, group the selected data according to some 
criteria and perform a further selection and ordering. Moreover, the three-valued logic [3] of the 
logical expressions adds additional semantic complications. The testing of such query requires 
preparing the input (which is the database itself and therefore may involve many tables) and 
checking the output, which is another table-like structure. 

One of the major fields of study in coverage criteria for testing is related to coverage of the 
source code using different approaches (e.g. data-flow or control-flow). Control-flow criteria 
range from path or branch coverage to more sophisticated criteria to thoroughly assess the 
adequacy of tests according to their logical decisions (denominated as “logic testing” by 
Kaminski et al. [4]). These criteria are a powerful tool to evaluate the adequacy of test suites and 
to assist in the development or completion of test cases. 
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In database applications the software under test interacts with the database in single interaction 
points where the program passes control to the DBMS that executes an SQL command and 
updates the database or retrieves data from it. In this case, the usual control-flow based criteria 
may be valid to assess the adequacy of the code that creates the SQL query and process the 
results. However, as a very important part of the business logic is implemented in the SQL 
query, if the input data and the query are not taken into account in the test design, much of the 
complexity of the logic decisions taken by the application may be concealed from the tests. One 
of the most difficult, time intensive and error prone activities when testing applications with 
databases is the preparation of a suitable set of data for covering, as much as possible, the 
different situations that may occur and have to be considered by the queries. As when testing an 
imperative program, a coverage criterion that allows assessing the adequacy of the test data in 
relation to the query that processes such data may be a valuable help to the tester in developing 
higher quality test databases. The main difference is that in this case the test input is a database 
with a complex structure and many rows and the program under test is procedural. This is the 
issue that is addressed in this paper. 

The evaluation of the coverage of SQL queries according to a given criterion can be potentially 
used in a number of different scenarios. During the development, a small test database may be 
created from scratch in order to fulfill the coverage of test data against the query. A controlled 
experiment previously conducted by the authors [5] has shown that when the user develops a test 
database assisted by a coverage criterion, it leads to tests that are able to detect more faults in the 
query than if he/she is not guided by the criterion. However, creating new test databases for each 
query is very time consuming. Therefore, a commonly used approach is to begin with a 
previously populated database and then complete it with meaningful data to test the query. In this 
case the evaluation of the coverage will assist the tester in completing the test inputs. Another 
scenario is that of evaluating the extent to which a given test suite (which usually contains many 
test cases for each database load) exercises several queries of the application. In this case the 
queries that are executed can be collected using vendor specific DBMS tracing tools or using 
external software like p6spy1 and then evaluating their coverage. This information is valuable for 
analysis and as feedback in order to complete the test cases. 

In a previous work the use of a criterion like Modified Condition Decision Coverage (MCDC) 
for testing SQL queries was suggested and informally presented [6]. This article focuses on the 
complete definition and automation of a criterion named SQLFpc that measures the coverage of 
the test data in relation to the query that is executed. The primary contributions of this paper are: 

• The development of a coverage criterion for SQL based on Full Predicate Coverage, defined 
by Offutt et al. [7] or masking MCDC, defined by Chilenski [8], considering the specific 
semantics of a wide range of the SQL syntax and database schema constraints. The criterion 
identifies the requirements that have to be satisfied by the test data used by SELECT queries, 
including JOIN, WHERE, HAVING and GROUP BY clauses, aggregate functions, 
subqueries and case expressions as well as the handling of missing information (null values). 

• A complete description of how the test requirements are expressed as a set of coverage rules 
that is obtained by applying successive transformations on the query under test. The coverage 
rules are executable and able to determine whether the different situations expressed by the 
test requirements are covered by the test data. 

• The completely automated generation and evaluation of the coverage rules, which are 
implemented in a set of tools, and the efficient evaluation of the coverage, even for large 
databases. As the rules are also SQL queries they take advantage of all performance 
improvements implemented in commercial DBMS. 

                                                
1  p6spy is an open source Java tool that intercepts and logs all database statements that use JDBC, available at 
http://www.p6spy.com/. 
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• The application of the coverage criterion to a case study including complex queries taken 
from Compiere, which is an open source Enterprise Resource Planning (ERP) application. 
The case study shows that as the test database contains more rows that increase the SQLFpc 
coverage, they are able to reveal more faults in the query (measured in terms of mutation 
score). 

The paper is organised as follows: Section 2 presents an overview of basic notation, the 
relational model and the MCDC and Full Predicate Coverage criteria. The core of the article 
begins in Section 3 that describes the coverage rules for WHERE and JOIN clauses when 
considered in isolation. Section 4 describes the rules for their combinations and Section 5 
addresses the rest of SQL clauses. Section 6 summarizes all rules presented so far and outlines 
the tool support available. Finally, Section 7 uses the coverage rules in a case study, Section 8 
presents the related work and Section 9 concludes. 

2. BACKGROUND AND NOTATION 

This section introduces the notation that will be used in subsequent sections and provides some 
background about the relational model (Section 2.1), its basic operators (Section 2.2) and the 
MCDC coverage criterion (Section 2.3). 

2.1. The relational model – Basic components 

The relational model was first developed by Codd [9] and defines the foundations of data storage 
and querying that is implemented in today’s commercial database management systems. The 
notation used in this paper is that presented by the author in the second version of the relational 
model [10], from now on referred to as RM/V2, with some adaptations that are needed for 
subsequent sections. 

Relations and attributes: Given a set A of attributes A1, A2, …, An, with domains D1, D2, …, Dn 
respectively (attributes are denoted using uppercase letters), a relation R (also named R-table) is 
a subset of the Cartesian product D1 x D2 x … x Dn. The relation R is represented as R(A1, A2, ... 
An) or simply R(A) or R. In other words, a relation R(A) is a set of tuples of the attributes in A. 
In SQL a relation is a table or view, attributes are columns and tuples are rows. 

Base and derived attributes: In the RM/V2 each relation is defined in terms of attributes. In SQL 
an attribute may be derived from a function or expression. An attribute in a relation is said to be 
a derived attribute if it is calculated after applying a function or expression over other attributes 
in the relation. The attribute is said to be a base attribute if its value does not depend on any 
other attributes. The set of base attributes from which a given derived attribute F is obtained is 
denoted as battrs(F). 

Missing information: The RM/V2 extends the previous version by defining a four-valued logic. 
There is a semantic distinction between missing but applicable (A-mark) and inapplicable (I-
mark). In commercial DBMS, however, this semantic distinction is not implemented, and in all 
cases A-marks and I-marks are indicated as NULL. In order to make the handling of missing 
information compatible with SQL the following definitions are stated: 

• An attribute Ai is nullable iff it has been declared in the database schema without the IS 
NULL constraint. The Boolean predicate nullable(Ai) is true iff the attribute Ai is nullable. 

• The value of an attribute Ai at a given tuple is null iff it is not known (missing) at the 
moment in which Ai is evaluated. The null-check predicate is a boolean predicate nl(Ai) that 
is true at the tuples in which Ai is null. 

Predicates: Predicates are three-valued, so as their result may be true, false or unknown. Each 
predicate may be composed of an arbitrary logical expression on attributes. The following 
definitions are applied taking into account the existence of the logical operators (∧, ∨, ¬): 
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• A base predicate is a three-valued logical expression that contains no logical operators2. 
• A derived predicate is a three-valued logical expression that is composed of predicates 

(either base or derived) and one or more logical operators. 

The set of all base predicates included in a given predicate p is denoted as bpreds(p). The set of 
all base attributes in a given predicate p is denoted as battrs(p). 

For example, the derived predicate p := A1+A2=0 ∧ nl(A3) is composed of two base predicates: 
bpreds(p)={A1+A2=0, nl(A3)}. The first one contains two base attributes: 
battrs(A1+A2=0)={A1,A2}. The second base predicate includes a null-check predicate over a 
single base attribute: battrs(nl(A3))={A3}. 

2.2. The relational model – Basic operations 

The basic operations in the RM/V2 transform either a single relation or a pair of relations into 
another relation. Operators are defined using relational assignments: A relational assignment is 
in the form Zßrve where rve denotes a relation-valued expression (RVE) and Z is the name for 
the relation obtained when applying the relation-valued expression. The basic relational 
operators and the corresponding relation-valued expressions are now described: 

Select Operator: The Select operator employs a single relation R(A) as operand and generates as 
a result a relation (Z) that contains some of the complete rows that the operator contains 
according to a criterion specified using a logical predicate p on the attributes of A. The select 
operator returns only those tuples that make true the predicate p(A). 

Z ß R[p(A)],  in SQL: SELECT * FROM R WHERE p(A) 

Join Operator: The join operator employs two relations R(A) and S(B) as its operands and 
generates as a result a relation (Z) that contains rows of R(A) concatenated with rows of S(B), 
but only where the condition specified by a predicate p(A,B) is found to hold true. The predicate 
p is named join predicate: 

Z ß R[p(A,B)]S,  in SQL: SELECT * FROM R INNER JOIN S ON p(A,B) 

Note that joins are defined in terms of relations. Each of the constituent relations can be either a 
derived relation (obtained from a join operator) or a base relation (relation that is internally 
represented by stored data, i.e. a table in a DBMS). 

Inner and Outer join operators: The previous operator is also named inner join. Three other 
different types of join are defined (namely left, right and full outer join). The left outer join is the 
union of the tuples obtained by applying the inner join operator and the left outer increment 
(LOI). The RM/V2 defines LOI as follows: “pick out those tuples from R whose comparand 
values in the comparand column do not participate in the inner join, and append to each such 
tuple a tuple of nothing but missing values and of size compatible with S”. The right outer join is 
symmetrically defined in terms of the right outer increment (ROI). The full outer join (also 
named symmetric outer join) is defined as the union of the inner join, the LOI and the ROI. The 
notation used in this article for representing the relation-valued expressions for joins is: 

R[p(A,B)]JTS 

Where JT is a label {I, L, R, F} that denotes the join-type (inner, left outer, right outer and full 
outer join, respectively). When a join is referred, regardless of its join-type, the label JT may be 
omitted. 

                                                
2 Base predicates are denoted as clauses by Offut et al [7]. In this paper the term base predicate is used instead for 
consistence with other terms such as base tables and derived tables used in the RM/V2. The term clause will be 
reserved to refer to clauses as specified in the SQL Standard. 
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Framed Relations: A frame partitions a relation into a collection of subrelations (groups), such 
that each of them has equal values for a set of attributes G named grouping attributes. The 
framing is performed in SQL by the GROUP BY clause and is denoted as: 

Z ß R /// G, in SQL: SELECT G,F FROM R GROUP BY G 

Where R is a relation of attributes A, G is the set of grouping attributes, G⊆A, and F is a set of 
derived attributes in the form f(A). Each of the functions f (aggregate functions) computes a 
statistical value on all tuples that belong to each subrelation. The result of the framing is a 
relation containing a single tuple for each subrelation. 

An additional select operator may be applied to the framed relation in the form (HAVING clause 
in SQL): 

Z ß R /// G [q(G,F)], in SQL: SELECT G,F FROM R GROUP BY G HAVING q(G,F) 

2.3. MCDC and Full Predicate Coverage 

Modified Condition Decision Coverage (MCDC), defined in the RTCA/DO-178B standard [11], 
is a coverage criterion which has been demonstrated as representing a good balance of test-set 
size and fault detecting ability [12,13], studied in depth in the literature [14-17] and used for test 
suite reduction and prioritization [18]. MCDC requires that every condition in a logical decision 
has taken all possible outcomes at least once, and each condition has been shown to 
independently affect the decision’s outcome. Some of the advantages of MCDC over other 
criteria for logic testing are that it needs a small test size and that it does not require a predicate 
to be in any particular syntactic format, such as Disjunctive Normal Form (DNF). However, the 
sensitivity of MCDC to specific logic faults is lower than other criteria and it may still miss some 
faults that are always detected by other criteria as shown by Kaminski et al. [4] and Yu and Lau 
[13]. 

Consider the decision p=(a∧b)∨(c∧d) composed of four boolean conditions (a,b,c,d). To satisfy 
MCDC, for each condition a pair of test cases (also called test points) is generated. For instance, 
a pair that satisfies the criterion with respect to condition a is (0,1,1,0) and (1,1,1,0), because 
when a flips while all the other conditions do not change, the result of the decision changes. 
These pairs of test points are called independence pairs. 

Chilenski [8] has elaborated three different forms of MCDC: Unique-Cause, Unique-Cause 
Masking and Masking. Ammann et al. [19] and Ammann and Offutt [20] have presented a 
complete comprehensive set of criteria: Active Clause Coverage (ACC) and Inactive Clause 
Coverage (ICC). Three forms of ACC are presented: General, Correlated and Restricted. 
Masking MCDC, which is equivalent to Correlated ACC, is the most flexible form which allows 
the other conditions to change while showing the independence effect of each condition. 
Consider the previous example: A pair (0,1,1,0) and (1,1,0,1) shows the independence effect of 
a, although c and d have been changed, because the subexpression c∧d has not changed. 

Full Predicate Coverage, defined by Offutt et al. [7] is a form of masking MCDC developed for 
testing the conditions that trigger transitions in state-based specifications. It requires that for each 
predicate p on each transition and for each test clause (test condition) in each predicate, the set of 
test cases must include tests that cause each clause ci in p to determine the value of p. A test 
clause ci is said to determine p if the remaining minor clauses have values such that changing the 
truth value of ci changes the truth value of p. 

Consider the predicate previously used p=(a∧b)∨(c∧d). The procedure described by Offutt et al. 
[7] to find values that satisfy full predicate coverage is based on walking the parse tree of the 
predicate from the bottom to the root. The parse tree for predicate p is depicted in Figure 1. For 
instance, in order to let clause a determine the output, the subpredicate (a∧b) requires the sibling 
b to be true (because the expression contains an AND). Then walking up the tree, the sibling 
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subpredicate (c∧d) must be false (because the expression contains an OR). Note that any 
combination for the values of clauses c and d which makes the subpredicate (c∧d) false is 
allowed because the criterion used is masking MCDC. 

These definitions are general enough that they can be adapted to the particularities of SQL. Then, 
they will constitute the basic definition of the coverage criterion to be used in the rest of the 
paper. 

3. BASIC COVERAGE RULES 

This section presents the procedure for evaluating the coverage of SQL queries (represented as 
relation-valued expressions), which consists in obtaining a set of coverage rules (also represented 
as relation-valued expressions) that can be applied against the test input (relations in the 
database). Firstly the concept of coverage rules is presented (Section 3.1). Next the procedure for 
creating the coverage rules for most common operators is detailed, starting with select operators 
(Section 3.2). Due to the complexity of join operators, their corresponding section is split into 
Section 3.3 which deals with individual joins and Section 3.4 which deals with multiple joins 
(nested joins).  

3.1. Coverage rules 

In the context of database testing, and using the notation presented in the previous section, the 
smallest unit to be tested is an RVE (in SQL, a query). A test input is a set of base relations 
(tables populated with data) and the test output is another relation (the output of the query) 
resulting after applying the relational assignment (executing the query). 

The process of designing a given test input for a given query using a given coverage criterion 
(such as full predicate) begins with the selection of the test conditions to be tested. For each one, 
a set of test points3 is selected on the basis of the given test point requirements imposed by the 
coverage criterion. Then the test points are combined into a test input which along with the 
desired output constitutes the test case. Consider a simple query Q represented by the following 
RVE: 

Z ß T[A1=1 ∧ A2=0], in SQL: SELECT * FROM T WHERE A1=1 AND A2=0 

Consider the first test condition (A1=1). Assuming that the attribute A1 is not nullable, the 
criterion may state two test point requirements: (1) select a test point such that the test condition 
is true: A1=1 and (2) another one such that the test condition is false: ¬(A1=1), with A2=0 in both 
test points. Each test point is a tuple which satisfies each of the requirements, for instance tuple 
{(1,0)} and tuple {(4,0)}, respectively. These test points are combined in a relation composed of 
the above tuples which constitutes the test input: {(1,0), (4,0)}. 

If the goal is to evaluate the coverage of a given test input with respect to the query a simple 
approach is to formalize the test point requirements into a predicate and then check whether the 
predicate holds. In the example, consider a given test input {(1,0), (4,0)}. The two test point 
requirements are stated in the form of predicates (1) A1=1∧A2=0 and (2) ¬(A1=1)∧A2=0 that 
would be evaluated against the test input {(1,0), (4,0)}. It is clear that this test input satisfies 
each of the predicates, and then both test point requirements are covered. 

Since the goal of this paper is to describe how to evaluate the coverage in SQL queries some 
important issues must be resolved: 

                                                
3 The term test point is commonly used in the MCDC literature as synonymous of test case. In the context of 
database testing there is a significant difference, because a single test case is obtained by filling a set of relations that 
usually include many test points. Therefore each single test case may exercise many different situations represented 
by the test points. 
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1. How to interpret the full predicate criterion in order to tackle the particularities of SQL. That 
will be accomplished by determining what the test conditions are and taking into account the 
three-valued logic, the semantics of the different predicates and operators (e.g. select and 
joins) and the combinations of different operators that constitute a query. 

2. How to elaborate the test point requirements, taking as the only sources of information the 
query and the database schema. This will be accomplished by transforming the original query 
into queries that express each test point requirement. This kind of queries is called coverage 
rules. Each coverage rule is associated with a single test point requirement. 

3. How to evaluate each coverage rule in order to determine whether its test point requirement 
holds (the rule is covered) by a given test input. That is immediate because each coverage 
rule is a query that can be executed against the test input. 

The interpretation and elaboration of the test point requirements will be detailed in the following 
sections. Now, some basic definitions are presented: 

Definition 1. A coverage rule (∆) is an RVE constructed in order to evaluate the fulfillment of a 
given test point requirement. A coverage rule is covered (its test point requirement holds) if the 
relational assignment of the rule (Z ß ∆) results in a non empty relation (Z≠∅). 

In the above example, the two test point requirements were expressed as two predicates (1) and 
(2), respectively, which are embedded in two select operators to constitute the coverage rules ∆T 
and ∆F, respectively.  

 ∆T (T[p]) := T[A1=1∧A2=0]  and  ∆F (T[p]) := T[¬(A1=1)∧A2=0] 

It is easy to check that each of the coverage rules will result in a non empty relation when 
evaluated against the input {(1,0), (4,0)}. 

Definition 2. A coverage rule transformation (Φ) is a transformation from an RVE (or part) into 
another RVE (or part). Given a query expressed as an RVE, a coverage rule is obtained by 
successively applying one or more coverage rule transformations to the query or part of it. 

In the following subsections the set of transformations needed to generate rules that fulfill the 
full predicate coverage criterion for select and join operators is detailed. 

3.2. Coverage rules for select operators 

Introductory example 1. Let p be a predicate in an RM/V2 select operator in the form 
p=p1∧c3∧c4 where p1=c1∨c2 (such that p1 is a derived predicate and c1 to c4 are base predicates). 
In order to get test cases to fulfill the full predicate coverage for the test condition c1 a pair of test 
points is needed in order to let c1 determine the output of p. By following the procedure 
described in Section 2.3, it requires that c1 takes true and false, its sibling predicate c2 be false (as 
the logical operator is or) and walking up the parse tree the siblings of p1 (parent of c1) be true 
(as the logical operator is and). Then the constraints that must be satisfied for each test point (test 
point requirements) are respectively: 

 c1 ∧ ¬(c2) ∧ (c3 ∧ c4) 

 ¬c1 ∧ ¬(c2) ∧ (c3 ∧ c4) 

Moreover, because of the use of a three-valued logic, if c1 is nullable, there is another important 
value to test. An additional test point requirement is needed (note that c1 determines the output if 
its value flips over true and null): 

 nl(c1) ∧ ¬(c2) ∧ (c3 ∧ c4) 

The predicates ¬(c2) and (c3 ∧ c4), respectively are to be named the Sibling Independence 
Predicates (SIP) with respect to c1 and p1 respectively, and ¬(c2) ∧ (c3 ∧ c4) the Independence 
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Predicate (IP) with respect to the test condition c1. In general, the procedure to obtain the test 
point requirements for a given test condition ci consists in obtaining the SIP with respect to ci 
and then obtaining the IP with respect to its parent and so on, until the root is reached. 

Definition 3. (Evaluation of select predicates) Let R[p(A)] be a select operator. The test 
conditions for the select operator are each of the base predicates ci ∈ bpreds(p). At a given tuple 
in Zß R[p(A)], each test condition may evaluate to one of the following values: True (T), False 
(F) or Null (N). 

Definition 4. (Coverage transformations for select predicates) Let R[p(A)] be a select operator. 
Let p be the select predicate in the form (p1 lop p2 lop…lop pn), where lop is a logical operator 
{∧,∨} and pi are either base or derived predicates. The Sibling Independence Predicate of each of 
the sub-predicates pi is defined as: 
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The Independence predicate (IP) of p with respect to a test condition ci∈bpreds(p) is the 
predicate that must be satisfied for all test points that state that ci determines p. It is determined 
recursively as a conjunction of the SIP of ci and the IP of its parent: 

 IP(ci) := SIP(ci) ∧ IP(parent(ci)) 

The coverage rule transformations to attain full predicate of p with respect to each test condition 
ci are defined for each of the possible evaluations of the select predicate as: 

 ΦT(p,ci) := ci ∧ IP(ci) 

 ΦF(p,ci) := ¬ci ∧ IP(ci) 

 ΦN(p,ci) := nl(ci) ∧ IP(ci) 

However in ΦN the test condition ci may reference more than one nullable attribute. In order to 
maintain the independence principle for each one, the ΦN transformation is redefined to take into 
account each Ak∈battrs(ci) such that nullable(Ak) holds: 

 ΦN(p,ci,Ak) := nl(Ak) ∧ IP(ci) 

Non independent conditions. One of the advantages of Full Predicate Coverage or Masking 
MCDC over other MCDC versions is that it is less sensitive to coupled condititions (non 
independent conditions). However, the introduction of the ΦN transformations may produce 
more situations in which non independent conditions cause impossible test points. Consider the 
predicate p = a>1 ∧ a<5. The transformation ΦN(p, a>1, a) produces nl(a) ∧ a<5, which 
generates a coverage rule impossible to be fulfilled because if nl(a) is true, then a<5 is undefined 
and then the result is undefined. This is similar to the case of unreachable paths in an structured 
program, which prevents having a test set for achieving 100% coverage. To be able to exercise 
the situation in which nl(a) holds, the predicate a<5 should be removed from the transformed 
RVE. This suggests the redefinition of ΦN as explained below: 

Definition 5. (Null Reduction Transformation) Let R[p(A)] be a select predicate and Ak a base 
attribute in p. The Null Reduction transformation of p with respect to Ak denoted as NR(p,Ak) 
transforms p in such a way that every base predicate ci in p such that Ak∈battrs(ci) is removed 
from p.  

Then the ΦN is redefined again for each Ak∈battrs(ci) such that nullable(Ak) holds by applying 
the null reduction transformation to the Independence Predicates: 
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 ΦN(p,ci,Ak) := nl(Ak) ∧ NR(IP(ci),Ak) 

Definition 6. (Coverage rules for select predicates) Let R[p(A)] be a select operator, and ci each 
of the base predicates of p. The set of coverage rules ∆T, ∆F and ∆N are defined as: 

 ∀ci∈bpreds(p): ∆T(p,ci) := R[ΦT(p,ci)] (1) 

 ∀ci∈bpreds(p): ∆F(p,ci) := R[ΦF(p,ci)] (2) 

 ∀ci∈bpreds(p), ∀Ak∈battrs(ci) | nullable(Ak) :  ∆N(p,ci,Ak) := R[ΦN(p,ci,Ak)]  (3) 

It must be noted that if ci is a null-check predicate in the form ci=nl(A) or ci=¬nl(A), respectively 
the transformation ΦN is applied instead of ΦT or ΦF, respectively. Also, when a predicate is in 
the form c1∧…∧cn or c1∨…∨cn, where each ci is a base predicate, the rules ∆T or ∆F, respectively 
are generated only for the first base predicate in order to avoid duplicate rules. 

Boundaries. Conditions that involve a relational operator (e.g. a>b) are a well known source of 
potential faults when the relational operator is wrong. In order to detect this kind of faults, 
instead of placing test cases in the equivalence classes a>b and ¬(a>b), the test cases are placed 
in the boundary values. Then instead of having two test points there will be three a=b+1, a=b and 
a=b-1. These are the operator assurance extensions defined by Chilenski [8]. In the context of 
the FPC criterion, it will be defined as follows: 

Definition 7. (Coverage rules and transformations for checking boundary values) Let ci be a 
base predicate in the form a rop b where rop is a relational operator in {=, ≠, >, ≥,<, ≤}. If the 
domain of both attributes is numeric, then the coverage transformations ΦT and ΦF in Definition 
4 are replaced by: 

 ΦB+(p,ci) := (a rop b+1) ∧ IP(ci) 

 ΦB=(p,ci) := (a rop b) ∧ IP(ci) 

 ΦB-(p,ci) := (a rop b-1) ∧ IP(ci) 

And the corresponding rules ∆T and ∆F in Definition 6 are redefined into ∆B+, ∆B=, ∆B-, to use the 
above transformations, respectively. 

Select Operators after Framing. A select operator may appear after a framed relation (HAVING 
clause in SQL) in the form R /// G [q(B,F)]. In this case, the coverage rule transformations for 
the predicate are obtained in the same way as has been presented above, considering that F 
consists of derived attributes which include the SQL aggregate functions (count, sum, min, max, 
avg).  

Example 1. Consider the query R[q] defined as: R[(a='x' ∨ nl(a)) ∧ b>c]. The coverage rules 
obtained after applying the above transformations (definitions 6 and 7) to each test condition are: 

∆T(q, a=’x’) := R[a='x' ∧ ¬nl(a) ∧ b>c] 
∆F(q, a=’x’) := R[¬a='x' ∧ ¬nl(a) ∧ b>c] 
∆N(q, a=’x’, a) := R[nl(a) ∧ b>c] 
∆N(q, nl(a), a) := R[nl(a) ∧ b>c] 

∆CB+(q, b>c) := R[b=c+1 ∧ (a='x' ∨ nl(a))] 
∆CB=(q, b>c):= R[b=c ∧ (a='x' ∨ nl(a))] 
∆CB-(q, b>c) := R[b=c-1 ∧ (a='x' ∨ nl(a))] 
∆N(q, b>c, b) := R[nl(b) ∧ (a='x' ∨ nl(a))] 
∆N(q, b>c, c):= R[nl(c) ∧ (a='x' ∨ nl(a))] 

The test condition a='x' generates three rules. The test condition nl(a) generates ∆N instead of ∆T 
after reducing predicate a='x' and does not generate ∆F because it has been previously obtained 
for predicate a='x'. The test condition b>c generates three rules for boundary values and two for 
nulls (provided that both b and c are nullable). A further processing would remove duplicate 
rules (because ∆N is the same for a=’x’ and nl(a)). 
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3.3. Coverage rules for single join operators 

Introductory example 2. Consider a simple full outer join in the form 

Z ß R[A1=B1]
FS, in SQL: SELECT * FROM R FULL OUTER JOIN S ON A1=B1 

In a first approach, the coverage rule transformations presented in Section 3.2 could be applied to 
the join predicate A1=B1 in order to generate the coverage rules. However, the semantics of a 
join operator is completely different than the select operator. Table 1 illustrates the tuples 
produced as a result of a full outer join on relations R(A)={(11,x), (12,y)} and S(B)={(21,x), 
(22,z)} The first row is the set of tuples that participate in the inner join (tuples in which A1=B1), 
the second one is the left outer increment (tuples in R that do not participate in the inner join, 
plus missing values in B) and the third one is the right outer increment. But the join predicate 
evaluates to unknown in the last two rows; however the output is different. This suggests a 
different way to evaluate join operators in terms of the existence of the inner join, left outer 
increment and right outer increment instead of the evaluation of the join predicate. 

Definition 8. (Evaluation of join operators) Let R[p(A,B)]S be a join operator. The test condition 
for a single join operator is the operator itself. At a given tuple in Zß R[p(A,B)]S, each test 
condition may evaluate to one of the following values: Inner (I) if the tuple participates in the 
inner join (predicate p is true), Left (L) if the tuple participates in the Left Outer Increment 
(predicate p is not true) and Right (R) if the tuple participates in the Right Outer Increment 
(predicate p is not true). 

In the previous example, the join is evaluated to each of the possible values, and so it can be said 
that these tuples cover each of the possible evaluations of the join operator as defined above. 
Given a join operator the procedure to evaluate the coverage will consist in generating a 
coverage rule for each of the possible values (I, L or R). The following rule transformations are 
to be defined: 

Definition 9. (Join transformations) Let R[p]S be a join operator denoted as J, and JT in {L,R,I} 
a label which denotes a join type (note that join type F is not included). The join type 
transformation ΦJ(JT,J) transforms the join type of J into the join type specified by the label JT: 

 ΦJ(JT,R[p]S) := R[p]JTS 

In the previous example, after applying the join type transformations for L, R and I to the 
original join the transformations to L and R also return the tuples in inner join, which must be 
removed. The following additional transformation is needed in order to avoid that: 

Let lattrs(p) and rattrs(p) be the attributes of the left and right relations respectively which are 
referenced by the join predicate p. The outer join select transformations ΦLOI(J) and ΦROI(J) 
transform the join predicate of the operator into a select predicate which selects only those tuples 
that compose the LOI and ROI respectively: 

 ΦLOI(J) := ))(())((
)()(

i
prattrsB

i
plattrsA

BnlAnl
ii ∈∈
∧∧¬∧  

 ΦROI(J) := ))(())((
)()(

i
prattrsB

i
plattrsA

BnlAnl
ii

¬∧∧∧
∈∈

 

Definition 10. (Coverage rules for a single join operator) Let R[p]S be a join operator denoted as 
J. The coverage rules ∆I, ∆L and ∆R select the tuples that belong to the inner join, the left outer 
increment and the right outer increment, respectively, and are defined as: 

 ∆I(J) := ΦJ(I,J) (4) 

 ∆L(J) := ΦJ(L,J) [ΦLOI(J)] (5) 

 ∆R(J) := ΦJ(R,J) [ΦROI(J)] (6) 
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Example 2. Consider the query presented in the introductory example 2. The three coverage rules 
for the join operator are: 

∆I(R[A1=B1]
FS) := R[A1=B1]

IS 

∆L(R[A1=B1]
FS) := (R[A1=B1]

LS)[¬nl(A1) ∧ nl(B1)] 
∆R(R[A1=B1]

FS) := (R[A1=B1]
RS)[nl(A1) ∧ ¬nl(B1)] 

Note that in this case the same rules would be obtained if the join type was different. 

Foreign keys. Using the usual terminology in databases, a master-detail relationship relates two 
tables such that the detail table references the master table. The above coverage rules will be 
covered if there exist tuples in both master and detail that participate in the join, tuples in the 
master that do not participate, and tuples in the detail that do not participate. However, some of 
them may be impossible if there are foreign key constraints. Consider the above example and 
Table 1; R is the detail and S is the master: if A1 is a foreign key that references B1, then the 
tuple (12,y) in R is not allowed in the database as there is no tuple in B with B1=y. Therefore, the 
tuple (2,y,null,null) would never have been obtained in Z. Then the ∆L is impossible. 

Let FK(R,S) be the set of all attributes in R comprising a foreign key referencing some attribute 
in S. Then the ∆L rule is impossible if some of the attributes in lattrs(p) are in FK(R,S). The 
situation is symmetric for ∆R. Impossible rules are detected and not generated to evaluate the 
coverage. 

Nullable attributes in the join predicate. Consider again the tuples represented in Table 1. No 
assumptions have been made about the nullability of A1 and B1. However, each of them may be 
nullable even if there is referential integrity. For instance, if A1 is nullable it is possible to add a 
tuple like (13,null) in R, which will produce an additional tuple in S: (13,null,null,null). Note that 
this tuple is also contained in the LOI, but A1 has a missing value. Two additional rules and 
transformations must be defined for selecting this kind of tuples. 

Definition 11. (Coverage rules and transformations for a single join operator with nullable 
attributes). Let R[p]S be a join operator denoted as J and p the join predicate with nullable 
attributes. Let Ak and Bk be each of the the nullable attributes such that Ak∈lattrs(p) and 
Bk∈rattrs(p) respectively. The nullable outer join transformations ΦNLOI(J,Ak) and ΦNROI(J,Bk) 
transform the join predicate of the operator into a select predicate which selects the tuples that 
compose the LOI or ROI, respectively, and nl(Ak) or nl(Bk) holds respectively: 

 ΦNLOI(J,Ak) := ))(()())((
)(}{)(

i
prattrsB

ki
AplattrsA

BnlAnlAnl
iki ∈−∈
∧∧∧¬∧  

 ΦNROI(J,Bk) := ))(()())((
}{)()(

i
BprattrsB

ki
plattrsA

BnlBnlAnl
kii

¬∧∧∧∧
−∈∈

 

In addition to the coverage rules in Definition 10, the following coverage rules ∆NL and ∆NR are 
also defined: 

 ∀Ai∈lattrs(p) | nullable(Ai) : ∆NL(J,Ai) := ΦJ(L,J) [ΦNLOI(J,Ai)] (7) 

 ∀Bi∈rattrs(p) | nullable(Bi) : ∆NR(J,Bi) := ΦJ(R,J) [ΦNROI(J,Bi)] (8) 

Example 3. Consider the query of the introductory example 2, but having referential integrity 
from A1 to B1 and A1 is nullable. The resulting coverage rules are: 

∆I(R[A1=B1]
FS) := R[A1=B1]

IS 

∆NL(R[A1=B1]
FS, A1) := (R[A1=B1]

LS) [nl(A1) ∧ nl(B1)] 
∆R(R[A1=B1]

FS) := (R[A1=B1]
RS) [nl(A1) ∧ ¬nl(B1)] 

Note that ∆L is not generated because of the referential integrity, and a new ∆NL rule is generated 
for A1 as a result of the ΦNLOI transformation. 
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3.4. Coverage rules for nested joins 

Each participant relation in a join may be either a base relation or a derived relation obtained 
from a join. Therefore, a set of coverage rules as described in the previous section must be 
generated for each of the joins. However, the process is not straightforward as illustrated in the 
following example. 

Introductory example 3. Consider the following nested join composed of two joins (1) J1 on R 
and S and (2) J0 on J1 and T: 

Yß(R[A1=B1)]
 LS) [B2=C2]

 LT 

This join may be represented as a hierarchy of joins as depicted in Figure 2. 

At first glance, to apply the full predicate coverage principle, the whole join may be formulated 
as a conjunctive expression such as J0 ∧ J1. Then, two sets of coverage rules may be obtained 
(one for each join). The first one would ensure that J0 will have all possible evaluations while 
maintaining J1 to true (inner), which can be accomplished using Definition 9 by applying 
transformations ΦJ(I,J0), ΦJ(L,J0) and ΦJ(R,J0) to J0 respectively and transformation ΦJ(I,J1) to J1 
in all cases. The second one is symmetric. This interpretation is exactly the same as that of select 
operators, however, because the semantics of join is different some issues related to the nested 
join have to be considered as shown in this section. 

Consider the relations R={(11,x),(12,y),(13,z)}, S={(21,x,t),(22,y,u)} and T={(31,t)}. The join 
depicted in Figure 2 produces the result displayed in Table 2. 

Assume that ∆L rules are being generated for J0 and J1, respectively, while maintaining J1 and J0, 
respectively, to inner. The resulting rules would be: 

∆L(J0) := ( (R[A1=B1]
IS) [B2=C2]

 LT ) [¬nl(B2) ∧ nl(C2)] 

∆L(J1) := ( (R[A1=B1]
LS) [B2=C2]

 IT ) [¬nl(A1) ∧ nl(B1)] 

The first coverage rule ∆L(J0) will work correctly. Its first inner join on R and S generates a 
relation in which J1 is evaluated to inner (I), producing tuples of R and S in rows 1 and 2, but not 
row 3 (Table 2). The resulting relation is left joined with T resulting in a relation in which J0 is 
evaluated to I (row 1) and L (row 2). Then the select predicate [¬nl(B2) ∧ nl(C2)] will keep only 
those tuples that evaluate J0 to L (row 2). 

However the second coverage rule ∆L(J1) will not return any tuple. The first join (left join) on R 
and S generates a relation in which J1 is evaluated to L (producing rows 1, 2 and 3). The second  
one (inner join) will discard rows 2 and 3. Then the select predicate [¬nl(A1) ∧ nl(B1)] will 
discard row 1. The resulting relation is empty. In this case the correct join type for the rule ∆L(J1) 
would be L for both J1 and J0 which would have produced row 3. 

A new definition of ΦJ is needed in order to determine the correct join type for each join. That 
will be accomplished by means of a function which labels each join with the correct label type.  

Definition 12. (Nested join and labelling) Let R[p]S be a join operator, denoted as J. A join 
operator J is said to be a nested join, if some of the relations R or S are derived relations obtained 
as the result of another join. Each of the constituent joins is denoted by Ji such that the root is the 
first element J0. The Missing Values Outer Increment (MVOI) is the set of base relations whose 
values are filled with missing values because of the evaluation of outer joins in the nested join J. 

Let Ji be the test condition which must be evaluated to a join type JT in {L,R}. Let loirels(Ji) and 
roirels(Ji) be the set of base relations that are filled with missing values when Ji generates the 
LOI and ROI, respectively. The Nested Join Labelling function NJL(JT,J,i) returns an array 
label[] which determines the correct join type label[k]∈{L,R,I} for each Jk in J, given a target 



 13 

join Ji which must be evaluated to JT. The algorithm displayed in Figure 3 details the procedure 
for evaluating Ji to L (the procedure for R is symmetric). 

Consider the process of generating the correct labels for joins in coverage rule ∆L(J1) in the 
example 3. The labelling proceeds first by selecting the target join (J1). Next, it assigns label L to 
this join and adds the relation S to MVOI. The loop proceeds by examining the join J0 (which is 
not labelled yet). As it joins relations using a join predicate on the attributes of S and T, 
roirels(J0)={S} (which is in MVOI). Then it assigns label L to J0 and finishes with the correct set 
of labels {L,L}. 

Definition 13. (Coverage rules and transformations for a nested join operator) Let J be a nested 
join and Ji each of its constituent joins. The nested join type transformation modifies the join 
type of every constituent join Jk as indicated below: 

 ΦJN(I,J) := ΦJ(I,Jk) ∀Jk in J 

 ΦJN(L,J,Ji) := ΦJ(label[k],Jk) ∀Jk in J, where label=NJL(L,J,i) 

 ΦJN(R,J,Ji) := ΦJ(label[k],Jk) ∀Jk in J, where label=NJL(R,J,i) 

The coverage rules ∆I, ∆L and ∆R select the tuples that belong to the inner join, and the left and 
right outer increments for each Ji, respectively, and are defined as: 

 ∆I(J) := ΦJN(I,J) (9) 

 ∀Ji in J : ∆L(Ji) := ΦJN(L,J,Ji) [ΦLOI(Ji)] (10) 

 ∀Ji in J : ∆R(Ji) := ΦJN(R,J,Ji) [ΦROI(Ji)] (11) 

Example 4. Consider a nested join J={J0,J1,J2}on four base relations which first evaluates two 
joins: J1 on R and S and J2 on T and U and finally evaluates the root join J0 using the result of the 
other relations. Nested join J is depicted in Figure 4 and represented as: 

Yß(R[A2=B1]
LS)  [A1=D1]

I   (T[C2=D1]
IU) 

For instance, when generating the ΦJ(L,J0) the function NJL(L,J0) first labels it with L. Now, 
labels={L,∅ ,∅} and MVOI={U} because loirels(J0)={U} (join J0 adds null values in D1). Next 
it picks join J1 but because neither loirels(J1)={S} nor roirels(J1)={R} are included in the MVOI, 
its label does not change. Next it picks join J2, because loirels(J1)={U} is included in the MVOI, 
it labels it with R and adds roirels(J1)={T} to the MVOI. Now, labels={L,∅,R} and 
MVOI={U,T}. The algorithm finishes because no more joins can be labelled either to L or R and 
completes the labels with I. Finally, labels={L,I,R}. The resulting coverage rules are: 

∆I(J) := ( (R[A2=B1]
IS)  [A1=D1]

I   (T[C2=D1]
IU) ) 

∆L(J1) := ( (R[A2=B1]
LS)  [A1=D1]

I   (T[C2=D1]
IU) ) [¬nl(A2) ∧ nl(B1)] 

∆R(J1) := ( (R[A2=B1]
RS)  [A1=D1]

L   (T[C2=D1]
RU) ) [nl(A2) ∧ ¬nl(B1)] 

∆L(J0) := ( (R[A2=B1]
IS)  [A1=D1]

L   (T[C2=D1]
RU) ) [¬nl(A1) ∧ nl(D1)] 

∆R(J0) := ( (R[A2=B1]
LS)  [A1=D1]

R   (T[C2=D1]
IU) ) [nl(A1) ∧ ¬nl(D1)] 

∆L(J2) := ( (R[A2=B1]
LS)  [A1=D1]

R   (T[C2=D1]
LU) ) [¬nl(C2) ∧ nl(D1)] 

∆R(J2) := ( (R[A2=B1]
IS)  [A1=D1]

I   (T[C2=D1]
RU) ) [nl(C2) ∧ ¬nl(D1)] 

4. COVERAGE RULES FOR COMBINATIONS OF OPERATORS 

In the previous section the construction of the coverage rules for queries that include either join 
or select operators has been detailed. However, usual queries consist of a combination of join 
and select operators. This kind of query joins several relations and then selects some of the tuples 
of the resulting relation, in the form: 

Z ß (R[p(A,B)]S) [q(A,B)] 
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The combination of both operators may be informally formulated like a conjunction such as J∧q 
where J represents the conjunction of all test conditions of the (nested) join and q is the select 
predicate. At first glance, each of the rules for joins presented in Section 3.3 may be generated 
while maintaining the select predicate to true. Conversely, each of the rules for the select 
operator presented in Section 3.2 may be generated while maintaining the joins to true (inner 
join).  

For instance the rule ∆L for the join J would be obtained from formula (5) and adding q to the 
select predicate: 

∆L(J) := ΦJ(L,J) [ΦLOI(J) ∧ q] 

And the rule ∆T for test condition ci∈bpreds(q) would be obtained from formula (1) applied to 
the resulting relation after transforming the join to inner using formula (4): 

∆T(q,ci) := ΦJ(I,J) [ΦT(q,ci)] 

However, the approach is not so simple due to dependencies between the attributes in join and 
select operators. The detailed construction of rules for different combinations of operators is 
presented in this section. 

4.1. Rules for join operators with select 

Introductory example 4. Consider a join operator (J) which is followed by a select predicate: 

ZßR[A1=B1]
FS [B0=0] 

The coverage rule for the join ∆L would be obtained from formula (5): 

∆L(J) := (R[A1=B1]
LS)[¬nl(A1) ∧ nl(B1) ∧ B0=0] 

However, because of the construction of the relation (left join), all tuples have missing values in 
S, so, B0 is always null and the rule does not return any tuple. The predicate in the select operator 
needs to be transformed in some way in order to avoid this situation. In this case all attributes in 
the predicate that may be null because of the left/right joins must be reduced by applying a Null 
Reduction transformation NR(p,Ak) presented in Definition 5. The set of relations that have all 
their values null as a consequence of the left/right joins is determined using the algorithm 
presented in Figure 3. 

Definition 14. (Missing values outer increment of a join and join type). Let J be a nested join and 
Ji the test condition, and a join type JT in {L,R}. The Missing values outer increment of Ji with 
respect to the join type JT, denoted as MVOI(JT,J,i) is the set of relations that are filled with 
missing values when considering the outer increments generated by the evaluation of Ji to the 
join type JT. The MVOI(JT,J,i) is calculated according to the algorithm depicted in Figure 3 with 
the only difference that it returns the computed MVOI set instead of the label array. 

Definition 15. (Coverage rules for a join operator with a select). Let J be a nested join and R[q] 
be a select operator such that R is the result of the join J. Let the Null Reduction for a Set of 
relations NRS(q,S) be a transformation of q with respect to a set of relations S which reduces 
every attribute Ak∈attrs(S) by applying NR(q,Ak) from Definition 5. The set of coverage rules in 
Definition 13 is modified to take into account the select operator as follows: 

 ∀Ji in J : ∆L(Ji) := ΦJN(L,J,Ji) [ΦLOI(Ji) ∧ NRS(q,MVOI(L,J,i))] (12) 

 ∀Ji in J : ∆R(Ji) := ΦJN(R,J,Ji) [ΦROI(Ji) ∧ NRS(q,MVOI(R,J,i))] (13) 

Note that ∆I(J) rule has been removed. This rule is not generated for joins when there is a select 
predicate because the rules generated for the select predicate include at least a rule that makes 
the select predicate true and keeps all joins to inner (see next section). 

In the above Example 4, the coverage rules are: 
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∆L(J) := (R[A1=B1]
LS)[¬nl(A1) ∧ nl(B1)] 

∆R(J) := (R[A1=B1]
RS)[¬nl(B1) ∧ nl(A1) ∧ B0=0] 

Note that the predicate B0=0 has been removed in the first rule ∆L because it has been reduced, 
but not in ∆R. 

4.2. Rules for select operators with join 

Using the simple approach presented at the beginning of this section, coverage rules for the 
select operator may be generated as presented in Section 3.2, and then transforming all joins to 
inner join. In this case, there is no problem with missing values that may appear because the 
inner joins do not generate any missing value for any relation. However, now the problem is with 
missing values that may disappear when all joins are transformed to inner. 

Introductory example 5. Consider a select predicate which is applied to the result of a join 
operator. Assume that A0 is not nullable: 

ZßR[A1=B1]
FS [A0=0 ∨ nl(A0)] 

The query selects all tuples from the inner join and the left outer increment in which A0 is 0 plus 
all tuples in the right outer increment (because it allows tuples with null values in A0). Note that 
this predicate is correctly stated even if A0 is not nullable, as the full outer join may produce null 
values for this attribute in the ROI. When generating the rule ∆T(p, nl(A0)) for the select 
operator, its predicate is transformed into nl(A0) (A0=0 is reduced) and the join is transformed to 
inner join: 

∆T(p, nl(A0)) := R[A1=B1]
IS [nl(A0)] 

However, because the join has been transformed into inner join, there is no ROI, so, the attribute 
A0 can only be null if it is nullable. If A0 is not nullable the rule does not produce any result. 

This situation arises when a non nullable attribute appears under the null check predicate. In this 
case, although not frequent, in order not to produce a rule which is impossible to be covered, the 
predicate of the coverage rule must be checked before generating the rule. If the predicate is 
impossible to be fulfilled (this is accomplished by quantifying the predicate), then the 
transformation of the joins is relaxed and all joins are kept with their original join type. 

The procedure for quantifying the predicate q traverses every base predicate in p. At each one, if 
a null predicate over non nullable attributes is found, it is replaced by false. The resulting 
predicate is traversed again in a depth first order. For each sub-predicate, if it is in the form 
q∨false, it is replaced by q. If the sub-predicate is in the form q∧false then the entire sub-
predicate is removed. If the result at the end is an empty predicate or false, then the joins are not 
transformed into inner join. 

4.3. Rules for joins and select operators before and after framing 

The most complete query is that which combines one or more joins followed by a select 
operator, then frames and groups the result and lastly applies another select operator to the 
resulting groups (in SQL, it includes one or more JOIN and WHERE, GROUP BY and 
HAVING clauses). This kind of query is in the form: 

Z ß R[p(A,B)]JTS [q(A,B)] /// G [s(G,F)], with G⊆A∪B 

In SQL (assuming that the join type is left, and R and S are base relations): 

SELECT G, F FROM R LEFT JOIN S ON p(A,B)   WHERE q(A,B) 
GROUP BY G  HAVING s(G,F) 

Definition 16. (Coverage rules for nested join and select operators before and after framing). 
Let J [q] /// G [s] be an RM/V2 operator which joins several relations (denoted by the nested join 
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J), then selects tuples based on the select predicate q (WHERE clause), then frames and groups 
the result based on the set of attributes G (GROUP BY clause) and finally selects the resulting 
tuples based on the select predicate s (HAVING clause). The complete set of coverage rules are 
defined as indicated below: 

A set of join rules as in Definition 15, which transform J and q. The predicate s is also 
transformed by applying NRS to the MVOI (Definition 14): 

 ∀Ji in J: ∆L(Ji):= ΦJN(L,J,Ji)[ΦLOI(Ji)∧NRS(q,MVOI(L,J,i))] /// G[NRS(s,MVOI(L,J,i))]]  (14) 

 ∀Ji in J: ∆R(Ji):= ΦJN(R,J,Ji)[ΦROI(Ji)∧NRS(q,MVOI(R,J,i))] /// G[NRS(s,MVOI(R,J,i))]]  (15) 

A set of rules for predicate q (WHERE clause) as in Definition 6 which transform q. The join 
operators J are transformed using ΦJN(I,J) (as in Definition 13) and the reduction NR (definition 
5) is also applied to s for rules ∆N: 

 ∀ci∈bpreds(q): ∆T(q,ci) := ΦJN(I,J)  [ΦT(q,ci)] /// G [s] (16) 

 ∀ci∈bpreds(q): ∆F(q,ci) := ΦJN(I,J)  [ΦF(q,ci)] /// G [s] (17) 

 ∀ci∈bpreds(q), ∀Ak∈battrs(ci) | nullable(Ak) :  
 ∆N(ci,Ak) := ΦJN(I,J)  [ΦN(ci,Ak)] /// G [NR(s,Ak)]   (18) 

Symmetrically, a set of rules for predicate s (HAVING clause) as in Definition 6. The join 
operators are transformed using ΦJN(I,J) and the reduction NR is also applied to q for rules ∆N: 

 ∀ci∈bpreds(s): ∆T(s,ci) := ΦJN(I,J)  [q] /// G [ΦT(s,ci)] (19) 

 ∀ci∈bpreds(s): ∆F(s,ci) := ΦJN(I,J)  [q] /// G [ΦF(s,ci)] (20) 

 ∀ci∈bpreds(s), ∀Ak∈battrs(ci) | nullable(Ak) :  
 ∆N(ci,Ak) := ΦJN(I,J)  [NR(q,Ak)]  /// G [ΦN(ci,Ak)] (21) 

5. ADVANCED RULES 

Usually, SQL queries may contain other common constructs in addition to selection and joining. 
For instance, the Transaction Processing Council (TPC) benchmarks such as TPC-H include 
many queries with unions, subqueries and framed relations (including the evaluation of 
aggregate functions). In addition, case expressions are a frequently used way to obtain derived 
attributes from logical expressions. 

In this section, the generation of coverage rules for this kind of constructs is presented. Section 
5.1 deals with case expressions, Section 5.2 deals with unions and subqueries. Sections 5.3 and 
5.4 deal with framed relations and the aggregate functions. 

5.1. Case expressions 

In SQL, a case expression is a function that specifies a conditional value. For example, the 
following expression returns v1 if p1 is true; if not, it returns v2 if p2 is true; if not, it returns the 
value specified by the ELSE clause (which is optional): 

CASE WHEN p1 THEN v1 WHEN p2 THEN v2 ELSE v3 END CASE 

The case expression may be considered as a derived attribute whose value is determined as a 
function f(p1..pn) of a set of predicates pi. The approach to obtain the coverage rules for the case 
expression consists in transforming its predicates pi into a single predicate and then to generating 
the coverage rules defined for select operators taking each base attribute of the predicates pi as 
the test conditions. 

Definition 17. (Coverage rules for a case expression in a select operator) Let R[p] be a select 
operator. Let f(q1..qn) be a derived attribute of p representing a case expression. Let the Case 
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Conditional Predicate ccp(f)=q1∧…∧qn be the logical conjunction of all predicates in the case 
expression. The set of coverage rules for f is obtained as in Definition 6, but applied to ccp(f) 
after appending it to the select predicate p: 

 ∀ci∈bpreds(ccp(f)): ∆T(f,ci) := R[p ∧ ΦT(ccp(f),ci)] (22) 

 ∀ci∈bpreds(ccp(f)): ∆F(f,ci) := R[p ∧ ΦF(ccp(f),ci)] (23) 

 ∀ci∈bpreds(ccp(f)), ∀Ak∈battrs(ci) | nullable(Ak) : 
 ∆N(f,ci,Ak) := R[p ∧ ΦN(ccp(f),ci,Ak)]  (24) 

Coverage rules for the SQL case abbreviations NULLIF and COALESCE are generated in the 
same way after transforming the case abbreviation into its corresponding case expression as 
specified in the SQL standard. 

Case expressions may appear as an attribute (in the select list or in grouping attributes) or in a 
select predicate. When a case expression appears in a select predicate, it is removed before 
generating the rules. If there is a framing the above transformations are applied to the predicate 
after the framing (HAVING).  

5.2. Multiple queries 

All coverage rules presented before this section are designed for a single RVE expressing a 
single query. However, a query may be composed of other queries in the following cases: 

• Several RVEs expressing queries are concatenated by the union operator (UNION clause). In 
this case, an independent set of coverage rules is generated for each of the queries that 
participate in the union. 

• An RVE expressing a query appears as a relation in a join operator (in the FROM clause in 
SQL): These are named derived tables. In this case an independent set of coverage rules is 
generated both for the main query and the derived table. 

• An RVE expressing a subquery appears as a derived attribute (when it is included in a scalar 
subquery), or as a logical predicate (when it is included in an IN predicate, an EXISTS 
predicate or a quantified comparison predicate with ALL, SOME or ANY). Subqueries can 
not be tackled independently from their main query when generating coverage rules as some 
attributes may be correlated with relations of the main query; therefore they need some 
context provided by the relations of the main query. 

The approach taken for subqueries is similar to the one taken for case expressions. A predicate is 
to be added to the main query in order to include the requirements imposed by the full predicate 
coverage criterion. 

Definition 18. (Coverage rules for a subquery) Let R[p] be a select operator. Let Q be a subquery 
and ∆i(Q) each of the coverage rules generated for Q when considered isolated from the main 
query. Let exists(Q) be a boolean predicate which is true iff the relational assignment of Q 
results in a non empty relation. The set of coverage rules for Q is obtained by embedding each of 
the coverage rules for Q in the select predicate: 

 ∀∆i(Q) obtained from Q: ∆Qi(Q,p) := R[p ∧ exists(∆i(Q))] (25) 

Similarly to the case expressions, if the subquery appears in a select predicate, it is removed 
before generating the rules. If there is a framing the above transformations are applied to the 
predicate after the framing (HAVING). 

5.3. Framed relations 

The previous coverage rules have been designed to tackle the most common operators for joining 
and selecting data from a set of relations. This section deals with the specific coverage rules that 
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are obtained from framed relations (in SQL, queries that include the GROUP BY clause). As 
explained in Section 2.2, a framed relation is in the form: 

Z ß R /// G, in SQL: SELECT G,F FROM R GROUP BY G 

The SQL Standard [1] specifies how each tuple (row) is grouped according to the set of grouping 
attributes G (grouping columns): “The result of the <group by clause> is a partitioning of the 
rows of T into the minimum number of groups such that, for each grouping column of each 
group, no two values of that grouping column are distinct”. 

Consider, for example, two tuples j, k on attributes A1, A2: (A1
j,A2

j) and (A1
k,A2

k). The predicate 
that determines whether both tuples belong to the same group is A1

j=A1
k ∧ A2

j=A2
k. Then a set 

of coverage rules may be created to fulfill the full predicate principle with respect to this 
predicate. 

Definition 19. (Evaluation of a framed relation) Let R(A) /// G be a frame operator, where G⊆A 
is the set of grouping attributes. Let Rj be each tuple j in R, and Ai

j each value of the attribute Ai 
at the tuple j. A pair of tuples j, k belong to the same group with respect to the grouping 

attributes G⊆A iff k
i

j
i

GA
AA

i

=∧
∈

. This predicate is named grouping predicate. 

Consider the previous example. Three coverage rules may be generated to check whether the 
attributes A1 and A2 determine the value of the grouping predicate: (1) A1

j=A1
k ∧ A2

j=A2
k, (2) 

A1
j≠A1

k ∧ A2
j=A2

k and (3) A1
j=A1

k ∧ A2
j≠A2

k. In order to be consistent with the definitions of 
coverage rules in previous sections, the corresponding coverage rules must be expressed in terms 
of three RVEs to check that there exists at least a pair of tuples such that each of the rules (1), (2) 
and (3) are fulfilled, respectively. Intuitively: 

• For rule (1) the original RVE may be transformed into another one which returns only those 
tuples that have groups composed of at least two tuples. 

• For each of the rules (2) and (3) the original RVE may be transformed into another one 
which excludes each grouping attribute G1, G2, respectively, and returns only those tuples 
that have groups composed of at least two tuples, and distinct values in A1, A2, respectively. 

Definition 20. (Coverage rules and transformations for framed relations) Let R(A) /// G be a 
frame operator, where G⊆A is the set of grouping attributes and Gi denotes the ith grouping 
attribute. Let count(*) be a function that returns for each group the number of tuples in the group. 
Let countd(Ai) be a function that returns for each group the number of tuples that have different 
values of Ai in the group. The coverage rule transformations to attain full predicate coverage of 
G are: 

 ΦG(R /// G) := R /// G [count(*)>1] 

 ΦGA(R /// G , Gi) := R /// X [countd(Gi)>1], X=G-{Gi} 

Then the set of coverage rules ∆G and ∆GA(Gi) are: 

 ∆G(R /// G) := ΦG(R /// G) (26) 

 ∀Gi∈G, ∆GA(R /// G , Gi) := ΦGA(R /// G, Gi) (27) 

A final remark has to be made related to the second rule ∆GA. If for any relation the grouping 
attributes contain all its primary keys and some other non key attributes, the coverage rules ∆GA 
for the non key attributes are impossible to be fulfilled and therefore they are not generated. 

Example 5. Consider a framed relation R /// G where G={A1,A2}. The coverage rules for the 
framed relation are: 

∆G(R///G) := R /// {A1,A2} [count(*)>1] 
∆GA(R///G, A1) := R /// {A2} [countd(A1)>1] 
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∆GA(R///G, A2) := R /// {A1} [countd(A2)>1] 

5.4. Aggregate functions 

Aggregate functions (named set functions in the SQL Standard [1]) are functions that perform 
statistic computations over the values of an attribute for each of the groups. These functions are 
avg, max, min, sum, count. Each function is qualified by DISTINCT or ALL (if none specified, 
ALL is assumed by default). Two relevant conditions control the behaviour of this computation: 
(1) If distinct is specified, redundant duplicate values are eliminated and (2) If there is one or 
more null values they are eliminated. 

Intuitively, two different rules may be generated to test these conditions, which for a given 
attribute Ai require the existence of a group such that: (1) there exist two tuples with equal values 
in Ai (for removal of duplicates) and (2) there exists a tuple with a null value in Ai and another 
one with a non null value in A (for removal of null values). An additional tuple is to be required 
in order to obtain an evaluation of the aggregate function over at least two values. 

Definition 21. (Evaluation of aggregate functions) Let f(Ai) be an aggregate function with the 
default qualifier ALL {avg, max, min, sum, count} or with the optional qualifier DISTINCT 
{avgd, maxd, mind, sumd, countd}. Let Rj be each tuple j in a group of a framed relation R///G, 
and Ai

j each value of the attribute Ai at the tuple j. The test conditions are: (1) Ai
j=Ai

k, j≠k and 
(2) nl(Ai

j) provided that the resulting group contains at least two tuples. As in previous sections 
the coverage rules must be expressed as an RVE. 

Definition 22. (Coverage rules and transformations for aggregate functions) Let R(A) /// G [q] 
be a frame operator, where G⊆A is the set of grouping attributes Gi. Let f(Ai) be an aggregate 
function over the attribute Ai The coverage rule transformations to attain full predicate coverage 
of F with respect to Ai are: 

 ΦA(R /// G [q], Ai) := R /// G [q ∧ count(Ai)> countd(Ai) ∧ countd(Ai)>1] 

 ΦAN(R /// G [q], Ai) := R /// G [q ∧ count(*)>count(Ai) ∧ countd(Ai)>1] 

Then the set of coverage rules ∆A(Ai) and ∆AN(Ai) are: 

 ∆A(R /// G, Ai) := ΦA(R /// G, Ai) (28) 

 ∆AN(R /// G, Ai) := ΦAN(R /// G, Ai), if Ai is nullable (29) 

Example 6. Consider a framed relation R /// {A1} [sum(A2)=10]. The coverage rules for the 
aggregate function sum are: 

∆A(R///G, A2) := R /// {A1} [sum(A2)=10 ∧ count(A2)>countd(A2) ∧ countd(A2)>1] 
∆AN(R///G, A2) := R /// {A1} [sum(A2)=10 ∧ count(*)>count(A2) ∧ countd(A2)>1] 

6. SUMMARY AND TOOL SUPPORT 

This section first provides a summary of all coverage rules (∆) and coverage rule transformations 
(Φ) that have been defined so far. Table 3 summarizes for each syntactic element and 
combination in a query (first column), the applicable coverage rules (second column) and the 
definition in which the rules are described (third column). The applicable transformations to 
obtain the rule are also summarized (fourth column) along with the definition in which they are 
described (fifth column). Finally, the lower part of the table summarizes other additional 
transformations that are used in the definitions. 

The generation of the SQLFpc coverage rules described above has been completely implemented 
in a set of tools, available at http://in2test.lsi.uniovi.es/sqlfpc. The architecture is depicted in 
Figure 5 and the available tools are described below: 

http://in2test.lsi.uniovi.es/sqlfpc
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• SQLFpcWeb: A Web interface from which the user can generate the rules interactively. 
Using a web browser the user specifies the query and information about the database schema 
(tables, columns, datatypes and other constraints). Each generated rule contains the SQL 
query that is to be executed for evaluating the coverage and a textual description of the test 
point requirement that is satisfied if the rule is covered. 

• SQLFpcWS: A Web Service that performs the same function. It is intended to be integrated 
with other applications. The external application has to specify the query and the information 
about the database schema in an internal XML format and then invoke the service, which 
returns the rules embedded in an XML document that can be further processed. A 
complementary tool named XDBSchema may be used to obtain the XML representation of 
the schema from a local database. 

• SQLRules: A standalone Java application that allows both the generation and evaluation of 
the rules against a previously populated database. The user specifies the query and the 
information required to connect to a local database. Then the database schema is 
automatically extracted using the standard java jdbc methods to access the metadata. Views 
are considered like tables. Finally, the web service (SQLFpcWS) is invoked and the 
generated rules displayed. The user has an additional option to execute the rules against the 
existing data. Then the rules that are covered along with the percent coverage are displayed. 
Also, if the query has parameters, there is the possibility of specifying the actual parameter 
values that will be used when evaluating the coverage. 

Internally, the SQLFpc core is a set of classes that first parse the SQL statement received and 
store it along with the database schema in internal objects. After that, it proceeds to generate 
each of the rules by applying the transformations described in previous sections. The database 
schema is used to determine the constraints (mainly referential and nullability) which condition 
how the transformations are applied. 

In a common scenario, a tester creates one or more test suites, each of which may have its own 
database. Then the tester executes the test suite and evaluates the coverage of the test database 
against each executed query. The information may be used to modify the test database if needed 
to increase the coverage. 

All coverage rules described in previous sections handle individual select queries, and all 
coverage rules described have been implemented in the tools and thoroughly tested. However, 
there are a number of limitations to its use in database applications that are described below. 

The SQLFpc criterion focuses on the queries that retrieve information from the database 
(SELECT queries), which are the most frequently used SQL statements in commercial 
applications as shown by Pönighaus [21] that reports that select queries are the 68% of the total 
number of queries. However, the other SQL main statements that modify the database state are 
not directly supported. These statements sometimes perform some kind of selection of data and 
coverage rules for this selection could be generated. For instance, the INSERT statement is 
composed of several assignments of values to columns along with an optional SELECT clause to 
select from the database the values for the inserted rows. So as, the coverage rules for this clause 
could be generated and used to measure the coverage. Similarly, the UPDATE and DELETE 
statements may use a WHERE clause to select which rows will be updated or deleted. In this 
case the coverage rules for the where clause could also be used to measure the coverage. 

The SQL queries are considered in isolation by the current tools. That means that in order to 
evaluate the coverage of the statements that are executed from an application, additional work 
should be done by instrumenting the program and calling the web service (SQLFpcWS) to obtain 
and execute the rules against the query that is being executed. A tool for doing so would be 
similar to the one developed by Zhou and Frankl [22] which executes the SQL mutants generated 
from the queries embedded in Java programs. Nevertheless, the problem of identifying all 
queries that may be executed by the program is still present, although the most complete is the 
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coverage of the imperative parts of the program, more queries will be executed and their 
coverage analyzed. 

Finally, the current implementation covers a wide range of usual SQL constructs and has been 
tested using SQL Server and Oracle database management systems. As DBMS vendors include 
different features that are sometimes different from the SQL standards, it is possible to have 
queries that fail to generate the rules because of features that are not yet considered in the 
supported SQL syntax. A mechanism to report problems and propose enhancements is embedded 
in the tools. 

7. CASE STUDY 

In this section, a case study is presented using a set of queries obtained from an open source real-
life Enterprise Resource Planning (ERP) application. Firstly, in Section 7.1 the set of queries 
used and the test databases are described. Next in Section 7.2 the results of the generation and 
execution of the rules are presented. Finally, in Section 7.3 the process of developing test cases 
for one of the queries is explained. 

7.1. Set of queries and test database 

Compiere is an open source ERP and Customer Relationship Management (CRM) business 
solution for Small and Medium-sized Enterprises. In this case study a set of queries taken from 
this application is used. In particular, the queries constitute the full set of views4 that are 
packaged with the application. From the testing point of view, this set is one of the most 
interesting as the views are intensively used by the rest of the queries of the application and 
because they contain complex queries. 

This set of queries combines small and large queries which use many different tables in the 
database. Appendix A contains a listing of each query along with their main characteristics 
measured in terms of number of SELECT clauses, conditions in WHERE and HAVING, tables 
and case expressions. In total, there are 107 queries. The largest queries have up to 24 conditions 
in the WHERE clause (query named C_Invoice_Candidate_v), joins of up to 15 different tables 
(C_Order_Header_v) and up to 19 case expressions (C_Dunning_Line_vt). Some queries are 
composed of the union of many queries: the largest ones include 15 queries (RV_UnPosted), and 
5 queries with joins over 22 tables (C_Invoice_LineTax_vt). The set of queries uses a total of 
136 different tables from the Compiere database schema. The tables have an average of 23 
columns; C_PAYMENT is the largest with 84 columns.  

Before the generation and execution of the rules, a database populated with data must be 
obtained. The approach taken was generating four different test databases with different sizes, in 
order to show the performance of the rules when executing against the databases. The open 
source tool dbMonster5 was used for such purpose. The resulting databases have 4, 10, 100 and 
1000 rows per table under the Oracle XE 10g database management system. 

7.2. Generating and running the rules 

For each query, the set of coverage rules has been generated using the SQLFpc tools and then 
executed against each test database in order to calculate the percent coverage. Table 4 depicts a 
summary of the results. Rows represent each type of rule. The third column shows the number of 
rules generated, and the last columns the coverage for each of the test databases (sizes 4 to 
1000). The details for each query are included in Appendix A. 

                                                
4 The set of views are found in the file compiere-all\db\database\Create\Views.sql of the source distribution, which 
can be found at http://sourceforge.net/projects/compiere. The Compiere version used in this case study is 2.53b. 
5 dbMonster is an open source tool that generates random data in a database, available at 
http://dbmonster.kernelpanic.pl/ 
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In order to assess the fault detection ability of the test data and compare it with the coverage, a 
set of mutants has been generated for each query using the SQLMutation tool [23] and executed 
against the test databases. The mutants for SQL have been previously described by the authors 
[24] and are organized into four categories. The first two categories are specific to the SQL 
language and the others are similar to those used in procedural code: 

• SC - SQL clause mutation operators: These perform mutations on the main clauses: 
SELECT, JOIN, sub-queries, GROUP BY, UNION, ORDER BY and aggregate 
functions. 

• NL - NULL mutation operators: Mutations related to the handling of null values, whose 
aim is to ensure that test cases exist that exercise the nulls both in the conditions and the 
query outputs. 

• OR - Operator replacement mutation operators: These include mutations of logical and 
relational operators and expressions. 

• IR - Identifier replacement mutation operators: Replacement of columns, constants and 
query parameters that are present either in the query or in the tables used by the query. 

Table 5 displays a summary of the total number of mutants and scores for each mutant category. 
The structure is similar to that of the previous table. Details for each query are also included in 
Appendix A. 

The first consideration is made about the number of the rules. The total number of coverage rules 
is 1,902 (a mean of 17.7 rules per query), which is small compared with the number of mutants: 
192,203 (a mean of 1,796 per query). It must be noted, however that the largest mutant category 
is that corresponding to IR operators, because there are many tables with many columns, and 
many column references in the queries. If IR operators are not considered, the mean of mutants 
is 279.5 per query.  

As the database increases in size, the coverage attained augments due to the effect of the 
additional rows. However, on average, the maximum is 51.0% (database with 1,000 rows per 
table), because many rules are not covered due to complex situations that are not achieved using 
a random database load. The mutation score shows a similar trend, although starting from upper 
values. A consequence is that as coverage augments because there is a more complete test input, 
the mutation coverage also increases. However, it is difficult to increase the coverage and 
mutation score if the database is randomly generated. 

The mutation scores have been calculated as the total number of dead mutants divided by the 
total number of mutants, excluding those equivalent mutants that are automatically detected. In 
this experiment the number of equivalent mutants that have been automatically detected for the 
SC category is 632 which led to a 14% of the SC mutants (there are only 7 equivalent mutants 
automatically detected in other categories). Another study performed by the authors [24] led to a 
6% of equivalent mutants (2.5% were automatically detected), and considering only the SC 
mutants the percentage was 28% (17% automatically detected). However, in this experiment the 
version of SQLMutation is able to detect more equivalent mutants and the queries are much 
more complex than in the former which makes it difficult to estimate the number of equivalent 
mutants. 

A very important practical consideration is related to the performance both for generation and 
evaluation of the rules. The coverage rules can be used in a number of scenarios: to evaluate the 
completeness of a given test database in relation to a query, to assist the development of new test 
cases, to complete a previous test database, or even to assist both the development and testing of 
a query. In all cases the time spent on the evaluation of the rules is a very important factor, which 
becomes critical if test cases are being developed or completed in an interactive way. Also, the 
generation time is important if the query is being developed and tested at the same time. 
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In Appendix A the times spent on the generation and evaluation of rules for each query are 
detailed. The generation of rules is made in a single CPU server Xeon 3 Ghz, and execution is 
made in a desktop P IV 3 Ghz with a local Oracle database server. In summary, the generation 
time of the full set of rules for all the 107 queries is 45.9 seconds, and the evaluation time ranges 
from 128.5 seconds (database with 4 rows per table) to 170.5 seconds (database with one 
thousand rows per table). These numbers show a good scalability on the database size that allows 
an interactive evaluation of the coverage even with large databases and queries. Considering the 
individual queries, the average generation time is 0.43 seconds per query and 0.024 seconds per 
rule. The average evaluation time using the largest database is 1.59 seconds per query and 0.089 
seconds per rule. The queries with largest evaluation times (using the largest database) are 
C_Invoice_Candidate (which spends 11.6 seconds to run 64 rules) and C_Order_Header_v 
(which spends 9.2 seconds to run 34 rules over 15 tables). These numbers are also an indicator 
that allows the use of the coverage criterion in an interactive way to develop or complete a test 
database. 

7.3. Constructing test cases using the rules 

Some of the queries used in this case study have obtained low coverage (under 50%) due to the 
fact that they are complex and it is unfeasible to achieve a good coverage using a randomly 
selected test database. In this section the scenario corresponding to a tester who develops test 
cases to maximize the coverage is presented. Firstly the test databases for eight queries are 
developed and the results of coverage and mutation score compared with the random databases. 
Next a discussion about the coupled conditions detected in the rules is presented. Lastly, the 
evolution of the coverage and mutation score when adding rows to the test databases and a 
discussion of the threats to validity are presented. 

7.3.1. Generated test d atabases 

The results obtained with the test databases generated for eight of the queries listed in Appendix 
A are displayed in Table 6. The left part of the table characterizes each query in terms of the 
number of case expressions (CE), conditions (NC), queries (NQ) and tables (NT). As an 
example, the SQL of the first query (C_Invoice_Candidate_v) is presented in Appendix B. This 
query performs a join of four tables plus another one inside a subquery, it has a GROUP BY 
clause and a complex WHERE clause composed of 24 conditions. 

The test input for each query consists of a single database load which is generated in several 
steps. The process begins with a blank test database and the generation of the coverage rules. At 
each step the tester adds a test point (a number of rows) to the test database in order to cover a 
single coverage rule and checks whether it is covered. If not he/she modifies the test point until 
covered. The middle columns of Table 6 display the number of test points for which any row has 
been added (TP), the total number of rows that have been added (RW) along with the SQLFpc 
number of rules (NR) and coverage (Cov.) and the number of mutants (NM) and mutation score 
(Mut.). The right columns summarize the results of SQLFpc coverage and mutation score 
presented in Appendix A that have been obtained with random databases of sizes 100 and 1000 
rows per table respectively. 

A first comparison between the SQLFpc coverage obtained for the developed test databases and 
that obtained for the random databases with 1000 rows per table shows that the former is always 
higher than the latter, because the test database has been developed in order to maximize the 
SQLFpc coverage. The mutation scores are higher in five queries and lower in three (with a 
small maximum difference of 4.27%). If compared with the random database with 100 rows per 
table, only two queries achieve lower mutation score (the maximum difference is 2.93%). If 
comparing with random databases with 10 rows per table (which means a total of 60, 70 and 40 
rows for each of the three queries respectively) the mutation scores are always considerably 
higher for the developed database. 
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7.3.2. Coupled cond itions 

Although the SQLFpc coverage is high, it is not 100% in four queries, which means that there 
are some impossible test points. This is due to the presence of some coupled conditions in 
WHERE and JOIN clauses. Three different kinds of coupling have been detected: 

Coupling in WHERE conditions: Consider the query C_invoice_candidate_v which includes a 
condition in the form p=(o.ir='S' ∧ nl(bp.isid)) ∨ (o.ir='S' ∧ ¬nl(bp.isid) ∧ other), where other 
denotes a complex condition and the names of attributes have been simplified for readability. 
When generating the rule ∆F(p,¬nl(bp.isid)), after reducing nl(bp.isid) the resulting rule has the 
following predicate: nl(bp.isid) ∧ (o.ir='S') ∧¬(o.ir='S') ∧ other, which requires the condition 
o.ir='S' to be true and false simultaneously making the rule impossible to be fulfilled. This kind 
of coupling could be avoided by putting condition o.ir='S' outside of the parenthesis. 

Coupling in WHERE conditions caused by the joins: Consider another part of the same query as 
above and the join of the relations bp and si: bp[bp.isid=si.isid]Lsi [¬nl(bp.isid) ∧ (nl(si.if) ∨ 
si.if=’D’)]. Note that the attribute si.if is not nullable, but it is checked for nullability because it 
may belong in the left outer increment, and so, the query is correct. When generating the rule 
∆T(p,nl(si.if)) the resulting rule is bp[bp.isid=si.isid]Lsi [nl(si.if) ∧ ¬nl(bp.isid)]. Condition 
si.if=’D’ has been reduced. However the rule requires ¬nl(bp.isid) which implies that no tuples 
are generated in the left outer increment, and then si.if can not be null. In this case the condition 
nl(si.if) in the original query is redundant. 

Coupling in JOIN conditions: Consider the query C_Invoice_LineTax_v. A fragment of this 
query joins relations il, uom, p and pt:  

il [il.uomid=uom.uomid]I uom [il.pid=p.pid]L p [il.pid=pt.pid ∧ uom.adl = pt.adl]L pt 

As the attribute il.pid is nullable a ∆NL rule is generated for the second join: 

il [il.uomid=uom.uomid]I uom [il.pid=p.pid]L p [il.pid=pt.pid ∧ uom.adl = pt.adl]I pt [nl(p.pid) ∧ 
nl(il.pid)]. 

Because it requires nl(p.pid) the join condition of the last join evaluates to null and then the rule 
is impossible. The coupling appears because the same nullable attribute appears in more than one 
join, which is not frequent, but in this query it causes most of the impossible rules. 

7.3.3. Coverage and mutation score trends 

For each step the number of rows added to the database, the full predicate coverage and the 
mutation score has been measured. Figure 6 depicts for each query the evolution of the number 
of rows added to the database (in percent), coverage and mutation score at each step. 

The trend shown by the coverage is nearly linear with the increasing of the size of the database 
beginning near zero for the first step (because each test point is designed to cover an individual 
rule). The mutation score begins at a high value (around 40% in most of cases) corresponding to 
a set of very easy to be killed mutants but also shows an increasing trend as the coverage 
increases. Queries that have a UNION clause (C_Invoice_Line_Tax_vt, RV_BPartnerOpen and 
RV_OpenItem) experiment a large increase of mutation score at a middle step, which 
corresponds with the first step in which test data is developed for the second query of the union. 
This increasing of mutation coverage is due to the same reason as the high values achieved in the 
first step of all queries.  

Some queries (C_RFQResponseLine_v, C_RFQResponseLine_vt and RV_WharehousePrice) 
show a small range of variation in the mutation score between the first and last step. The reason 
is that in these queries, the score for the IR category has a short range of variation and because of 
the number of IR mutants is much higher than the others, the global effect is also a short range of 
variation. However, considering only the categories of mutants specifically related to SQL (SC 
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and NL) the range of variation is considerably larger (16.0% to 76.0%, 10.7% to 71.4% and 
5.6% to 44.5%, respectively). 

7.3.4. Threats to val idity 

The above results are an indication that developing test cases for increasing the coverage will 
also increase the mutation score and therefore the fault detection ability of the test cases (if it is 
assumed that the mutants are a good indication of the faults that may be present in the query). On 
the other hand, designing or completing the test database for covering the rules is not a difficult 
task if the tester has knowledge about the database schema of the tables involved in the query. It 
is an incremental process in which at each step the tester focuses on covering a single rule and 
then develops a test point which consists of adding a few rows to the test database (a mean of 
1.63 rows per rule considering the eight analyzed queries). However, there are several issues that 
may threaten the validity of these results, which are discussed below: 

Construct validity deals with the issue of whether the measured variables adequately capture the 
concepts that they are supposed to measure. The mutation score is used to evaluate the fault-
detection ability of the test data, but their representativeness of real-life faults may be limited. 
Previous studies on mutation testing conducted by Andrews et al. [25,26] show that mutation 
analysis is an appropriate method for evaluating the fault detection capabilities of a test suite. In 
this experiment, some of the mutants for SQL are similar to the mutants used in the 
aforementioned studies (OR and IR categories), which contributes to mitigate this threat. 
However, it should not be forgotten that testing SQL queries is somewhat different to testing 
imperative programs because of the high input space of test cases and also because a single 
query can be considered as a small program that performs many complex operations. 
Furthermore, other additional mutation operators like the one proposed by Kaminski and Amman 
[27] are able to detect more faults with a lower number of mutants. Also, the mutants used in this 
study are first order mutants (only one fault is introduced by each mutant); however, some 
carefully selected high order mutants may be more effective than first order mutants as shown by 
Jia and Harman [28]. 

Other mutants are very different than mutants for imperative programs (SC and NL categories). 
Studies in the errors that humans commit when writing SQL queries (Chan and Wei [29], Brass 
and Goldberg [30]) conclude that potential problems are spread across all main SQL clauses. The 
SQL mutants have been constructed to take into account the faults introduced by this kind of 
errors, which contributes to mitigate this risk. Nevertheless, further research should be done in 
order to evaluate whether these mutants appropriately model such kind of faults. 

Internal validity is concerned with the causal relationship between independent and dependent 
variables. The test databases have been manually created following the order in which the 
coverage rules are presented. This could lead to different databases and then different results if 
they are created by a different tester or by following a different order. 

External validity deals with issues that limit the ability to generalize the results. In the 
experiments the queries are taken from a real application, which contributes to mitigate this 
threat. However only eight queries have been selected from those that are more complex and all 
queries are taken from the same application, which may limit the generalization of the results. 

8. RELATED WORK 

The problem of testing database applications has been addressed in the literature from different 
perspectives. On some occasions the research is targeted towards the definition of adequacy 
criteria such as in this paper. On others the focus is on the automatic generation of test data, the 
checking of the SQL queries sent to the database management system or regression testing. The 
basic artifact to be tested is on some occasions, the query itself in relation with the test data, on 
others the program that creates and issues the database queries. In general, in this work, 
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compared with others, the scope is narrower as it focuses on the evaluation of the coverage of 
individual SELECT queries, but more complete with regards to the treatment of many details of 
the SQL language and a more exhaustive measurement of the coverage. In this section a review 
of related literature is made and the possible use of SQLFpc in the context of the other 
approaches is also discussed. 

Table 7 summarizes the related work. It is organised from the point of view of the goal (assess 
adequacy, generate test data or other regression testing related activities such as reorder and 
select test cases or reduce test data) and the criterion that is being used to assess the adequacy or 
to guide the test data generation. Using a traditional classification of coverage criteria this 
classification is made with regards to the kind of coverage: structural (control-flow based or data 
flow based), fault-based or those which use some kind of specification. The table is completed 
with two additional columns. The scope column indicates whether only SELECT queries are 
used (select) or another kind of queries like the ones that modify the database are also considered 
(all). The integration column indicates whether the approach considers single queries (isolated) 
or queries embedded in an application (embedded).  

In the control-based category, a previous work by Suárez-Cabal and Tuya [31,32] incorporates a 
notion of multiple condition coverage for SELECT and JOIN in individual queries by creating a 
set of coverage trees. Each of them has a number of coverage nodes that represent the situations 
to be covered by the query when executed against the test data. A further controlled experiment 
[5] in which each of the situations to be covered is presented to the user in the form of a textual 
rule reveals that using this approach leads to test inputs able to reveal more faults in the queries 
than when it is not used. However, the main drawback is the scalability and performance because 
the coverage trees may grow exponentially and the evaluation of the coverage is done 
algorithmically. These issues are overcome by SQLFpc because there is no such exponential 
growing and the evaluation is efficiently done by the DBMS itself.  

Another related approach is that of Chan and Cheung [33], that transforms the SQL query into a 
procedural language (C++) that can be further used to apply other criteria over the transformed 
program. This approach may have some of the aforementioned drawbacks, and also the difficulty 
of generating a translation that preserves the semantics of the queries for a large subset of the 
SQL language. 

A very different, as well as complementary approach is the “command form coverage” proposed 
by Halfond and Orso [34] that focuses on how the SQL strings containing the query to be 
executed are constructed by the program. This approach is applicable in many applications in 
which different variants of a query are elaborated dynamically and sent back to the DBMS in a 
single interaction point. The coverage is measured in terms of the percentage of different queries 
that are actually generated in relation to the total number of queries that could be generated. 
However, neither the coverage of each of the queries nor the test database is taken into account. 
Therefore, this may be complementary to SQLFpc by using a composite coverage criteria based 
on the different queries that are exercised and the coverage of each one when executed against 
the test data. 

In the fault-based category the authors developed a set of mutants and a tool for individual SQL 
queries [23,24]. This has been extended by Zhou and Frankl [22] by means of a tool for 
executing the mutants of the queries that are embedded in applications written in Java. Chan et 
al. [35] propose a set of mutants that take into account a database conceptual model and Shahriar 
and Zulkernine [36] a set of mutants for SQL statements and database method API calls. 

In the data-flow based category, Kapfhammer and Soffa [37] define the first set of data-flow 
criteria based on the definition and use of database entities at different levels of granularity 
(database, relation, attribute, record and attribute values). The data-flow criteria has been 
extended by Willmor and Embury [38] and used by Leitao Jr. et al. [39] in the context of active 
databases. The initial coverage criteria developed by Kapfhammer and Soffa leads to the concept 
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of “test coverage monitoring” [40] which expands their previous work. The automation of the 
approach is provided by a tool which instruments the program and the test suite and produces the 
coverage results. This goal is close to that presented in this paper, which intends to provide a 
complete analysis tool. However, the criteria are rather different and are not directly comparable. 
SQLFpc deals with the use of database entities at the record level and its goal is to exercise as 
much as possible complex queries in relation to the input data. It considers both the data entities 
that are used and those that are not used, which are also very relevant in testing, because faults in 
the query may produce both the presence of unexpected outputs and the absence of expected 
outputs. 

In the specification-based category there is a number of very different works. The work of Chays 
et al. [41,42] in the AGENDA tool which is modified by Deng et al. [43] to include transactions 
is loosely related to the category-partition method. The user specifies interesting groups 
(categories) of values. Along with other heuristics and information about constraints of the 
database schema the groups are combined by a data generator. This produces a set of “test 
templates” that, after replacing the groups by real values, are used to fill the database. However, 
this approach on some occasions leads to empty outputs because the different combinations of 
rows may be filtered due to the presence of other clauses like joins. This problem is further 
addressed [44] by introducing “generation queries” that select among the combination of rows 
those that produce some result and are then candidates to be inserted in the database. This 
procedure may cover some of the coverage rules generated using SQLFpc, but, when queries are 
more complex, a possible use of the coverage rules as generation queries may produce many 
other test templates that allow rows to be inserted to exercise the logic of the query more deeply.  

A quite different approach is that of Willmor and Embury [45,46] in which the database state 
required for testing is specified by the tester using intensional constraints in an SQL like 
language. In this case, the intensional constraints are the criterion used to fill or augment the 
database. The “reverse query processing” by Binnig et al. [47] uses the desired output (an 
extensional specification) to generate the test inputs. A further work [48] allows the user to 
specify the outputs in the form of SQL rules (which is an intensional specification). Both 
approaches may be able to determine test data that cover the specification and so, may be able to 
detect different kinds of faults with test data intended to cover the implementation. However, 
writing the specifications is costly, and if the specification is not fully complete, using just the 
minimum set of data that covers that specification may lead to other undetected kinds of faults. 
As in the previous case, the rules generated by SQLFpc criterion (that are also SQL queries) may 
be used as a complement to the user specified constraints for generating more suitable test data. 

Other approaches directed towards test data generation use different kinds of constraint solvers 
to populate the database. Tsai et al. [49] translate the query into a set of systems of linear 
inequalities. Zang et al. [50] and Khalek et al. [51] generate a set of constraints that feed a 
general purpose constraint solver. Emmi et al. [52] use a “concolic execution” that creates a set 
of constraints intended to achieve coverage of both the source of a Java program and the 
predicates in WHERE clauses. Starting from an initial database and random inputs the program 
is executed and some constraints over the not yet covered situations are generated. By solving 
these constraints more inputs are added to the test and the process is repeated. In these works the 
adequacy criterion used to guide the generation of the test database is not specifically tailored for 
databases but predicates or user specified constraints are used. If the SQLFpc coverage rules are 
translated into the constraints accepted by the solver or directly generated in this language, they 
may be used to feed the solver to generate more meaningful test data. 

Finally, with a different goal, there exists some work on regression testing for database 
applications that focuses on the order of execution and the number of resets of the test database 
(Haftmann et al. [53,54]) or the selection of test cases (Haraty et al. [55], and Willmor and 
Embury [56]). When testing database applications another approach to facilitate regression 
testing is that of reducing the size of the test database which may lead to test cases that are faster 
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in relation to the execution and the reset of the database to its initial state, and make the checking 
of the actual results easier. The SQLFpc coverage rules have been used by the authors with this 
goal [57]. As the SQLFpc coverage rules retrieve a set of output rows that satisfy each test point 
requirement, the source tables that produce these rows are traced back and then a small subset of 
rows kept in the database while the others are discarded. This leads to considerable reductions if 
the database is large. 

9. CONCLUSIONS AND FUTURE WORK 

This paper elaborates a coverage criterion (SQLFpc) to assess the adequacy of the data in a test 
database in relation to the SQL query that is executed. The coverage is based on the well-known 
MCDC and Full Predicate Coverage criteria. The criterion defines a number of test point 
requirements for the query under test that lead to executable coverage rules obtained by applying 
a set of transformations to the query. 

The coverage criterion considers a large subset of the SQL language (selection, joining, 
grouping, aggregate functions, subqueries, case expressions and null values) applicable to 
SELECT clauses. The elaboration of the test point requirements for the different SQL clauses is 
detailed, taking into account their specific semantics, as is also the elaboration of the coverage 
rules for each SQL operator and their combinations.  

As a test database becomes more complete, measured in terms of the SQLFpc coverage, the 
mutation score also increases, making test databases designed for higher coverage to attain better 
fault detection ability of the queries. Moreover, this approach is fully automated, and the 
generation and evaluation of the coverage rules against a live database is very efficient. A set of 
tools is available for such purpose. The tools can be used as an assistant by the tester or 
developer in evaluating the coverage of test databases, designing test databases from scratch, 
completing test cases and the simultaneous development and testing of complex queries.  

This work may be extended in several directions. A first area of research is the experimentation 
on how the criteria may help the tester to develop more effective test cases and the trade-offs 
between cost and quality of the tests, including studies about the fault detection effectiveness. A 
second area is related to other different applications or tools: In order to allow the evaluation of 
the coverage for the queries that are issued from an application, the tool support may be 
improved as discussed in Section 6. Additionally, the coverage rules may be used as a criterion 
to guide the automatic generation of test databases and to perform a reduction of the database as 
indicated in Section 8, which is now an ongoing work.  

REFERENCES  
1. International Standards Organisation. ISO/IEC 9075, Information technology - Database languages – 

SQL, 1999. 
2. McClure RA, Krüger IH. SQL DOM: Compile time checking of dynamic SQL statements. 

Proceedings of the 27th International Conference on Software Engineering. ACM: New York, NY, 
2005; 88-96. 

3. Waraporn N, Porkaew K. Null semantics for subqueries and atomic predicates. IAENG International 
Journal of Computer Science 2008; 35 (3): 08. 

4. Kaminski G, Williams G, Ammann P. Reconciling perspectives of software logic testing. Software 
Testing, Verification and Reliability 2008; 18 (3): 149-188. 

5. Tuya J, Dolado J, Suárez-Cabal MJ, de la Riva C. A controlled experiment on white-box database 
testing. ACM SIGSOFT Software Engineering Notes 2008; 33 (1): 1-6. 

6. Tuya J, Suárez-Cabal MJ, de la Riva C. A practical guide to SQL white-box testing. ACM SIGPLAN 
Notices 2006; 41 (4): 34-61. 

7. Offutt J, Liu S, Abdurazik A, Ammann P. Generating test data from state-based specifications. 
Software Testing, Verification and Reliability 2003; 13(1): 25-53. 



 29 

8. Chilenski JJ. An investigation of three forms of the modified condition decision coverage (MCDC) 
criterion. Technical Report DOT/FAA/AR-01/18, U.S. Department of Transportation, Federal 
Aviation Administration, April 2001. 

9. Codd EF. A relational model of data for large shared data banks. Communications of the ACM 1970; 
13 (6): 377-387. 

10. Codd EF. The Relational Model for Database Management - Version 2. Addison-Wesley, 1990. 
11. RTCA Inc. DO-178-B: Software Considerations in Airborne Systems and Equipment Certification. 

Radio Technical Commission for Aeronautics (RTCA), 1992. 
12. Kapoor J, Bowen JP. Experimental evaluation of the tolerance for control-flow test criteria. Software 

Testing, Verification and Reliability 2004; 14 (3): 167-187. 
13. Yu TK, Lau MF. A comparison of MC/DC, MUMCUT and several other coverage criteria for logical 

decisions. Journal of Systems and Software 2005; 79 (5): 577-590. 
14. Chilenski JJ. Miller SP. Applicability of modified condition/decision coverage to software testing. 

Software Engineering Journal 1994; 9 (5): 193-229. 
15. Kapoor J, Bowen JP. A formal analysis of MCDC and RCDC test criteria. Software Testing, 

Verification and Reliability 2005; 15 (1): 21-40. 
16. Woodward MR, Hennell MA. On the relationship between two control-flow coverage criteria: all JJ-

paths and MCDC. Information and Software Technology 2006; 48 (7): 433-440. 
17. Rajan A, Whalen MW, Heimdahl MPE. The effect of program and model structure on MC/DC test 

adequacy coverage. Proceedings of the 30th International Conference on Software Engineering. 
ACM: New York, NY, 2008; 161-170. 

18. Jones JA, Harrold MJ. Test-suite reduction and prioritization for modified condition/decision 
coverage. IEEE Transactions on Software Engineering 2003; 29 (3): 195-209. 

19. Ammann P, Offutt J, Huang H. Coverage Criteria for Logical Expressions. Proceedings of the 14th 
International Symposium on Software Reliability Engineering. IEEE Computer Society: Los 
Alamitos, CA, 2003; 99-107. 

20. Ammann P, Offutt J. Introduction to Software Testing. Cambridge University Press: Cambridge, UK, 
2008. 

21. Pönighaus R. ‘Favourite’ SQL-statements - an empirical analysis of SQL-usage in commercial 
applications. Proceedings of the 6th International Conference on Information Systems and 
Management of Data (Lecture Notes in Computer Science, vol. 1006), Springer, 1995; 75-91. 

22. Zhou C, Frankl P, Mutation testing for java database applications. Proceedings of the 2nd 
International Conference on Software Testing Verification and Validation. IEEE Computer Society, 
Washington DC, 2009; 396-405. 

23. Tuya J, Suárez-Cabal MJ, de la Riva C. SQLMutation: a tool to generate mutants of SQL database 
queries. Proceedings of the Second Workshop on Mutation Analysis. IEEE Computer Society: Los 
Alamitos, CA, 2006. 

24. Tuya J, Suárez-Cabal MJ, de la Riva C. Mutating database queries. Information and Software 
Technology 2007; 49 (4): 398-417. 

25. Andrews JH, Briand LC, Labiche Y. Is mutation an appropriate tool for testing experiments?. 
Proceedings of the 27th International Conference on Software Engineering. ACM: New York, NY, 
2005; 402-411. 

26. Andrews JH, Briand LC, Labiche Y, Namin AS. Using mutation analysis for assessing and 
comparing testing coverage criteria. IEEE Transactions on Software Engineering 2006; 32 (8): 608-
624. 

27. Kaminski G, Ammann P. Using a fault hierarchy to improve the efficienciy of DNF logic mutation 
testing. Proceedings of the 2nd International Conference on Software Testing, Verification and 
Validation. IEEE Computer Society: Washington DC, 2009: 386-395. 

28. Jia Y, Harman M. Constructing subtle faults using high order mutation testing. Proceedings of the 8th 
IEEE International Working Conference on Source Code Analysis and Manipulation. IEEE 
Computer Society, 2008; 249-258. 

29. Chan HC, Wei KK. User–database interface: the effect of abstraction levels on query performance. 
MIS Quarterly 1993; 17 (4): 441–464. 

30. Brass S, Goldberg C. Semantic errors in SQL queries: a quite complete list. Journal of Systems and 
Software 2006; 79 (5): 630–644. 



 30 

31. Suárez-Cabal MJ, Tuya J. Using an SQL coverage measurement for testing database applications. 
Proceedings of the 12th ACM SIGSOFT Symposium on the Foundations of Software Engineering, 
ACM: New York, NY, 2004; 253 – 262. 

32. Suárez-Cabal MJ, Tuya J. Structural coverage criteria for testing SQL queries. Journal of Universal 
Computer Science 2009; 15(3): 584-619. 

33. Chan M, Cheung S. Testing database applications with SQL semantics. Proceedings of the 2nd 
International Symposium on Cooperative Database Systems for Advanced Applications. Wollongong, 
Australia, 1999; 363-374. 

34. Halfond WGJ, Orso A. Command-form coverage for testing database applications. Proceedings of 
the 21st IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer 
Society: Washington, DC, 2006; 69-80. 

35. Chan WK, Cheung SC, Tse TH. Fault-based testing of database application programs with conceptual 
data model. Proceedings of the 5th International Conference on Quality Software. IEEE Computer 
Society: Los Alamitos, CA, 2005; 187-196. 

36. Shahriar H, Zulkernine M. MUSIC: Mutation-based SQL injection vulnerability checking. 
Proceedings of the 8th International Conference on Quality Software. IEEE Computer Society: 
Washington DC, 2008: 77–86. 

37. Kapfhammer GM, Soffa ML. A family of test adequacy criteria for database-driven applications. 
Proceedings of the 9th European Software Engineering Conference held jointly with 11th ACM 
SIGSOFT International Symposium on the Foundations of Software Engineering. ACM: New York, 
NY, 2003; 98–107. 

38. Willmor D, Embury SM. Exploring test adequacy for database systems. Proceedings of the 3rd UK 
Software Testing Research Workshop. York, UK, 2005; 123-133. 

39. Leitao Jr OS, Vilela PRS, Jino M. Data flow testing of SQL-based active database applications. 
Proceedings of the 3rd International Conference on Software Engineering Advances. IEEE Computer 
Society: Washington, DC, 2008; 230-236. 

40. Kapfhammer GM, Soffa ML. Database-aware test coverage monitoring. Proceedings of the 1st 
Conference on India Software Engineering Conference. ACM: New York, NY, 2008; 77-86. 

41. Chays D, Dan S, Frankl PG, Vokolos FI, Weyuker EJ. A framework for testing database applications. 
Proceedings of the 2000 ACM SIGSOFT International Symposium on Software Testing and Analysis. 
ACM: New York, NY, USA, 2000; 147-157. 

42. Chays D, Deng Y, Frankl PG, Dan S, Vokolos FI, Weyuker EJ. An AGENDA for testing relational 
database applications. Software Testing, Verification and Reliability 2004; 14 (1): 17-44. 

43. Deng Y, Frankl P, Chays D. Testing database transactions with AGENDA. Proceedings of the 27th 
International Conference on Software Engineering. ACM: New York, NY, USA, 2005; 78-87. 

44. Chays D, Shahid J, Frankl PG. Query-based test generation for database applications. Proceedings of 
the 1st International Workshop on Testing Database Systems. ACM: New York, NY, 2008; 1-6. 

45. Willmor D, Embury SM. An intensional approach to the specification of test cases for database 
applications. Proceedings of the 28th International Conference on Software Engineering. ACM: New 
York, NY, USA, 2006; 102-111. 

46. Willmor D, Embury SM. Testing the implementation of business rules using intensional database 
tests. Proceedings of the Testing: Academic & Industrial Conference on Practice and Research 
Techniques. IEEE Computer Society: Washington, DC, 2006; 115-126. 

47. Binnig C, Kossmann D, Lo E. Reverse query processing. Proceedings of the 23rd International 
Conference on Data Engineering. IEEE Computer Society: Washington, DC, 2007; 506-515. 

48. Binnig C, Kossmann D, Lo E. MultiRQP - Generating test databases for the functional testing of 
OLTP applications. Proceedings of the 1st International Workshop on Testing Database Systems. 
ACM: New York, NY, USA, 2008. 

49. Tsai WT, Volovik D. Keefe TF. Automated test case generation for programs specified by relational 
algebra queries. IEEE Transactions on Software Engineering 1990; 16 (3): 316-324. 

50. Zhang J, Xu C, Cheung SC. Automatic generation of database instances for white-box testing. 
Proceedings of the 25th International Computer Software and Applications Conference. IEEE 
Computer Society: Washington, DC, 2001; 161-165. 

51. Khalek SA, Elkarablieh B, Laleye YO, Khurshid A. Query-aware test Generation using a relational 
constraint solver. Proceedings of the 23rd IEEE/ACM International Conference on Automated 
Software Engineering. IEEE Computer Society, 2008; 238-247. 



 31 

52. Emmi M, Majumdar R, Sen K. Dynamic Test input generation of database applications. Proceedings 
of the 2007 International Symposium on Software Testing and Analysis, ACM: New York, NY, 2007; 
151-162. 

53. Haftmann F, Kossmann D, Kreutz A. Efficient regression tests for database applications. Proceedings 
of the 2nd Conference on Innovative Data Systems Research, Asilomar, CA, 2005: 95-106. 

54. Haftmann F, Kossmann D, Lo E. A framework for efficient regression tests on database applications. 
The VLDB Journal 2007; 16 (1): 145-164. 

55. Haraty RA, Mansour N, Daou B. Regression test selection for database applications. Advanced 
Topics in Database Research, vol. 3. Siau K (ed). Idea Group Publishing, 2004; 141-165. 

56. Willmor D, Embury SM. A safe regression test selection technique for database-driven applications. 
Proceedings of the 21st IEEE International Conference on Software Maintenance. IEEE Computer 
Society: Washington, DC, 2005; 421-430. 

57. Tuya J, Suárez-Cabal MJ, de la Riva C. Query-aware shrinking test databases. Proceedings of the2nd 
International Workshop on Testing Database Systems. ACM: New York, NY, 2009. 



 32 

TABLES 

 

Table 1. Example of the evaluation of a full outer join 

 R  S  
 A0 A1 B0 B1 

Inner join 11 x 21 x 
LOI 12 y null null 
ROI null null 22 z 

 

 

Table 2. Example of a nested join 

 R  S   T  
 A0 A1 B0 B1 B2 C2 C0 

(1) 11 x 21 x t t 31 
(2) 12 y 22 y u null null 
(3) 13 z null null null null null 

 

 

 

Table 3. Summary of all coverage rules and coverage rule transformations 

Coverage rules Sect. Symbol Def. Applicable transf. Def. 

Single Select 3.2 (1) ∆T, (2) ∆F, (3) ∆N 6 ΦT, ΦF, ΦN, IP, NR 4, 5 
Select with boundaries 3.2 ∆B+, ∆B=, ∆B- 7 ΦB+, ΦB=, ΦB- 7 
Single Join 3.3 (4) ∆I, (5) ∆L, (6) ∆R 10 ΦJ, ΦLOI, ΦROI 9 
Single Join (nullable) 3.3 (7) ∆NL, (8) ∆NR 11 ΦNLOI, ΦNROI 11 
Single Nested Join 3.4 (9) ∆I, (10) ∆L, (11) ∆R 13 NJL, ΦJN 12 
Nested Join + Select 4.1 (12) ∆L, (13) ∆R 15 MVOI, NRS 14, 15 
Select + Nested Join 4.2   Transf. for select  
Nested Join + Select + Framing 4.3 (14) ∆L, (15) ∆R 16 Transf. for select and  
  (16) ∆T, (17) ∆F, (18) ∆N  join  
  (19) ∆T, (20) ∆F, (21) ∆N    
Case Expressions 5.1 (22) ∆T, (23) ∆F, (24) ∆N 17 Transf. for select  
Subqueries 5.2 (25) ∆Qi  18 All Transf. for Qi  
Framed Relations 5.3 (26) ∆G, (27) ∆GA 20 ΦG, ΦGA 20 
Aggregate Functions 5.4 (28) ∆A, (29) ∆AN 22 ΦA, ΦAN 22 

Other transformations      
Independence Predicate 3.2 IP 4   
Null Reduction 3.2 NR 5   
Nested Join Labelling 3.4 NJL 12   
Missing Values Outer Increment 4.1 MVOI 14   
Null Reduction for a Set 4.1 NRS 15   
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Table 4. Number and coverage of the rules generated 

category type Num Rules SQLFpc Coverage 

   4 10 100 1000 

Select ∆B 261 0.38 0.38 0.77 1.15 
Operators ∆N 64 1.56 7.81 20.31 31.25 
 ∆T, ∆F 513 29.82 30.80 48.93 59.84 
 Sub-total: 838 18.50 19.57 31.74 39.38 
Join ∆I 80 65.00 66.25 73.75 85.00 
Operators ∆L, ∆NL 291 22.68 28.52 48.80 59.79 
 ∆R, ∆NR 397 86.65 95.21 97.23 97.48 
 Sub-total: 768 60.16 66.93 76.43 81.90 
Framing ∆A, ∆AN 152 0.00 0.00 0.00 0.00 
and ∆G, ∆GA 144 2.78 6.25 4.86 7.64 
Aggregate Sub-total: 296 1.35 3.04 2.36 3.72 
 TOTAL: 1,902 32.65 36.12 45.22 51.00 

 

 

 

Table 5. Number and scores of the mutants generated 

Category Num. Mutants Mutation Score 

  4 10 100 1000 

SQL Clause mutation (SC) 3,293 40.84 46.61 51.05 55.97 
Null Mutation Operators (NL) 1,754 25.09 40.71 69.33 78.85 
Operator Replacement (OR) 24,861 53.15 61.51 67.22 74.81 
Identifier Replacement (IR) 162,295 65.51 73.89 81.11 88.89 

TOTAL: 192,203 63.12 71.52 78.69 86.41 

 

 

Table 6. Comparison of SQLFpc coverage and mutation score for generated and random test 

databases 

Query size Developed Test Database 

Random 

(SQLFpc 

Coverage) 

Random 

(Mutation. 

Score) 
Query 

CE NC NQ NT TP RW NR Cov. NM Mut. 100 1000 100 1000 

C_invoice_candidate_v 0 24 2 5 48 136 64 93.7 2,429 85.0 32.8 40.6 61.4 74.0 
C_Invoice_LineTax_vt 15 1 5 20 63 119 89 93.5 6,194 93.1 36.0 40.4 85.4 88.4 
C_RfQResponseLine_v 2 4 1 6 13 35 15 100.0 1,264 91.6 93.3 100.0 94.6 96.0 
C_RfQResponseLine_vt 2 4 1 7 15 42 16 100.0 1,268 91.8 93.8 100.0 94.2 95.5 
M_InOut_Candidate_v 0 17 4 6 21 44 35 85.7 1,823 90.3 5.7 37.1 4.0 65.7 
RV_BPartnerOpen 1 5 2 3 8 12 14 71.4 1,101 76.5 21.4 21.4 1.7 1.7 
RV_OpenItem 0 7 2 4 12 23 17 88.2 1,898 80.9 47.1 58.8 51.6 85.1 
RV_WarehousePrice 2 4 1 5 13 25 16 100.0 1,422 54.5 25.0 31.3 0.5 2.5 
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Table 7. Summary of related work 

Goal Criterion Scope Integration References 

select isolated Suárez-Cabal and Tuya [31, 32] 
select embedded Chan and Cheung [33], 

Control-flow 

all embedded Halfond and Orso [34] 
Data-flow all embedded Kapfhammer and Soffa [37,40] 

Willmor and Embury [38] 
Leitao Jr. et al. [39] 

select isolated Tuya et al. [23,24] 
Chan et al. [35] 

select embedded Zhou and Frankl [22] 

Assess adequacy 

Fault-based 

select+calls embedded Shahriar and Zulkernine [36] 
all embedded Chays et al. [41,42,44] 

Deng et al. [43]  
Willmor and Embury [45,46] 

Specification 

select isolated Binnig et al. [47,48] 
User specified 
constraints 

select isolated Zang et al. [50] 

select isolated Tsai et al. [49] 
Khalek et al. [51] 

Generate test data 

Predicates 
 

all embedded Emmi et al.. [52] 
Reorder test cases Heuristic all embedded Haftmann et al. [53,54] 

Component 
dependencies 

all embedded Haraty et al. [55] Select test cases 

Data-flow all embedded Willmor and Embury [56] 
Reduce test data Control-flow select isolated Tuya et al. [57] 
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FIGURES 

 
Figure 1. Example of a parse tree for a predicate

∨

∧

a b

∧

c d

p = (a ∧ b) ∨ (c ∧ d) 

J0 := J1[B2=C2]
LT

J1 := R[A1=B1]
LS

R(A1,A2) S(B1,B2)

T(C1,C2)

Figure 2. Graphical representation of a nested join

Figure 3. Algorithm to calculate the correct labelling for 

nested joins (NJL)

Function NJL(L,J,i) returns label[]
Set MVOI=∅
For each Jk∈J do

Set label[k]=∅
Set label[i]=L
Add loirels(Ji) to MVOI
Loop

Set someoneLabelled=false
For each Jk in J | label[k]=∅ do

If roirels(Jk) ⊆ MVOI then

Set label[k]=L
Add loirels(Jk) to MVOI
Let someoneLabelled=true

Else If loirels(Jk) ⊆ MVOI then

Set label[k]=R
Add roirels(Jk) to MVOI
Let someoneLabelled=true

Until not someoneLabelled
For each Jk in J | label[k]=∅ do

Set label[k]=I
Return label

J0 := J1[A1=D1]
IJ2

J1 := R[A2=B1]
LS

R(A1,A2) S(B1,B2)

J2 := T[C2=D1]
IU

T(C1,C2) U(D1,D2)

Figure 4. Example of a nested join with four relations
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SQLFpc Core

Figure 5. Architecture of the SQLFpc set of tools
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Figure 6. Evolution of the rows added to the database, coverage and 
mutation score
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APPENDIX A 

This appendix includes detailed information about the set of queries used in the Case Study, their full predicate coverage, mutation scores and 
performance: 
• Characterization of the queries (Metrics) - NT: number of tables used, NQ; number of queries (SELECT clauses), NC: Number of conditions in 

WHERE and HAVING clauses, CE: number of case expressions. 
• Coverage (SQLFpc Coverage/Mutation Score) - NR: Number of rules/mutants generated, 4, 10, 100, 1000: Coverage/mutation score for each 

database size. 
• Performance (SQLFpc/Mutation execution time) - GT: User time spent on the generation of rules/mutants, 4, 10, 100, 1000: execution times for all 

rules against the database with the size indicated. 

 
 Metrics SQLFpc Coverage (%) Mutation Score (%) SQLFpc Execution Time (sec.) Mutation Execution Time (sec.) 
Query Name CE NC NQ NT NR 4 10 100 1000 NR 4 10 100 1000 GT 4 10 100 1000 GT 4 10 100 1000 
AD_ChangeLog_v 0 0 1 4 5 80.0 80.0 100 100 268 4.5 4.1 88.8 92.2 0.2 0.2 0.2 0.3 0.3 0.5 3.4 3.1 4.9 51.2 
AD_Field_v 0 2 1 7 12 41.7 83.3 100 100 1,961 0.1 92.2 97.4 97.8 0.7 1.9 1.8 1.0 1.4 4.9 100.5 102.5 115.3 176.2 

AD_Field_vt 0 2 1 8 14 35.7 57.1 64.3 85.7 2,143 0.0 88.6 94.4 97.9 0.5 0.7 0.7 0.6 1.0 5.9 96.2 65.4 72.9 135.5 

AD_Org_v 0 0 1 3 4 75.0 50.0 75.0 75.0 359 93.9 93.9 95.3 95.3 0.2 0.4 0.5 0.4 0.5 0.6 4.9 3.9 5.1 7.9 
AD_Tab_v 0 2 1 2 4 50.0 100 100 100 1,114 5.4 96.9 98.2 98.4 0.2 0.2 0.2 0.2 0.3 1.8 21.1 11.1 11.6 15.7 

AD_Tab_vt 0 2 1 3 5 40.0 100 100 100 1,268 4.7 89.5 98.3 98.3 0.2 0.2 0.1 0.2 0.2 2.2 17.5 14.9 17.8 24.8 
AD_User_Roles_v 0 0 1 3 3 100 100 100 100 109 92.7 93.6 94.5 95.4 0.2 0.4 0.4 0.4 0.5 0.3 0.6 0.8 0.8 1.5 

AD_Window_vt 0 1 1 2 3 100 100 100 100 213 88.3 93.4 95.3 95.3 0.2 0.2 0.3 0.4 0.2 0.3 2.6 1.2 1.4 2.1 

C_Dunning_Header_v 1 0 1 11 25 36.0 36.0 36.0 44.0 1,599 0.4 0.4 0.4 81.6 0.6 1.8 1.9 2.0 3.1 5.6 71.6 83.2 86.0 185.4 
C_Dunning_Header_vt 1 0 1 12 28 32.1 32.1 32.1 35.7 1,728 0.3 0.3 0.3 73.7 0.7 1.8 1.5 1.7 2.5 6.4 78.8 77.7 89.5 185.4 

C_Dunning_Line_v 16 0 1 6 40 75.0 65.0 100 100 3,449 97.0 75.2 98.4 98.4 0.5 2.0 1.4 2.1 2.8 13.0 141.7 142.6 175.9 254.0 
C_Dunning_Line_vt 19 1 1 6 48 60.4 14.6 29.2 79.2 3,587 71.7 75.1 95.4 98.4 0.8 2.3 1.6 1.9 2.7 14.7 113.0 116.8 177.7 220.9 

C_Invoice_Candidate_v 0 24 2 5 64 1.6 14.1 32.8 40.6 2,429 1.6 40.6 61.4 74.0 5.5 8.0 6.4 6.2 11.6 9.5 171.8 170.3 91.4 216.0 
C_Invoice_Header_v 1 0 1 11 23 56.5 60.9 91.3 91.3 2,868 94.7 96.1 96.6 96.6 0.7 2.4 2.4 2.8 3.6 11.0 254.8 214.1 258.2 371.2 

C_Invoice_Header_vt 1 0 1 11 27 33.3 37.0 40.7 40.7 2,982 86.0 76.4 2.1 87.9 0.7 1.7 2.1 2.1 2.4 11.6 171.2 159.2 175.0 244.3 

C_Invoice_LineTax_v 15 1 5 20 89 28.1 24.7 36.0 40.4 6,194 54.4 73.7 85.4 88.4 1.2 8.9 5.2 5.0 6.3 50.0 965.9 823.5 942.0 1,819.7 
C_Invoice_LineTax_vt 18 5 5 22 108 23.1 25.0 28.7 30.6 6,809 54.3 46.3 57.2 63.6 1.5 8.8 6.0 6.3 7.4 54.2 1,173.9 1,108.8 1,968.6 7,895.1 

C_Invoice_v 8 3 2 5 16 37.5 37.5 75.0 75.0 4,449 34.9 35.6 73.5 74.5 0.4 0.5 0.4 0.4 0.5 19.0 226.9 230.8 263.6 568.3 
C_Invoice_v1 5 0 1 2 6 66.7 66.7 66.7 66.7 2,235 67.1 67.9 68.2 68.4 0.2 0.2 0.2 0.2 0.2 5.3 54.9 56.8 68.6 188.3 

C_InvoiceLine_v 2 1 1 1 7 28.6 28.6 42.9 42.9 1,629 80.2 80.7 81.6 81.9 0.2 0.5 0.4 0.5 0.6 3.0 71.2 71.9 85.6 179.8 

C_Order_Header_v 1 0 1 15 34 58.8 61.8 91.2 91.2 4,758 94.5 95.4 96.0 96.1 1.2 7.1 6.5 7.5 9.2 24.8 773.5 772.3 777.8 1,075.6 
C_Order_Header_vt 1 0 1 15 38 39.5 36.8 39.5 39.5 4,890 1.3 1.3 88.2 89.7 1.1 7.5 4.1 4.6 5.9 25.3 465.3 477.5 506.0 779.5 

C_Order_LineTax_v 15 0 4 18 83 21.7 22.9 33.7 31.3 5,636 48.5 55.0 84.2 85.1 1.2 7.5 5.2 5.6 6.9 38.1 702.7 718.9 830.8 1,575.5 
C_Order_LineTax_vt 18 2 4 20 101 19.8 21.8 24.8 26.7 6,145 45.8 51.6 60.4 62.6 1.4 8.3 7.5 7.5 8.6 45.5 1,084.2 952.4 1,668.2 6,375.9 

C_Payment_v 6 0 1 1 2 100 100 100 100 3,853 97.6 98.7 98.9 98.9 0.2 0.1 0.2 0.2 0.2 9.9 37.9 41.3 43.3 46.4 
C_PaySelection_Check_v 0 0 1 5 7 71.4 71.4 71.4 100 838 1.7 1.4 2.0 97.5 0.3 0.4 0.4 0.4 0.5 1.9 14.2 14.4 13.8 27.6 

C_PaySelection_Check_vt 0 0 1 6 8 62.5 62.5 62.5 100 959 1.8 1.6 2.1 97.5 0.3 0.5 0.3 0.3 0.4 2.3 21.9 22.0 21.5 91.2 

C_PaySelection_Remittance_v 0 0 1 2 2 100 100 100 100 433 95.8 96.1 96.3 96.3 0.2 0.2 0.1 0.1 0.1 1.2 3.2 3.2 4.2 5.7 
C_PaySelection_Remittance_vt 0 0 1 3 3 100 100 100 100 472 95.8 96.0 96.2 96.2 0.2 0.1 0.1 0.1 0.1 0.8 4.5 4.0 9.7 42.0 

C_Project_Details_v 2 1 1 3 7 42.9 42.9 71.4 100 879 0.7 0.8 91.9 97.4 0.2 0.2 0.2 0.3 0.3 1.6 9.6 9.1 12.3 13.4 
C_Project_Details_vt 2 1 1 4 8 50.0 50.0 75.0 100 927 0.6 0.8 91.9 97.1 0.3 0.2 0.2 0.2 0.2 2.1 11.1 11.8 16.5 24.3 

C_Project_Header_v 1 0 1 12 29 55.2 58.6 89.7 93.1 2,950 94.1 96.2 96.6 96.7 0.8 3.3 3.1 3.3 4.6 11.3 264.5 265.5 313.9 444.0 
C_Project_Header_vt 1 0 1 12 30 43.3 60.0 83.3 93.3 2,929 94.1 96.2 96.6 96.7 0.7 2.3 2.1 2.5 3.7 11.1 180.6 181.5 235.4 374.6 

C_RfQResponse_v 0 0 1 7 13 53.8 53.8 53.8 92.3 1,044 1.9 1.8 2.2 93.5 0.3 0.5 0.6 0.6 0.9 2.9 26.9 26.7 27.4 61.1 
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C_RfQResponse_vt 0 0 1 8 14 57.1 57.1 57.1 92.9 1,111 2.0 1.9 2.3 93.7 0.5 0.6 0.5 0.6 1.3 3.2 27.7 28.2 33.8 221.8 

C_RfQResponseLine_v 2 4 1 6 15 20.0 46.7 93.3 100 1,264 0.2 72.1 94.6 96.0 0.9 0.5 0.5 0.6 0.9 3.0 30.0 31.9 37.0 70.6 

C_RfQResponseLine_vt 2 4 1 7 16 25.0 50.0 93.8 100 1,268 0.2 71.8 94.2 95.5 0.6 0.6 0.6 0.7 1.0 3.2 34.9 38.4 60.0 222.4 
C_RfQResponseLineQty_v 0 2 1 3 5 80.0 100 100 100 349 92.6 93.4 94.0 94.0 0.2 0.1 0.2 0.1 0.2 0.6 2.4 2.8 2.9 8.6 

C_RfQResponseLineQty_vt 0 2 1 4 6 83.3 100 100 100 388 92.0 92.8 93.3 93.3 0.2 0.1 0.3 0.2 0.2 0.6 4.0 3.5 5.6 23.0 
GL_JournalLine_Acct_v 0 1 1 1 2 100 100 100 100 1,219 96.1 96.6 97.4 97.4 0.2 0.2 0.2 0.2 0.2 1.4 10.1 10.2 10.9 18.7 

M_InOut_Candidate_v 0 17 4 6 35 0.0 0.0 5.7 37.1 1,823 0.1 0.3 4.0 65.7 0.5 1.1 0.9 0.9 1.1 5.5 51.0 48.6 49.6 58.0 
M_InOut_Header_v 0 0 1 9 17 64.7 70.6 88.2 88.2 2,089 95.0 95.5 96.0 96.1 0.6 1.5 1.0 1.3 1.7 7.0 98.0 5.3 121.3 189.3 

M_InOut_Header_vt 0 0 1 9 20 55.0 50.0 55.0 65.0 2,183 95.1 95.6 96.2 96.2 0.5 0.9 0.8 1.1 1.7 7.8 82.3 78.5 111.0 146.5 

M_InOut_Line_v 6 0 2 14 41 29.3 36.6 43.9 68.3 3,698 41.9 85.7 89.0 91.7 0.7 1.8 1.5 1.7 3.0 16.5 281.3 296.8 392.4 1,261.0 
M_InOut_Line_vt 9 0 2 16 54 24.1 29.6 33.3 44.4 4,072 41.5 45.3 48.5 89.3 0.8 2.8 2.6 2.2 2.9 19.8 375.4 393.2 553.0 1,549.6 

M_InOut_LineConfirm_v 2 0 1 7 13 53.8 84.6 100 100 1,696 93.8 97.5 98.0 98.0 0.3 0.5 0.5 0.6 0.8 4.2 46.8 48.1 58.2 121.2 
M_InOut_LineConfirm_vt 3 0 1 8 19 47.4 52.6 57.9 68.4 1,917 92.1 97.3 96.7 97.8 0.4 0.7 0.7 0.8 1.0 5.2 59.7 60.9 80.8 129.4 

M_InOutConfirm_v 0 0 1 3 3 100 100 100 100 1,015 97.3 97.9 98.2 98.2 0.2 0.1 0.2 0.1 0.2 2.1 12.6 13.0 16.6 31.2 

M_InOutConfirm_vt 0 0 1 3 4 75.0 75.0 100 100 999 97.2 97.9 98.2 98.2 0.2 0.1 0.2 0.1 0.1 2.3 11.5 12.5 18.2 26.1 
M_InOutLineMA_v 0 0 2 3 2 100 100 100 100 580 95.2 95.5 95.7 95.7 0.2 0.1 0.2 0.1 0.2 0.8 4.8 5.2 4.9 11.5 

M_InOutLineMA_vt 0 0 2 3 2 100 100 100 100 580 95.2 95.5 95.7 95.7 0.2 0.1 0.1 0.1 0.1 0.7 1.6 1.7 2.9 9.2 
M_MovementLineMA_v 0 0 2 3 2 100 100 100 100 552 94.4 94.7 95.1 95.1 0.2 0.1 0.1 0.1 0.2 0.8 3.9 4.1 5.4 11.3 

M_MovementLineMA_vt 0 0 2 3 2 100 100 100 100 552 94.4 94.7 95.1 95.1 0.2 0.1 0.1 0.1 0.1 0.7 1.6 1.6 2.6 9.5 
M_Transaction_v 0 0 1 7 17 47.1 58.8 64.7 64.7 1,264 69.6 79.7 89.2 96.7 0.3 0.6 0.6 0.6 1.0 2.4 29.6 30.0 39.7 92.3 

R_Request_v 0 3 1 1 5 20.0 80.0 80.0 80.0 75 18.7 90.7 92.0 92.0 0.2 0.2 0.2 0.2 0.2 0.2 0.5 0.5 0.6 0.7 

RV_Allocation 0 0 1 2 2 100 100 100 100 557 95.3 96.1 96.6 96.6 0.2 0.7 0.1 0.5 0.2 0.8 4.6 4.6 4.9 7.8 
RV_Asset_Customer 0 2 2 2 4 75.0 100 100 100 468 92.7 96.4 97.2 97.2 0.2 0.2 0.2 0.2 0.2 0.8 3.0 3.0 3.0 9.0 

RV_Asset_Delivery 0 0 1 2 2 100 100 100 100 480 95.2 97.3 97.3 97.3 0.2 0.1 0.1 0.1 0.1 0.8 3.2 3.2 5.4 6.5 
RV_Asset_SumMonth 0 0 1 2 5 60.0 80.0 60.0 80.0 605 96.4 97.2 97.9 97.9 0.2 0.2 0.1 0.2 0.2 2.0 9.1 9.7 12.1 86.0 

RV_BPartner 1 0 1 6 11 36.4 45.5 81.8 90.9 5,509 85.5 86.4 97.1 97.2 0.4 0.7 0.6 0.7 2.7 18.0 254.1 262.2 342.1 535.2 

RV_BPartnerOpen 1 5 2 3 14 7.1 14.3 21.4 21.4 1,101 0.9 1.7 1.7 1.7 0.2 0.6 0.5 0.5 0.6 2.9 52.7 53.6 53.4 69.8 
RV_C_Invoice 4 0 1 5 8 75.0 87.5 87.5 87.5 2,593 73.7 74.5 75.2 75.3 0.3 0.5 0.7 0.5 0.6 7.1 94.9 97.9 118.0 232.4 

RV_C_Invoice_CustomerProdQtr 2 0 1 1 27 0.0 0.0 0.0 0.0 897 75.8 75.7 75.8 75.8 0.2 1.7 1.6 2.0 3.9 2.0 50.1 54.1 66.6 162.0 
RV_C_Invoice_CustomerVendQtr 2 1 1 2 31 3.2 16.1 19.4 19.4 999 0.7 77.6 78.2 78.2 0.3 2.1 2.0 2.2 3.4 2.3 63.5 62.9 73.8 261.8 

RV_C_Invoice_Day 2 0 1 1 24 0.0 0.0 0.0 0.0 806 74.4 74.4 74.6 74.6 0.2 1.5 1.4 1.5 3.1 1.9 43.3 46.0 55.5 116.9 
RV_C_Invoice_Month 2 0 1 1 24 0.0 0.0 0.0 0.0 806 74.4 74.4 74.6 74.6 0.2 1.4 1.4 1.5 3.1 1.7 43.0 45.9 54.8 151.3 

RV_C_Invoice_ProdMonth 2 0 1 1 30 0.0 0.0 0.0 0.0 850 75.1 74.9 75.1 75.1 0.2 1.8 1.8 2.1 4.5 1.8 47.6 50.9 63.0 151.5 

RV_C_Invoice_ProductMonth 2 0 1 1 30 0.0 0.0 0.0 0.0 850 75.1 74.9 75.1 75.1 0.2 1.8 1.7 2.0 4.2 1.8 45.7 48.8 58.1 142.7 
RV_C_Invoice_ProductQtr 2 0 1 1 30 0.0 0.0 0.0 0.0 850 75.1 74.9 75.1 75.1 0.2 1.8 1.8 2.0 4.2 1.8 47.2 49.7 60.2 140.4 

RV_C_Invoice_ProdWeek 2 0 1 1 30 0.0 0.0 0.0 0.0 850 75.1 74.9 75.1 75.1 0.3 1.8 1.8 2.1 4.6 1.8 47.7 50.6 63.4 162.5 
RV_C_Invoice_VendorMonth 2 1 1 2 31 3.2 16.1 19.4 19.4 1,000 0.7 77.5 78.1 78.1 0.3 2.2 2.0 2.3 3.5 2.3 63.9 63.3 77.6 258.9 

RV_C_Invoice_Week 2 0 1 1 24 0.0 0.0 0.0 0.0 806 74.4 74.4 74.6 74.6 0.2 1.4 1.4 1.5 3.1 1.7 42.9 46.1 55.0 116.5 
RV_C_InvoiceLine 5 0 1 4 16 31.3 31.3 43.8 43.8 3,477 80.3 80.6 81.1 81.1 0.3 1.0 1.1 1.1 1.3 9.8 194.6 215.4 262.2 643.6 

RV_C_InvoiceTax 4 0 1 4 6 83.3 83.3 83.3 83.3 1,258 65.8 67.9 68.8 68.9 0.3 0.3 0.3 0.3 0.4 3.1 28.9 29.7 41.2 92.5 

RV_C_RfQ_UnAnswered 0 2 1 2 4 50.0 100 100 100 496 83.9 95.6 96.6 96.6 0.2 0.1 0.1 0.1 0.1 0.9 4.0 4.1 4.6 5.7 
RV_C_RfQResponse 0 2 1 6 8 25.0 25.0 37.5 37.5 1,451 3.9 2.2 0.5 0.1 0.3 0.3 0.3 0.3 0.4 3.4 31.2 32.4 33.3 51.9 

RV_Cash_Detail 0 0 1 3 3 100 100 100 100 675 75.6 84.4 85.0 85.0 0.2 0.2 0.2 0.3 0.2 1.0 8.2 9.4 15.0 69.2 
RV_Click_Month 0 0 1 2 11 27.3 36.4 36.4 45.5 114 81.6 82.5 85.1 85.1 0.2 0.5 0.2 0.2 0.4 0.3 1.3 1.3 1.9 53.5 

RV_Click_Unprocessed 0 2 1 1 3 66.7 100 100 100 28 67.9 89.3 92.9 92.9 0.7 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

RV_CommissionRunDetai l 6 0 1 8 22 59.1 95.5 100 100 2,043 71.7 97.0 97.7 97.7 0.5 0.9 0.9 0.9 1.6 5.8 62.9 64.1 80.7 139.5 
RV_Cost 0 0 1 4 4 100 100 100 100 713 96.1 96.9 96.9 96.9 0.2 0.2 0.2 0.2 0.2 1.3 9.7 10.2 12.2 19.7 

RV_CostDetail 0 0 1 4 4 100 100 100 100 843 96.4 96.4 97.3 97.3 0.2 0.6 0.2 0.2 0.3 1.5 11.2 11.2 14.1 21.2 
RV_CostSummary 0 1 1 3 15 26.7 20.0 26.7 26.7 660 2.0 1.4 1.5 3.9 0.2 0.3 0.3 0.4 0.4 1.7 8.9 8.8 8.9 12.8 

RV_Fact_Acct 1 0 1 5 10 60.0 70.0 70.0 70.0 2,877 91.6 92.0 92.4 92.5 0.3 0.3 0.4 0.4 0.7 6.6 82.4 83.5 103.2 153.6 
RV_Fact_Acct_Day 1 0 1 1 34 0.0 0.0 0.0 0.0 2,093 87.9 88.2 88.6 88.6 0.3 0.4 0.4 0.4 1.0 5.6 28.4 24.2 39.6 79.4 

RV_Fact_Acct_Period 1 0 1 1 33 0.0 0.0 0.0 0.0 2,085 88.0 88.3 88.6 88.7 0.2 0.3 0.3 0.3 0.5 5.5 20.8 23.0 27.0 49.1 

RV_InOutConfirm 0 0 1 2 2 100 100 100 100 445 96.2 97.1 97.1 97.1 0.2 0.1 0.1 0.1 0.1 0.8 2.9 3.0 4.8 5.6 
RV_InOutDetails 0 0 1 4 6 100 83.3 100 100 2,898 97.4 98.1 98.5 98.5 0.2 0.3 0.3 0.3 0.3 7.1 71.3 78.7 88.8 117.6 

RV_InOutLineConfirm 0 0 1 4 4 100 100 100 100 935 96.1 97.0 97.2 97.2 0.2 0.1 0.1 0.2 0.2 1.6 11.7 11.7 15.8 31.7 
RV_M_Requisition 0 0 1 2 2 100 100 100 100 505 96.0 95.6 96.6 96.6 0.2 0.1 0.2 0.1 0.2 0.7 4.5 3.9 3.7 6.5 
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RV_M_Transaction 0 1 1 3 5 80.0 100 100 100 474 94.7 95.6 96.2 96.2 0.2 0.2 0.2 0.2 0.2 0.7 4.0 3.8 6.2 10.1 

RV_M_Transaction_Sum 0 1 1 1 11 18.2 18.2 18.2 18.2 201 85.1 86.1 86.1 86.1 0.2 0.1 0.2 0.2 0.3 0.4 1.2 1.6 1.6 11.1 

RV_OpenItem 0 7 2 4 17 23.5 29.4 47.1 58.8 1,898 45.9 45.8 51.6 85.1 0.3 1.3 1.0 1.3 4.8 5.8 145.7 163.8 363.8 2,682.2 
RV_OrderDetail 3 0 1 3 10 30.0 30.0 40.0 40.0 3,627 88.0 88.6 88.9 88.9 0.3 0.3 0.3 0.3 0.3 10.0 80.0 89.6 116.4 269.6 

RV_Payment 6 0 1 1 2 100 100 100 100 3,961 95.8 96.9 97.1 97.1 0.8 0.1 0.2 0.2 0.2 11.1 58.4 80.4 83.9 112.2 
RV_PrintFormatDetail 0 0 1 2 2 100 100 100 100 2,559 98.1 98.5 98.8 98.8 0.2 0.2 0.2 0.2 0.2 4.9 36.3 37.6 38.5 55.2 

RV_Product_Costing 3 0 1 2 11 18.2 18.2 18.2 27.3 1,131 78.3 78.5 78.6 84.5 0.2 0.4 0.2 0.2 0.2 1.7 12.3 12.4 18.4 37.2 
RV_ProjectCycle 0 0 1 6 9 88.9 88.9 100 100 2,605 1.7 78.2 78.5 78.5 0.3 0.8 0.6 0.7 0.8 7.5 109.2 133.8 213.4 1,040.0 

RV_ProjectLineIssue 9 0 1 3 24 45.8 50.0 45.8 50.0 2,093 64.9 65.6 60.6 66.0 0.3 0.8 0.4 0.5 0.6 4.0 38.5 44.0 54.9 162.8 

RV_RequestUpdates  0 1 7 12 20 65.0 75.0 85.0 100 1,626 60.1 61.5 62.7 96.0 0.3 0.3 0.3 0.3 0.4 4.9 56.3 78.9 76.8 109.2 
RV_RequestUpdates_Only 0 1 1 1 10 40.0 50.0 40.0 50.0 88 77.3 88.6 77.3 88.6 0.2 0.3 0.3 0.4 0.6 0.2 1.9 2.3 3.0 4.4 

RV_Storage 0 0 1 4 4 100 100 100 100 1,247 95.9 96.2 97.3 97.4 0.2 0.2 0.2 0.3 0.3 2.8 30.0 30.8 35.8 48.6 
RV_Transaction 1 0 1 10 20 60.0 75.0 95.0 100 2,337 90.2 93.1 94.1 95.9 0.5 1.0 0.9 1.0 1.7 6.3 81.4 82.3 94.5 191.7 

RV_UnPosted 0 15 15 16 31 54.8 61.3 100 100 4,381 93.3 94.4 97.5 97.5 0.4 1.0 0.4 0.4 0.5 21.1 192.6 197.0 227.9 508.8 

RV_WarehousePrice 2 4 1 5 16 18.8 25.0 25.0 31.3 1,422 0.0 0.5 0.5 2.5 0.4 0.8 0.8 1.0 0.9 4.1 58.4 55.8 56.0 62.2 
T_InvoiceGL_v 0 0 1 3 3 100 100 100 100 3,065 97.7 97.8 98.3 98.3 0.2 0.1 0.2 0.2 0.2 6.3 52.7 55.0 66.2 90.3 

T_InvoiceGL_vt 0 0 1 3 3 100 100 100 100 3,065 97.7 97.8 98.3 98.3 0.2 0.1 0.1 0.1 0.1 6.1 53.6 54.3 66.0 92.1 
Total general 226 127 155 564 1,902 32.6 36.1 45.2 51.0 192,203 63.1 71.5 78.7 86.4 45.9 128.5 107.6 115.3 170.5 692.4 11,024.7 10,764.8 14,147.7 37,543.6 
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APPENDIX B  

This appendix includes the SQL of a query used in the Case Study for a detailed test: C_Invoice_Candidate_v 
 

SELECT o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, 

 o.DocumentNo, o.DateOrdered, o.C_DocType_ID, 
 SUM((l.QtyOrdered-l.QtyInvoiced)*l.PriceActual) AS TotalLines 

FROM C_Order o 

  INNER JOIN C_OrderLine l ON (o.C_Order_ID=l.C_Order_ID) 

  INNER JOIN C_BPartner bp ON (o.C_BPartner_ID=bp.C_BPartner_ID) 
  LEFT OUTER JOIN C_InvoiceSchedule si ON (bp.C_InvoiceSchedule_ID=si.C_InvoiceSchedule_ID) 

WHERE o.DocStatus IN ('CO','CL','IP') -- Standard Orders are IP 

 -- not Offers and open Walkin-Receipts 

 AND o.C_DocType_ID IN (SELECT C_DocType_ID FROM C_DocType 
  WHERE DocBaseType='SOO' AND DocSubTypeSO NOT IN ('ON','OB','WR')) 

 -- we need to invoice 

 AND l.QtyOrdered <> l.QtyInvoiced 

 -- 
 AND (-- Immediate 

  o.InvoiceRule='I' 

  -- Order complete ** not supported ** 

  OR o.InvoiceRule='O' 
  -- Delivery 

  OR (o.InvoiceRule='D' AND l.QtyInvoiced<>l.QtyDelivered) 

  -- Order Schedule, but none defined on Business Partner level 

  OR (o.InvoiceRule='S' AND bp.C_InvoiceSchedule_ID IS NULL) 
  -- Schedule defined at BP 

  OR (o.InvoiceRule='S' AND bp.C_InvoiceSchedule_ID IS NOT NULL AND 

     ( -- Daily or none 

     (si.InvoiceFrequency IS NULL OR si.InvoiceFrequency='D') 

    -- Weekly 
    OR (si.InvoiceFrequency='W') 

    -- Bi-Monthly 

    OR (si.InvoiceFrequency='T' 

     AND (TRUNC(o.DateOrdered) <= firstOf(getdate(),'MM')+si.InvoiceDayCutoff-1 
      AND TRUNC(getdate()) >= firstOf(o.DateOrdered,'MM')+si.InvoiceDay-1) 

     OR (TRUNC(o.DateOrdered) <= firstOf(getdate(),'MM')+si.InvoiceDayCutoff+14 

      AND TRUNC(getdate()) >= firstOf(o.DateOrdered,'MM')+si.InvoiceDay+14) 

     ) 
    -- Monthly 

    OR (si.InvoiceFrequency='M' 

     AND TRUNC(o.DateOrdered) <= firstOf(getdate(),'MM')+si.InvoiceDayCutoff-1 -- after cutoff 

     AND TRUNC(getdate()) >= firstOf(o.DateOrdered,'MM')+si.InvoiceDay-1)  -- after invoice day 
  ) ) ) 

GROUP BY o.AD_Client_ID, o.AD_Org_ID, o.C_BPartner_ID, o.C_Order_ID, o.DocumentNo, o.DateOrdered, o.C_DocType_ID 


