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We compute the leading order connected four-point function of the primordial curvature pertur-
bation coming from the four-point function of the fields in multi-field DBI inflation models. We
confirm that the consistency relations in the squeezed limit and in the counter-collinear limit hold as
in single field models thanks to special properties of the DBI action. We also study the momentum
dependence of the trispectra coming from the adiabatic, mixed and purely entropic contributions
separately and we find that they have different momentum dependence. This means that if the
amount of the transfer from the entropy perturbations to the curvature perturbation is significantly
large, the trispectrum can distinguish multi-field DBI inflation models from single field DBI inflation
models. A large amount of transfer TRS ≫ 1 suppresses the tensor to scalar ratio r ∝ T−2

RS and the

amplitude of the bispectrum fequi

NL ∝ T−2

RS and so it can ease the severe observational constraints on
the DBI inflation model based on string theory. On the other hand, it enhances the amplitude of
the trispectrum τ equi

NL ∝ T 2

RSfequi 2

NL for a given amplitude of the bispectrum.

I. INTRODUCTION

Precise measurements of the cosmic microwave background (CMB) anisotropies such as those obtained by the
WMAP satellite [1] provide valuable information on the very early universe. Any theoretical model that attempts to
explain the evolution of the universe before the big bang nucleosynthesis will also have to explain the observed CMB
anisotropies. Even though these anisotropies are almost Gaussian, a small amount of non-Gaussianity is still allowed
by the data [2, 3, 4] and future experiments such as PLANCK [5] might detect this small amount of the primordial
non-Gaussianity. Even though the simplest slow-roll single field inflation models predict that the non-Gaussianity of
the fluctuations should be very difficult to be detected [6], recently, theoretical models which can produce sizeable
non-Gaussianity has been extensively studied by many authors [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66].

Among them, the Dirac-Born-Infeld (DBI) inflation model can produce large non-Gaussianity by the fact that the
sound speed of the perturbations can be much smaller than one due to the non-trivial form of the kinetic term [67, 68].
DBI inflation models are also well motivated by string theory [13, 27, 69, 70, 71, 72]. In this model, the inflaton fields
are identified with the positions of a moving D3 brane in the six-dimensional internal space. The dynamics of the D3
brane is described by the DBI action. However, recently it has been pointed out that single field DBI inflation driven
by a mobile D3 brane with large non-Gaussianity might contradict with the current WMAP data. For current and
stringent observational constraints and consequences of DBI-inflation see [73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83].

One way to avoid these constraints is to consider multi-field DBI models [36]. Since the position of the brane in
each compact direction is described by a scalar field, DBI inflation is naturally a multi-field inflationary model [84].
As first pointed out by [85], in multi-field inflation models, the curvature perturbation is modified on large scales
due to the entropy perturbation. Even though there are some works considering multi-field inflationary models with
non-canonical kinetic terms [45, 86, 87, 88], the consistent analysis for the entropy modes in the multi-field DBI
inflation model has started only very recently [35, 36, 37].

In [35, 36, 37], the three-point functions in the small sound speed limit and at leading order in the slow-roll expansion
were obtained and it was shown that in addition to the purely adiabatic three-point function, there exists a mixed
component 〈Qσ(k1)Qs(k2)Qs(k3)〉 where Qσ and Qs are the adiabatic and the entropy perturbations, respectively.
Since the momentum dependence of the three-point function from the adiabatic modes was shown to be identical
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with the mixed component, the shape of the bispectrum of the curvature perturbations remains the same as in the
single-field case, while the amplitude is affected by the entropy perturbation.

Even though previous works on the non-Gaussianity in the multi-field DBI inflation model are mainly limited to the
bispectrum, it is expected that the cosmic microwave background (CMB) trispectrum also provides strong constraints
on early universe models. At the moment, the constraints are rather weak given by |τNL| < 108 [89, 90], where τNL

denotes the size of the trispectrum. However, PLANCK will tighten the constraints significantly reaching |τNL| ∼ 560
[91]. Although these estimations are obtained assuming local type non-Gaussianity, we expect similar constraints can
be obtained for non-Gaussianity from DBI inflation. It is also worth noting that the analysis in the single field DBI
inflation model shows that the trispectrum from the contact interaction diagram is enhanced in the small sound speed
limit as τNL ∼ 1/c4

s [28]. Even though the contribution from the scalar exchange interaction was overlooked in this
analysis, recently, it has been confirmed that the same scaling holds for the trispectrum from this interaction [62, 63].
As in the bispectrum case [92], the observational constraints depend on the shape of the wave vectors’ configuration.
Therefore, it is important to calculate the full shape dependence of the trispectrum in the multi-field DBI inflation
model. For the details of the observations of the CMB trispectrum, see [93, 94, 95].

For this purpose, recently we have calculated the quantum trispectrum from the contact interaction and obtained
the simple understanding of the origin of the interaction terms of the multi-field DBI inflation [64]. In this paper, as a
natural continuation, we will calculate the scalar exchange trispectrum and obtain the complete theoretical prediction
for the quantum trispectrum of multi-field DBI inflation. For a related work, where only the purely entropic component
of the quantum scalar exchange trispectrum was calculated, see version three of [55].

The structure of this paper is as follows. In the next section, we shall introduce the model and some basic notation.
In section III we summarise the results obtained in [64] for the contact interaction trispectrum. After calculating the
scalar exchange trispectrum in section IV, the momentum dependence of the trispectra coming from the adiabatic,
mixed, and purely entropic contributions are studied separately in section V. The observational constraints on the
multi-field DBI inflation model are discussed in section VI. Section VII is devoted to the conclusions.

II. THE MODEL

In this section, we will introduce the multi-field Dirac-Born-Infeld (DBI) inflationary model. We will present the
background evolution equations and define some basic notation.

The multi-field DBI inflation model is described by the following action [96]

S =
1

2

∫

d4x
√−g

[

R + 2P̃ (X̃, φI)
]

,

P̃ (X̃, φI) = − 1

f(φI)

(

√

1 − 2f(φI)X̃ − 1

)

− V (φI) , (1)

where we have set 8πG = 1, R is the Ricci scalar, φI are the scalar fields (I = 1, 2, ..., Nφ), f(φI) and V (φI) are

functions of the scalar fields determined by string theory configurations and X̃ is defined in terms of the determinant
D ≡ det(δµ

ν + fGIJ∂µφI∂νφJ) as X̃ = (1 − D)/(2f). Here GIJ is the metric in the field space. We assume that P̃

is a well behaved function of φI and X̃. It is also shown that X̃ is related to the kinetic term of the scalar fields as
[36, 37]

X̃ = GIJXIJ − 2fX
[I

I X
J]

J + 4f2X
[I

I X J
J X

K]
K − 8f3X

[I
I X J

J X K
K X

L]
L , (2)

XIJ ≡ −1

2
gµν∂µφI∂νφJ , X J

I = GIKXKJ , (3)

where the brackets denote antisymmetrization. It is worth noting that even though X̃ = X (= GIJXIJ) in the
homogeneous background, this does not hold if we take into account the inhomogeneous components.

In the background, we are interested in flat, homogeneous and isotropic Friedman-Robertson-Walker (FRW) uni-
verses described by the line element

ds2 = −dt2 + a2(t)δijdxidxj , (4)

where a(t) is the scale factor. The Friedman equation and the continuity equation read

3H2 = E0, (5)

Ė0 = −3H
(

E0 + P̃0

)

, (6)
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where the Hubble rate is H = ȧ/a, a dot denotes derivative with respect to cosmic time t, E0 is the total energy of
the fields which is given by

E0 = 2XIJ
0 P̃0,XIJ − P̃0, (7)

and the subscript 0 denotes that the quantity is evaluated in the background.
For this model the speed of propagation of scalar perturbations (“speed of sound”), cs, is given by

c2
s ≡

(

P̃,X̃

P̃,X̃ + 2X̃P̃,X̃X̃

)

0

. (8)

Since we are interested in the inflationary background, we assume that the form of f(φI) and V (φI) are chosen
so that inflation is realized at least for 60 e-foldings. In order to characterize this background, we define the slow
variation parameters, analogues of the slow-roll parameters, as:

ǫ = − Ḣ

H2
=

X0

H2cs
, ι =

ǫ̇

ǫH
, χ =

ċs

csH
. (9)

We should note that these slow variation parameters are more general than the usual slow-roll parameters and that
the smallness of these parameters does not imply that the field is rolling slowly. We assume that the rate of change
of the speed of sound is small (as described by χ) but cs is otherwise free to change between zero and one.

We shall consider perturbations on this FRW background. We decompose the scalar field φI into the background
value φI

0 and perturbation QI in the flat gauge as,

φI(x, t) = φI
0(t) + QI(x, t) . (10)

Furthermore, as was done in [97], we decompose the perturbations into instantaneous adiabatic and entropy per-
turbations, where the adiabatic direction corresponds to the direction of the background fields’ evolution while the
entropy directions are orthogonal to this. We introduce an orthogonal basis eI

n, with n = 1, 2, ..., Nφ, in the field space
so that the orthonormality condition are given by [35]

eI
nemI =

1

cs
δmn − 1 − c2

s

cs
δm1δn1 , (11)

where the adiabatic basis is defined as

eI
1 =

√

cs

2X0
φ̇I

0 . (12)

Notice that the length of the basis vector eI
0 is cs and that of the other basis vectors is 1/cs. If we consider the

two-field case (I = 1, 2), the field perturbations are decomposed into the adiabatic field Qσ and the entropy field Qs

as

QI = QσeI
1 + Qse

I
2 . (13)

Hereafter, for simplicity, we will concentrate on the two-field case although the extension to more fields is straightfor-
ward.

For the single field model, since the comoving curvature perturbation R is given by

R =
(

√
csH√
2X0

)

∗
Qσ∗ , (14)

the power spectrum of the primordial quantum fluctuation was given by [68]

PR∗
(k) =

1

36π2

E2
0

E0 + P̃0

=
1

8π2

H2

csǫ
, (15)

where it should be evaluated at the time of horizon crossing cs∗k = a∗H∗. The spectral index is

nR∗
− 1 =

d lnPR∗
(k)

d ln k
= −2ǫ − ι − χ. (16)

However, as explained in the following sections, this will not be the case for multi-field models.
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III. THE TRISPECTRUM FROM THE CONTACT INTERACTION

In this and next sections, we will derive the four-point functions of the field perturbations at leading order in
the slow-roll expansion and in the small sound speed limit. There are two important tree-level diagrams for the
trispectrum. One is a diagram where the interaction occurs at a point, i.e. a contact interaction diagram and the
other is a diagram where a scalar mode is exchanged. In the single field DBI inflation model, it was recently shown
by [62, 63] that both contributions are comparable. Because it is expected that this is also true for the two-field DBI
inflation model, it is necessary to consider both contributions. In this section, we summarize the calculation of the
four-point functions of the field perturbations at horizon crossing coming from the contact interaction diagram [64].
In the next section, we shall calculate the scalar exchange four-point function.

Using the approximations mentioned above and following the ADM formalism [6, 17, 18, 98], the action up to fourth
order can be calculated as [64]

S
(main)
(2) =

1

2

∫

dtd3x
a3

c2
s

[

Q̇2
σ + Q̇2

s −
c2
s

a2

(

∂iQσ∂iQσ + ∂iQs∂
iQs

)]

, (17)

S
(main)
(3) =

1

2

∫

dtd3x
a3

√

2X0c7
s

[

Q̇3
σ + Q̇σQ̇2

s +
c2
s

a2

(

(

∂iQs∂
iQs − ∂iQσ∂iQσ

)

Q̇σ − 2
(

∂iQσ∂iQs

)

Q̇s

)]

, (18)

S
(main)
(4) =

1

16

∫

dx3dt
a3

c5
sX0

[

5Q̇4
σ + 6Q̇2

σQ̇2
s + Q̇4

s −
2c2

s

a2

(

3Q̇2
σ∂iQσ∂iQσ − Q̇2

σ∂iQs∂
iQs + 4Q̇σQ̇s∂iQσ∂iQs

+Q̇2
s∂iQσ∂iQσ + Q̇2

s∂iQs∂
iQs

)

+
c4
s

a4

(

(

∂iQσ∂iQσ

)2 − 2
(

∂iQσ∂iQσ

) (

∂jQs∂
jQs

)

+ 4
(

∂iQσ∂iQs

)2
+
(

∂iQs∂
iQs

)2
)

]

.

(19)

It is worth noting that Eqs. (17), (18) and (19) can also be derived using a simpler method based on a Lorentz boost
from the frame where the brane is at rest to the frame where the brane is moving [64].

Based on these actions, we can obtain the third- and fourth-order interaction Hamiltonian densities as [64]

Hint
(3) =

−a3

2
√

2X0c7
s

[

Q̇3
σ + Q̇σQ̇2

s −
c2
s

a2

{

Q̇σ

(

∂iQσ∂iQσ − ∂iQs∂
iQs

)

+ 2Q̇s∂iQσ∂iQs

}

]

, (20)

Hint
(4) =

a3

4X0c5
s

[

Q̇4
σ + Q̇2

σQ̇2
s +

c2
s

a2

{

(

∂iQs∂
iQs

)

Q̇2
σ +

(

∂iQs∂
iQs

)

Q̇2
s

}

]

, (21)

where here, Qσ and Qs are the interaction picture fields. One important remark is that while the cubic part of Hint

is the opposite sign of the cubic Lagrangian density Lint, this is generally not true at fourth order.
From the second-order action, we can solve for the perturbations and quantize them according to the standard

procedures of quantum field theory:

Qn(η,x) =
1

(2π)3

∫

d3
k
[

un(η,k)an(k) + u∗
n(η,−k)a†

n(−k)
]

eik·x , (22)

where an(k) and a†
n(−k) are the annihilation and creation operator respectively, which satisfy the usual commutation

relations:

[

an(k1), a†
m(k2)

]

= (2π)3δ(3)(k1 − k2)δnm , [an(k1), am(k2)] =
[

a†
n(k1), a†

m(k2)
]

= 0 . (23)

At leading order, solutions for the mode functions are given by

un(η,k) = An
1

k3/2
(1 + ikcsη) e−ikcsη . (24)

The two point correlation function is then obtained as

〈0|Qn(η = 0,k1)Qm(η = 0,k2)|0〉 = (2π)3δ(3)(k1 + k2)PQn

2π2

k3
1

δnm , (25)
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where the power spectrum is defined as

PQn
=

|An|2
2π2

, |Aσ|2 = |As|2 =
H2

2cs
≡ N2 , (26)

and it should be evaluated at the time of the sound horizon crossing cs∗k1 = a∗H∗.
In terms of these quantum operators, the connected four-point correlation function coming from the contact inter-

action diagram is given by [99]

〈Ω|Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4)|Ω〉CI =

− i

∫ 0

−∞

dη〈0|
[

Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4), Hint
(4) (η)

]

|0〉 , (27)

where Qm on the r.h.s. of the equation are the interaction picture fields and Hint
(4) is the integral of the fourth-order

Hamiltonian density (21), that is, Hint
(4) =

∫

d3xHint
(4) .

The purely adiabatic, purely entropic and mixed components are respectively given by

〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)Qσ(0,k4)|Ω〉CI = (2π)3δ(3)(

4
∑

i=1

ki)
H8

2X0c6
s

1

Π4
i=1k

3
i

(−36A1) , (28)

A1 =
Π4

i=1k
2
i

K5
, K =

4
∑

i=1

ki , (29)

〈Ω|Qs(0,k1)Qs(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉CI = (2π)3δ(3)(

4
∑

i=1

ki)
H8

2X0c6
s

1

Π4
i=1k

3
i

(

−1

8
A2

)

, (30)

A2 =
k2
1k

2
2(k3 · k4)

K3

(

1 +
3(k3 + k4)

K
+

12k3k4

K2

)

+ perm. (31)

〈Ω|Qσ(0,k1)Qσ(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉CI = (2π)3δ(3)(

4
∑

i=1

ki)
H8

2X0c6
s

−1

Π4
i=1k

3
i

(

6A1 +
1

2
A3

)

, (32)

A3 =
k2
1k

2
2(k3 · k4)

K3

(

1 +
3(k3 + k4)

K
+

12k3k4

K2

)

, (33)

where “perm” denotes twenty three permutations of {k1, k2, k3, k4}.
Following the analysis of [100], if we describe the conversion of the entropy perturbation into the curvature per-

turbation by a transfer coefficient TRS , the final comoving curvature perturbation R is expressed in terms of the
adiabatic and entropy field perturbations as

R = AσQσ∗ + AsQs∗ , Aσ =

(√
csH√
2X0

)

∗

, As = TRS

(√
csH√
2X0

)

∗

. (34)

This implies that the final comoving curvature perturbation power spectrum is

PR =
(

1 + T 2
RS

)

PR∗
, (35)

where the horizon crossing power spectrum PR∗
was given by Eq. (15).

At leading order, the connected four-point function of R coming from the contact interaction diagram is given by 1

〈R(k1)R(k2)R(k3)R(k4)〉CI = A4
σ〈Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)〉CI

+A2
σA2

s

(

〈Qσ(k1)Qσ(k2)Qs(k3)Qs(k4)〉CI + 5 perm.
)

+A4
s〈Qs(k1)Qs(k2)Qs(k3)Qs(k4)〉CI , (36)

1 There are other contributions to the connected four-point function of R, for example those coming from the five- and six-point functions of

the scalar fields that can be expressed in terms of the power spectrum using Wick’s theorem. In this work, we ignore these contributions

because we are only interested in the intrinsically quantum four-point function. These extra terms are generated by the non-linear

evolution outside the horizon and can be important
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where “5 perm.” denotes five permutations of the four-momenta. Using Eqs. (28), (30) and (32), it is possible to
show a simple relation among the three different terms in the previous equation, as

〈Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)〉CI + 〈Qs(k1)Qs(k2)Qs(k3)Qs(k4)〉CI = 〈Qσ(k1)Qσ(k2)Qs(k3)Qs(k4)〉CI + 5 perm.

(37)

This relation is perhaps less surprising if one notes that the different fourth-order interactions present in Eq. (21)
also obey a similar relation, i.e. the purely adiabatic plus the purely entropic interactions (vertices) are equal to the
mixed vertices.

Using the previous results, the contact interaction four-point function of R can be written as

〈R(k1)R(k2)R(k3)R(k4)〉CI = A4
σ

(

1 + T 2
RS

)

(

〈Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)〉CI

+T 2
RS〈Qs(k1)Qs(k2)Qs(k3)Qs(k4)〉CI

)

. (38)

One immediately sees that if the transfer coefficient is non-zero, one can in principle use the trispectrum to distinguish
single field from multi-field DBI inflation.

IV. THE TRISPECTRUM FROM THE SCALAR EXCHANGE INTERACTION

In this section, we will calculate the four-point functions of the field perturbations at horizon crossing coming
from a diagram where a scalar mode is exchanged. Within the “interaction picture” formalism [99], to calculate the
four-point function resulting from a correlation established via the exchange of a scalar mode, one needs to evaluate
the following time integrals

〈Ω|Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4)|Ω〉SE

= −
∫ 0

−∞

dη

∫ η

−∞

dη̃〈0|
[[

Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4), Hint
(3) (η)

]

, Hint
(3) (η̃)

]

|0〉, (39)

where Qm on the r.h.s. of the equation are the interaction picture fields and Hint
(3) is the integral of the third-order

Hamiltonian density (20), that is, Hint
(3) =

∫

d3xHint
(3) .

The calculation of these time integrals is rather long and tedious. In Appendix A, we present an elegant and simple
way of evaluating these contributions. This method is based on diagrams and simple rules that make the origin and
physical meaning of all the different terms in the following expressions very clear. The purely adiabatic four-point
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function coming from the scalar exchange diagrams is identical to the single field one [62], and it is given by

〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)Qσ(0,k4)|Ω〉SE = (2π)3δ(3)(K)
H4

16X0c9
s(k1k2k3k4)

3

2

×
[

− 9

(

F1(k1, k2,−k12, k3, k4, k12) −F1(−k1,−k2,−k12, k3, k4, k12)

)

−3c2
s

(

(k3 · k4)

(

F3(k1, k2,−k12, k12, k3, k4) −F3(−k1,−k2,−k12, k12, k3, k4)

)

−2(k34 · k4)

(

F3(k1, k2,−k12, k3, k4, k12) −F3(−k1,−k2,−k12, k3, k4, k12)

)

+(k1 · k2)

(

F4(−k12, k1, k2, k3, k4, k12) −F4(−k12,−k1,−k2, k3, k4, k12)

)

−2(k12 · k2)

(

F4(k1, k2,−k12, k3, k4, k12) −F4(−k1,−k2,−k12, k3, k4, k12)

)

)

−c4
s

(

(k1 · k2)(k3 · k4)

(

F2(−k12, k1, k2, k12, k3, k4) −F2(−k12,−k1,−k2, k12, k3, k4)

)

−2(k1 · k2)(k34 · k4)

(

F2(−k12, k1, k2, k3, k4, k12) −F2(−k12,−k1,−k2, k3, k4, k12)

)

−2(k12 · k2)(k3 · k4)

(

F2(k1, k2,−k12, k12, k3, k4) −F2(−k1,−k2,−k12, k12, k3, k4)

)

+4(k12 · k2)(k34 · k4)

(

F2(k1, k2,−k12, k3, k4, k12) −F2(−k1,−k2,−k12, k3, k4, k12)

)

)]

+23 permutations of{k1, k2, k3, k4}, (40)

where K = k1 + k2 + k3 + k4 and the information of the shape of the trispectrum is encoded in the Fi functions
defined by Eqs. (B1), (B2), (B3) and (B4) in Appendix B. In the previous expression, “permutations” denote the
other twenty three terms that result from the permutations of {k1, k2, k3, k4} in the preceding term.

The mixed component of the four-point function coming from the scalar exchange diagrams is

〈Ω|Qσ(0,k1)Qσ(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉SE + 5 terms = (2π)3δ(3)(K)
H4

16X0c9
s(k1k2k3k4)

3

2

×
[

− 10

(

F1(k1, k2,−k12, k3, k4, k12) −F1(−k1,−k2,−k12, k3, k4, k12)

)

+2c2
s

(

− (k3 · k4)

(

F3(k1, k2,−k12, k12, k3, k4) −F3(−k1,−k2,−k12, k12, k3, k4)

)

+4(k34 · k4)

(

F3(k1, k2,−k12, k3, k4, k12) −F3(−k1,−k2,−k12, k3, k4, k12)

)

−(k1 · k2)

(

F4(−k12, k1, k2, k3, k4, k12) −F4(−k12,−k1,−k2, k3, k4, k12)

)

+4(k12 · k2)

(

F4(k1, k2,−k12, k3, k4, k12) −F4(−k1,−k2,−k12, k3, k4, k12)

)

)

−2c4
s

(

(k1 · k2)(k3 · k4)

(

F2(−k12, k1, k2, k12, k3, k4) −F2(−k12,−k1,−k2, k12, k3, k4)

)

+4(k12 · k2)(k34 · k4)

(

F2(k1, k2,−k12, k3, k4, k12) −F2(−k1,−k2,−k12, k3, k4, k12)

)

)]

+23 permutations of{k1, k2, k3, k4}. (41)
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Finally, the purely entropic four-point function coming from the scalar exchange diagrams is

〈Ω|Qs(0,k1)Qs(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉SE = (2π)3δ(3)(K)
H4

16X0c9
s(k1k2k3k4)

3

2

×
[

−
(

F1(k1, k2,−k12, k3, k4, k12) −F1(−k1,−k2,−k12, k3, k4, k12)

)

+c2
s

(

(k3 · k4)

(

F3(k1, k2,−k12, k12, k3, k4) −F3(−k1,−k2,−k12, k12, k3, k4)

)

+2(k34 · k4)

(

F3(k1, k2,−k12, k3, k4, k12) −F3(−k1,−k2,−k12, k3, k4, k12)

)

+(k1 · k2)

(

F4(−k12, k1, k2, k3, k4, k12) −F4(−k12,−k1,−k2, k3, k4, k12)

)

+2(k12 · k2)

(

F4(k1, k2,−k12, k3, k4, k12) −F4(−k1,−k2,−k12, k3, k4, k12)

)

)

−c4
s

(

(k1 · k2)(k3 · k4)

(

F2(−k12, k1, k2, k12, k3, k4) −F2(−k12,−k1,−k2, k12, k3, k4)

)

+2(k1 · k2)(k34 · k4)

(

F2(−k12, k1, k2, k3, k4, k12) −F2(−k12,−k1,−k2, k3, k4, k12)

)

+2(k12 · k2)(k3 · k4)

(

F2(k1, k2,−k12, k12, k3, k4) −F2(−k1,−k2,−k12, k12, k3, k4)

)

+4(k12 · k2)(k34 · k4)

(

F2(k1, k2,−k12, k3, k4, k12) −F2(−k1,−k2,−k12, k3, k4, k12)

)

)]

+23 permutations of{k1, k2, k3, k4}. (42)

The remaining possible four-point functions, 〈Ω|QσQσQσQs|Ω〉SE and 〈Ω|QσQsQsQs|Ω〉SE , are zero at leading order
in the slow-roll expansion and in the small sound speed limit.

As in the previous section, the connected four-point function of the curvature perturbation R is related with the
four-point function of the field perturbation as 2

〈Ω|R(k1)R(k2)R(k3)R(k4)|Ω〉SE = A4
σ〈Ω|Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)|Ω〉SE

+A2
σA2

s

(

〈Ω|Qσ(k1)Qσ(k2)Qs(k3)Qs(k4)|Ω〉SE + 5 perms
)

+A4
s〈Ω|Qs(k1)Qs(k2)Qs(k3)Qs(k4)|Ω〉SE , (43)

Again, as in the case of the contact interaction trispectra, the scalar exchange trispectra obey

〈Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)〉SE + 〈Qs(k1)Qs(k2)Qs(k3)Qs(k4)〉SE = 〈Qσ(k1)Qσ(k2)Qs(k3)Qs(k4)〉SE + 5 perm.

(44)

Using this fact Eq. (43) can be simplified to

〈R(k1)R(k2)R(k3)R(k4)〉SE = A4
σ

(

1 + T 2
RS

)

(

〈Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)〉SE

+T 2
RS〈Qs(k1)Qs(k2)Qs(k3)Qs(k4)〉SE

)

. (45)

Finally, the total four-point function of R, coming from the quantum four-point functions of the fields, is the sum

2 Where again we ignore terms that can be expressed by copies of the power spectrum by using Wick’s theorem.
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of the contact interaction and scalar exchange contributions as

〈R(k1)R(k2)R(k3)R(k4)〉total = 〈R(k1)R(k2)R(k3)R(k4)〉CI + 〈R(k1)R(k2)R(k3)R(k4)〉SE

= A4
σ

(

1 + T 2
RS

)

[

〈Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)〉CI + 〈Qσ(k1)Qσ(k2)Qσ(k3)Qσ(k4)〉SE

+T 2
RS

(

〈Qs(k1)Qs(k2)Qs(k3)Qs(k4)〉CI + 〈Qs(k1)Qs(k2)Qs(k3)Qs(k4)〉SE

)]

, (46)

where the different terms can be found in Eqs. (28), (40), (30) and (42). This constitutes one of the main results of
this work.

From Eq. (46) we can read the exact momentum dependence of the trispectrum which is related with the four-point
function as

〈R(k1)R(k2)R(k3)R(k4)〉total = (2π)3δ(3)(K)TR(k1,k2,k3,k4). (47)

In the next section we shall study the shape of the trispectrum in more detail.

V. THE SHAPE OF THE TRISPECTRUM AND THE NON-LINEARITY PARAMETER τNL

In this section, we will study the shape dependence of the different trispectra calculated in the previous sections.
We will consider the so-called equilateral configuration. In the next subsection, we shall discuss some consistency
relations that apply for the multi-field DBI trispectrum. After that, we will compute the non-linearity parameter τNL

and we shall plot the different contributions (pure adiabatic and pure entropy) to the total τNL both in the equilateral
case and in a non-equilateral configuration. It is worth noting that from Eqs. (37) and (44), the contribution from
the mixed component can be given from the other two contributions.

A. Consistency relations

Here, we discuss whether the consistency relations obtained in the single field DBI inflation model can hold also
for the multi-field DBI inflation model. In the following, as in [62], we will define the non-linearity parameter, which
naively parameterizes the size of the trispectrum as

τNL(k1,k2,k3,k4) =

(

4ǫcs

H2(1 + T 2
RS)

)3

TR(k1,k2,k3,k4)Π
4
i=1k

3
i

×
[

(

k3
1k

3
2 + k3

3k3
4

) (

k−3
13 + k−3

14

)

+
(

k3
1k

3
4 + k3

2k
3
3

) (

k−3
12 + k−3

13

)

+
(

k3
1k

3
3 + k3

2k
3
4

) (

k−3
12 + k−3

14

)

]−1

,

(48)

and we discuss behaviours of τNL.
First, we discuss the consistency relation in the squeezed limit. As first pointed out by Maldacena [6] and Seery et

al. [31], all higher order correlators of R in single field inflation obey consistency relations when one of the momentum
vector is very small. Let us consider the limit k1 → 0, which implies that the corresponding mode R(k1) leaves the
horizon well before all other modes leave the horizon. By the time the remaining modes exit the horizon, R(k1) will
be frozen as a super-horizon mode and its only effect is to deform the background if the mode with k1 which leaves
the horizon earlier than the others is the adiabatic mode (σ). Then in this case, the trispectrum can be expressed as
[31]

〈R(k1)R(k2)R(k3)R(k4)〉 → −P̃R(k1)
d

Hdt
〈R(k2)R(k3)R(k4)〉, (49)

where the power spectrum P̃R(k) is given by 〈R(k1)R(k2)〉 = (2π)3δ(3)(k1 + k2)P̃R(k1). Using the fact that the bis-

pectrum is Bζ ∝ c−2
s P̃2

R, it follows that in the squeezed limit the trispectrum is TR ∝ (ǫc−2
s P̃3

R). Using P̃R ∝ (csǫ)
−1,

one finds that the total non-linearity parameter τNL should be at most of order ǫc−2
s (i.e. under our approximation it

should vanish) when any of the momentum vectors goes to zero. From Eqs. (28), (30), (32), (40), (41) and (42), we can
show that τNL scales as O(k2

1), which means the consistency relation in the squeezed limit holds for the trispectrum
in multi-field DBI inflation models.
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However, if the mode with k1 is the entropy mode (s), this explanation can not be applied. Instead, the fact that at
leading order in slow-roll, the third-order action is written as Eq. (18) and there are no three point functions like (sss)
and (sσσ) turns out to be crucial. Actually, if one of the entropy modes leaves the horizon and becomes classical, the
combination of the remaining three variables are (sss) for pure entropy component and (sσσ) for mixed component,
respectively. As mentioned above, since these three-point correlations are absent at leading order in slow roll, the
trispectrum vanishes in this limit.

Similarly, we can discuss the consistency relation in the counter-collinear limit for the trispectra coming from the
scalar exchange diagram. According to [38], in the limit where the momentum of the scalar mode that is exchanged
goes to zero, one can find a simple relation between the scalar exchange trispectrum and the power spectrum, in
a similar way to Maldacena’s consistency relations [6] (see also [28, 101, 102]) since one can treat this mode as a
background again if this mode is an adiabatic mode. Let us suppose that the momentum of the exchanged adiabatic
particle is k12 and that k12 ≪ k1 ≈ k2, k3 ≈ k4. Then the mode associated with this scalar particle will cross the
horizon much before the other ki modes, where i = 1, . . . , 4, and it only rescale the spatial background where the
ki modes exist. Then, in the limit k12 → 0, the following relation should hold if the exchange mode is an adiabatic
mode:

〈R(k1)R(k2)R(k3)R(k4)〉SE → (2π)3δ(3)(K)(nR − 1)2P̃R(k12)P̃R(k1)P̃R(k3). (50)

The previous equation implies that in the counter-collinear limit, the scalar exchange non-linearity parameter τSE
NL is

of order ǫ2 (at leading order in our approximations this is equivalent to say that τSE
NL should vanish). From Eqs. (40),

(41) and (42), the non-linearity parameter τNL is shown to scale as O(k4
12). Therefore, the consistency relation in

the counter-collinear limit holds for the trispectrum coming from the scalar exchange diagram generated from the
multi-field DBI inflation model. For the trispectrum coming from the other diagram, since there is no k12 dependence,
this consistency relation holds trivially.

For the pure adiabatic, pure entropy and part of the mixed component, the exchanged mode is always an adiabatic
mode. Thus we can apply the above argument to show that τNL vanishes in this limit. On the other hand, if the
mode with k12 is the entropy mode, which happens for the mixed component, we cannot apply the above arguments.
However, in this case, the four-point function becomes a square of the two-point function of (sσ). As was shown by
Eq. (17), there is no two-point correlation between the adiabatic and entropy mode at leading order in slow-roll. This
explains the consistency relation in the counter-collinear limit for the remaining part of the mixed component.

Now that we have checked the two important consistency relations, in the next subsection, we will concentrate on
a concrete and best studied configuration in single field DBI inflation model, the so-called equilateral configuration
[28, 31, 62, 63].

B. The shape of the trispectrum and τNL in the equilateral configuration

In this subsection, we shall study the shape of the trispectrum in the limit where all the four momentum vectors have
the same magnitude k. If we denote the angle between ki and kj by θij , then in this configuration, we have cos(θ12) =
cos(θ34) ≡ cos(θ3), cos(θ23) = cos(θ14) ≡ cos(θ1), cos(θ13) = cos(θ24) ≡ cos(θ2) and cos(θ1) + cos(θ2) + cos(θ3) = −1
due to momentum conservation. Contrary to what happens in the case of the bispectrum, the equilateral configuration
conditions do not fix all degrees of freedom (dof) required to describe the shape of the trispectrum and we are left
with two angular dof [31].

In the equilateral configuration, the contact interaction trispectrum is constant and only the scalar exchange
trispectrum depends on the remaining angular dof, that we choose to be θ1 and θ2. The plots of the shape of
the scalar exchange trispectrum coming from the purely adiabatic component (the first term in Eq. (43)) and the
purely entropy component (the last term in Eq. (43)) can be found in Fig. 1. Using Eq. (45), one can easily see that,
for TRS ≪ 1 the purely adiabatic component dominates while for TRS ≫ 1, the purely entropy component dominates.
Because the momentum dependence of the trispectrum changes depending on the value of TRS , the trispectrum can
distinguish multi-field DBI inflation models from single field DBI inflation models if TRS is significantly large. The
exact analytical expressions for the different contributions in the scalar exchange trispectrum can be found in Appendix
C.

Even though the trispectrum includes all the information, for practical purposes it is more convenient to use another
quantity τNL defined in Eq. (48). In Fig. 2, we plot the non-linearity parameter τSE

NL for the purely adiabatic and
purely entropy components calculated from the respective terms in the scalar exchange trispectrum, Eq. (43).

In Fig. 3, we plot the non-linearity parameter τCI
NL for the purely entropy component of the contact interaction

trispectrum. The shape of the surfaces for the purely adiabatic and mixed components are the same as the one for
the purely entropy component. However, the amplitudes are different, in particular, for the purely adiabatic plot,
τCI
NL is negative. On the r.h.s. of Fig. 3, we plot the sum of the non-linearity parameters τCI

NL and τSE
NL that come
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FIG. 1: The shape of the scalar exchange adiabatic (l.h.s panel) and pure entropy (r.h.s. panel) trispectra as functions of the
variables cos θ1 and cos θ2. The amplitude of the trispectra at the point cos θ1 = cos θ2 = −1/3 has been normalized to unity.

FIG. 2: Plots of the non-linearity parameter τSE
NL calculated from the scalar exchange adiabatic (l.h.s. panel) and pure entropy

(r.h.s.panel) trispectra as functions of the variables cos θ1 and cos θ2. The amplitude of the first plot was rescaled by c4

s(1+T 2

RS)3,
while the amplitude of the r.h.s. plot was rescaled by c4

s(1 + T 2

RS)3/T 4

RS .

from purely entropic perturbations. If the transfer coefficient is large this will be the dominant shape in the total
non-linearity parameter.

Notice that since the factor k3
ij is multiplying the trispectrum, in terms of τNL, we confirm the consistency relation

in the counter-collinear limit of the trispectrum coming from pure adiabatic, mixed and pure entropy components.
When cos θ1 = −1 or cos θ2 = −1 or cos θ3 = −1 (on the diagonal lines in the plots of Fig. 2, when cos θ2 = − cos θ1)
we can see the non-linearity parameters are zero.

In order to quote a number for the value of the non-linearity parameter, we need to fix the remaining two degrees
of freedom (θ1 and θ2) and in this way fully specify the momentum vectors’ configuration. In the single field DBI
model, there are good reasons to believe that the maximum of τNL occurs for the equilateral configuration with
cos(θ1) = cos(θ2) = cos(θ3) = −1/3 [62] 3. In the multi-field case, for some contributions (like for example, τSE

NL

coming from the pure entropy trispectrum, as seen on the r.h.s. panel of Fig. 2) the non-linearity parameter is not
maximized for this particular angular configuration. However, for the sake of comparison with the single field model,
we shall obtain the non-linearity parameter in that configuration.

3 However, the definite proof that this is the case is still missing
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FIG. 3: L.h.s. panel: Plot of the non-linearity parameter τCI
NL calculated from the contact interaction pure entropy trispectrum

as a function of cos θ1 and cos θ2. R.h.s. panel: Plot of the sum of τCI
NL and τSE

NL coming from the pure entropy trispectrum as
a function of cos θ1 and cos θ2. The amplitude of the plots was rescaled by c4

s(1 + T 2

RS)3/T 4

RS .

So, for the equilateral configuration, with cos(θ1) = cos(θ2) = cos(θ3) = −1/3, we obtain

τNL
CI
4σ ∼ − 0.036

c4
s(1 + T 2

RS)3
, τNL

CI
σσss ∼ 0.016T 2

RS

c4
s(1 + T 2

RS)3
, τNL

CI
4s ∼ 0.052T 4

RS

c4
s(1 + T 2

RS)3
, (51)

where the different values of τNL correspond to the three terms in the contact interaction trispectrum coming from
the purely adiabatic, mixed and purely entropic components in Eq. (36), respectively.

Similarly, from the scalar exchange trispectrum we obtain

τNL
SE
4σ ∼ 0.60

c4
s(1 + T 2

RS)3
, τNL

SE
σσss ∼ 0.67T 2

RS

c4
s(1 + T 2

RS)3
, τNL

SE
4s ∼ 0.071T 4

RS

c4
s(1 + T 2

RS)3
, (52)

where again the different values of τNL correspond to the three terms in the scalar exchange interaction trispectrum
coming from the purely adiabatic, mixed and purely entropic components in Eq. (43), respectively.

It is worth mentioning that from Eqs. (37) and (44), both for the contact interaction (Eq. (51)) and the scalar
exchange interaction (Eq. (52)), we can obtain the relation

τNLσσss = T 2
RSτNL4σ +

1

T 2
RS

τNL4s . (53)

Therefore, we conclude that the total non-linearity parameter τNL for the multi-field DBI inflation model in the
equilateral configuration with equal angles between the momentum vectors is

τNL
tot
equi ∼

0.56

c4
s(1 + T 2

RS)3
+

0.68T 2
RS

c4
s(1 + T 2

RS)3
+

0.12T 4
RS

c4
s(1 + T 2

RS)3
. (54)

It is worth noting that when there is no conversion of entropy perturbation into curvature perturbation, i.e. TRS = 0,
Eq. (54) reproduces the result obtained in the single field DBI inflation model [62]. On the other hand, when the
transfer coefficient is large, i.e. TRS ≫ 1, the final curvature perturbation is mainly of entropy origin and the last
term in Eq. (54) dominates over the others.

C. The non-linearity parameter τNL in a non-equilateral configuration

As we have mentioned before, the equilateral configuration is well investigated in the DBI inflation model. However,
since there are five degrees of freedom to parameterize the shape of the trispectrum and the expression for the
trispectrum is fairly complicated, non-equilateral configurations have attracted less attention. Because it has not
been shown that the equilateral configuration maximizes the value of the non-linearity parameter, in this subsection
we will consider a non-equilateral configuration.

In our previous work [62], we have studied the deviation from the equilateral configuration by fixing a particular
set of degrees of freedom in the single field DBI inflation model case. Here, we apply the same approach and we study
the behaviour of τNL in a non-equilateral configuration.
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FIG. 4: Plots of the non-linearity parameter τSE
NL calculated from the scalar exchange adiabatic (l.h.s. panel) and pure entropy

(r.h.s. panel) trispectra for non-equilateral configurations as functions of the momentum amplitude q and cos θ2. The amplitude
of the first plot was rescaled by c4

s(1 + T 2

RS)3, while the amplitude of the r.h.s. plot was rescaled by c4

s(1 + T 2

RS)3/T 4

RS .

FIG. 5: Plots of the non-linearity parameter τCI
NL calculated from the contact interaction adiabatic (l.h.s. panel) and pure

entropy (r.h.s. panel) trispectra for non-equilateral configurations as functions of the momentum amplitude q and cos θ2. The
amplitude of the first plot was rescaled by c4

s(1+T 2

RS)3, while the amplitude of the r.h.s. plot was rescaled by c4

s(1+T 2

RS)3/T 4

RS .

We consider configurations where the two momentum vectors k3 and k4 have a different magnitude q from the
magnitude of k1 and k2 that we normalized to unity. Then in this configuration, we have cos(θ34) ≡ cos(θ3), cos(θ23) =
cos(θ14) ≡ cos(θ1), cos(θ13) = cos(θ24) ≡ cos(θ2), cos(θ12) = q2(1 + cos(θ3)) − 1. Momentum conservation implies
cos θ3 = −(1/q)(cos θ1 + cos θ2) − 1. We will allow one of the angular dof to vary freely, the other angular dof θ1 is
fixed by cos θ1 = −1/3 to the value that gives us the maximum for the single field model. In Fig. 4, we plot the
non-linearity parameter τSE

NL calculated from the scalar exchange adiabatic (l.h.s. panel) and entropic (r.h.s. panel)
trispectra, respectively. The maximum appears at q = 1 and cos(θ2) = −1/3, which supports the importance of the
equilateral configuration. In Fig. 5, we plot the non-linearity parameter τCI

NL calculated from the contact interaction
adiabatic (l.h.s. panel) and entropic (r.h.s. panel) trispectra, respectively. Comparing Figs. 4 and 5, one can see
that around the maximum the purely adiabatic contribution coming from the contact interaction is smaller than the
corresponding one coming from the scalar exchange interaction. Only for the entropy component, the amplitudes of
the scalar exchange and contact interaction trispectra are comparable. We plot the sum of these two terms in Fig. 6.
If the transfer coefficient is large this will be the dominant shape.

VI. OBSERVATIONAL CONSTRAINTS

Since we have obtained the full quantum trispectra for each component for the equilateral configuration with
cos(θ1) = cos(θ2) = cos(θ3) = −1/3, in terms of TRS , we are in a position to discuss the relation between TRS and
observable quantities. It was shown in [57] that in the small sound speed limit (c2

s ≪ 1), the spectral index of the
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FIG. 6: Plot of the sum of the non-linearity parameters τSE
NL and τCI

NL calculated from the pure entropy trispectra, for non-
equilateral configurations, as functions of the momentum amplitude q and cos θ2. The amplitude of the plot was rescaled by
c4

s(1 + T 2

RS)3/T 4

RS .

scalar perturbations nR in two-field DBI inflation model can be written as

1 − nR ≃

√

3.1|fequil
NL |r

4 cos3 Θ
− ḟ

Hf
+ α∗ sin(2Θ) + 2β∗ sin2 Θ, (55)

with α =
ξ

aH
, β =

χ

2
− ι

2
− 1

3H2

(

µ2
s +

ξ2

a2

)

, Θ = arcsin

(

TRS
√

1 + T 2
RS

)

, (56)

where ι and χ are the slow-roll parameters defined in Eq. (9). ξ is the coupling between the adiabatic and entropy
perturbation and µs is the mass of the entropy perturbation, which are model dependent quantities. In order to
obtain Eq. (55), they used the following relations:

r =
PT

PR

= 16ǫcs cos2 Θ, (57)

fequi
NL ≃ − 1

3.1c2
s

cos2 Θ, (58)

where r is the tensor to scalar ratio and fequi
NL parameterizes the size of the bispectrum in the equilateral configuration.

In the ultra-violet (UV) DBI model (ḟ > 0) and without entropy transfer, i.e. TRS = 0 (or equivalently sin Θ = 0),
Eq. (55) gives the well known stringent constraint as

r >
4

√

3.1|fequi
NL |

(1 − nR), (59)

by which one obtains r ≥ 10−3 if one uses the observational constraints on fequi
NL and 1 − nR from WMAP5 data

[3]. On the other hand, since for general compact internal spaces, suggested by string theory, there is a geometrical
constraint that limits r to be r < 10−7 [77], the single field UV DBI inflation model is already excluded by the
observational data.

However, if we take into account the transfer from the entropy perturbation, the last two terms in Eq. (55) are no

longer negligible. Furthermore, from Eqs. (57) and (58), both r and fequi
NL are suppressed by cos2 Θ which scales as

1/T 2
RS for TRS ≫ 1. Because of these factors, the constraint given by Eq. (59) cannot be applied and it is possible

to satisfy the geometrical constraint r < 10−7 if TRS ≫ 1 [57]. In such a case, since the last term of Eq. (54) will

dominate over the other terms, τequi
NL can be expressed as τequi

NL ∼ 1.14(fequi
NL )2T 2

RS . Thus for a given fequi
NL , τequi

NL is
enhanced for a large transfer TRS ≫ 1, while the global magnitude of τNL is reduced, going like 1/T 2

RS in this case.

VII. CONCLUSIONS

In this work, we have obtained the full quantum trispectrum of the primordial curvature perturbation at leading
order in the slow-roll expansion and in the small sound speed limit in multi-field DBI inflation models. Previously,
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we had obtained the contact interaction trispectrum [64]. In this work we completed the calculation of the quantum
trispectrum including the scalar exchange trispectrum.

We studied the momentum dependence of the trispectrum by separating it into the purely adiabatic, mixed and
purely entropic components. For general configurations, as in the single field model, we confirmed that the consistency
relations in the squeezed and in the counter-collinear limit hold. If a mode that crosses the horizon much before the
other modes is an adiabatic one, these can be explained by the usual argument that the mode only changes the
background (just like in the single field models). However, if the mode that crosses the horizon first is an entropic
one, the consistency relations hold because of the absence of the two-point and three-point correlations among the
modes remaining under the horizon scale. Essentially, the absence of these correlations is attributed to the particular
properties of the DBI action discussed in [64].

In the equilateral configuration, we examined the momentum dependence of the scalar exchange trispectra as
functions of the two remaining angular degrees of freedom. We found that the shape of the adiabatic, mixed, and
purely entropic trispectra are different. This means that if the amount of the transfer from the entropy perturbation to
the final curvature perturbation is significantly large, the trispectrum can distinguish multi-field DBI inflation models
from single field DBI inflation models. In the equilateral configuration with cos θ1 = cos θ2 = cos θ3 = −1/3, we showed
that for the contributions for τNL coming from the adiabatic and mixed trispectra, the scalar exchange diagram is
more important than the contact interaction diagram, while for the pure entropy contribution both diagrams are
equally important. This suggests that for quantitative discussions, the analysis done in Ref. [55] taking into account
only the scalar exchange diagram is insufficient, at least, in this configuration. We have also considered configurations
where the equilateral conditions are not satisfied.

After obtaining the complete predictions for the quantum trispectrum in the multi-field DBI inflation model, we
discussed the observational constraints on the non-linearity parameter, for the equilateral configuration mentioned
above. In single field DBI inflation, some models based on string theory set-ups suffer from a severe constraint related
with the geometrical structure of the compact internal spaces. However, in the presence of the transfer from the
entropy mode, this constraint no longer holds. Furthermore, since both the tensor-to-scalar ratio and non-linearity
parameter for the bispectrum are suppressed like T−2

RS for a large transfer from the entropy mode to the curvature
perturbation, it is easier to satisfy the corresponding constraints [57]. On the other hand, the trispectrum is enhanced

like τequi
NL ∝ T 2

RSfequi 2
NL for a given amplitude of the bispectrum fequi

NL , while the global magnitude of τNL is reduced,
going like 1/T 2

RS in this case.
In order to obtain a concrete value for the transfer coefficient TRS , we need a specific model. It would be interesting

to study this mixing in specific string theory motivated models [103].
Note added: On the day this work appeared in the arXiv, the paper [104] was also submitted to the arXiv, it

also calculates the trispectrum in multi-field DBI-inflation. While we have concentrated on the trispectrum coming
from the intrinsically quantum four-point functions of the fields which are generated during inflation, Ref. [104], by
assuming a specific model, showed that the contribution to the trispectrum coming from the super-horizon non-linear
dynamics is also important.
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APPENDIX A: THE DIAGRAMMATIC APPROACH TO THE TRISPECTRUM FROM THE SCALAR

EXCHANGE INTERACTION

The calculation of the integrals in Eq. (39) is rather long and it is easy to forget some terms or permutations. In this
appendix, we present a systematic and simple way to keep track of all the different contributions and permutations
to the integrals in (39). This approach is based on diagrams and simple rules that allows one to read the respective
contributions for the scalar exchange four-point function directly from the diagrams.

To calculate the scalar exchange four-point function we need to evaluate

〈Ω|Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4)|Ω〉SE

= −
∫ 0

−∞

dη

∫ η

−∞

dη̃〈0|
[[

Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4), Hint
(3) (η)

]

, Hint
(3) (η̃)

]

|0〉, (A1)
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where on the l.h.s. of the equation Qm are the interaction picture fields and Hint
(3) is the third-order interaction

Hamiltonian that can be found in Eq. (20) or

Hint
(3) (η) = Hint

1 (η) + Hint
2 (η) + Hint

3 (η) + Hint
4 (η) + Hint

5 (η), (A2)

where the different type of interactions are

Hint
1 (η) ≡

∫

d3xg1aQ′
σ
3
, Hint

2 (η) ≡
∫

d3xg2aQ′
σ(∂Qσ)2, Hint

3 (η) ≡
∫

d3xg3aQ′
σQ′

s
2
,

Hint
4 (η) ≡

∫

d3xg4aQ′
σ(∂Qs)

2, Hint
5 (η) ≡

∫

d3xg5aQ′
s(∂Qσ)(∂Qs), (A3)

where here Qσ and Qs are the interaction picture fields. The coupling constants are

g1 = M, g2 = −c2
sM, g3 = M, g4 = c2

sM, g5 = −2c2
sM, (A4)

where M = − 1√
8X0c7

s

. The integrand of Eq. (A1) can be written as

[[

Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4), Hint
(3) (η)

]

, Hint
(3) (η̃)

]

=

5
∑

i,j=1

{

FHint
i (η)Hint

j (η̃) + Hint
j (η̃)Hint

i (η)F − Hint
j (η̃)FHint

i (η) − Hint
i (η)FHint

j (η̃)

}

(A5)

where we have defined F as F ≡ Qm(0,k1)Qn(0,k2)Qp(0,k3)Qq(0,k4).
One can immediately see that at the leading order the only non-zero four-point functions

are 〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)Qσ(0,k4)|Ω〉SE , 〈Ω|Qs(0,k1)Qs(0,k2)Qσ(0,k3)Qσ(0,k4)|Ω〉SE and
〈Ω|Qs(0,k1)Qs(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉SE . The four-point functions 〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)Qs(0,k4)|Ω〉SE

and 〈Ω|Qσ(0,k1)Qs(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉SE are zero at this order. This is a direct consequence of the absence
of the interactions Q3

s and Q2
σQs in the third order interaction Hamiltonian (A2). In terms of diagrams this fact is

clear. With the interactions (A3) one cannot draw diagrams with one and three external entropy legs, respectively.
In order to find the non-zero four-point functions we need the following set of rules. We draw the allowed diagrams

with two of the vertices (A3), where one leg of the first vertex is glued with one leg of the other vertex (entropy legs
can only be glued with entropy legs, similarly for adiabatic legs). The resulting four-point function can be constructed
as:

• Multiply by −2(2π)3δ(3)(K)N4/(k1k2k3k4)
3/2, where N is the normalization of the mode functions. Multiply

by the coupling constants of the vertices that enter the diagram. The overall minus sign is already present in
(A1). The Dirac delta function ensures momentum conservation. The factor N4/(k1k2k3k4)

3/2 comes from the
normalization of the four external legs, described by F . Finally, the factor of two can be understood if one notes
that the contribution to the four-point function coming from the first term in the r.h.s. of Eq. (A5) is real and
the operator in the second term is just the Hermitian conjugate of the first term. Similarly with the third and
fourth terms in the r.h.s. of Eq. (A5).

• To each leg of the vertex with a spatial derivative associate the usual factor −ik.

• The different ways of drawing the same-looking diagram (ignoring the k labels but with the order in the left-
to-right of the vertices the same) give a multiplicative symmetry factor.

• The contribution coming from the third (and fourth) term in the r.h.s. of Eq. (A5) is equal to the contribution
coming from the first (and second) term but with the sign of k1 and k2 (but not k12), that enter the arguments
of Fi functions, changed to minus sign.

• In the diagrams with vertices Hint
1 or Hint

3 the form factor is made of F1 functions. The definitions of the Fi

functions can be found in Appendix B. In the diagrams with vertices Hint
2 , Hint

4 or Hint
5 the form factor is

made of F2 functions. In the diagrams where the l.h.s. vertex is either one of Hint
1 or Hint

3 and the r.h.s. vertex
is either one of Hint

2 , Hint
4 or Hint

5 , the form factor is made of F3 functions. In the diagrams where the l.h.s.
vertex is either one of Hint

2 , Hint
4 or Hint

5 and the r.h.s. vertex is either one of Hint
1 or Hint

3 , the form factor
is made of F4 functions. The order of the six arguments in Fi is read from the diagrams too. The first three
arguments are read from the l.h.s. vertex and the last three arguments from the r.h.s vertex. For example, for
the diagram made of two Hint

3 vertices, the first and fourth arguments of F2 are the legs with time derivatives.
k1 in the first vertex and k4 in the second vertex.
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σ.
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k4

k3

σ.

σ

k12

k

FIG. 7: The two leading order vertices that contribute for the scalar exchange trispectrum in the single field case. Dot over
σ denotes that in that leg the interaction is a time derivative. ∇σ means that the interaction is a spatial derivative. There is
momentum conservation at the vertices, hence at each vertex the momentum vectors have to sum to zero. Overall momentum
conservation implies that k12 = −k34, hence the labels in the r.h.s. diagram.

1

k 2

k 12
_

σ
.

σ
.

σ
.

k 4

σ

σ

k 12

k3
σ
.

k 1

k 2

k12
_

k3

k4

k 12

σ.

σ.

σ.

σ.

σ

σ

k

FIG. 8: The two diagrams that contribute to the adiabatic four-point function, where the l.h.s. vertex is Hint
1 and the r.h.s.

vertex is Hint
2 . The first, on the l.h.s. panel, we glue two legs with a time and a spatial derivative. The second, on the r.h.s.

panel, we glue two legs with time derivatives.

• At the end, add twenty three permutations of {k1, k2, k3, k4} to restore the symmetry of the four-point functions
under the exchange of the momentum vectors.

Let us consider an explicit example and calculate the contribution for the adiabatic four-point function of a diagram
where the l.h.s. vertex is Hint

1 and the r.h.s. vertex is Hint
2 . These vertices are schematically depicted in Fig. 7 and

they are the same ones as in the single field case.
There are two distinct diagrams that one can draw, as can be seen in Fig. 8, hence there will be two terms. For

the diagram on the l.h.s. of Fig. 8 we get a symmetry factor six. This is because there are three ways we can glue the
∇σ leg to the σ̇ leg and there are two ∇σ legs. For the diagram on the r.h.s of Fig. 8 we get a symmetry factor three.
This is because there are three ways of gluing the σ̇ leg of the Hint

2 vertex with one of the σ̇ legs of the Hint
1 vertex.

In both diagrams, we have two spatial derivatives so we get a factor (−i)2. These diagrams will be proportional to
F3.

Finally, the diagram on the l.h.s. gives

〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)Qσ(0,k4)|Ω〉SE

⊃ (−i)26(2π)3δ(K)
−2N4g1g2

(k1k2k3k4)
3

2

(k12 · k4) (F3(k1, k2,−k12, k3, k4, k12) −F3(−k1,−k2,−k12, k3, k4, k12))

+23 permutations of{k1, k2, k3, k4}, (A6)

and the diagram in the r.h.s. gives

〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)Qσ(0,k4)|Ω〉SE

⊃ (−i)23(2π)3δ(K)
−2N4g1g2

(k1k2k3k4)
3

2

(k3 · k4) (F3(k1, k2,−k12, k12, k3, k4) −F3(−k1,−k2,−k12, k12, k3, k4))

+23 permutations of{k1, k2, k3, k4} (A7)

Now, let us consider another example and calculate the contribution for the mixed four-point function of a diagram
where the l.h.s. vertex is Hint

4 and the r.h.s. vertex is Hint
5 . These diagrams involves vertices that contain entropy

legs, they are schematically depicted in Fig. 9.
Because the entropy and the adiabatic mode functions are the same, if one substitutes s with σ in the vertices of

Fig. 9 we get the vertices of Fig. 7. Because the Fi functions only depend on the mode functions, that are the same
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FIG. 9: The leading order vertices containing entropy modes that contribute for the scalar exchange trispectrum in the multi-
field case. gi denotes the coupling constants. As before, the dot over s denotes that in that leg the interaction is a time
derivative. ∇s means that the interaction is a spatial derivative. A label s in the leg means that it is a entropy mode. σ
denotes an adiabatic leg.
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FIG. 10: The two diagrams that contribute to the mixed four-point function, where the l.h.s. vertex is Hint
4 and the r.h.s.

vertex is Hint
5 .

for the entropy and the adiabatic modes we don’t need to define other Fi functions, and the single field ones are
enough.

There are two diagrams that contribute in this example, as can be seen in Fig. 10, hence there will be two terms.
In both diagrams, we have four spatial derivatives, this gives a factor of (−i)4. The diagram on the l.h.s. of the figure
has a symmetry factor two, because there are two ways of gluing the ṡ leg of the r.h.s. vertex with one of the two ∇s
legs of the l.h.s. vertex. Similarly, the symmetry factor of the r.h.s. diagram is also two.

The l.h.s. diagram contributes with

〈Ω|Qσ(0,k1)Qσ(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉SE + 5 perms.

⊃ (−i)42(2π)3δ(K)
−2N4g4g5

(k1k2k3k4)
3

2

(k2 · (−k12)) (k3 · k4) (F2(k1, k2,−k12, k12, k3, k4) −F2(−k1,−k2,−k12, k12, k3, k4))

+23 permutations of{k1, k2, k3, k4}, (A8)

and the diagram in the r.h.s. gives

〈Ω|Qσ(0,k1)Qσ(0,k2)Qs(0,k3)Qs(0,k4)|Ω〉SE + 5 perms.

⊃ (−i)42(2π)3δ(K)
−2N4g4g5

(k1k2k3k4)
3

2

(k2 · (−k12)) (k12 · k4) (F2(k1, k2,−k12, k4, k3, k12) −F2(−k1,−k2,−k12, k4, k3, k12))

+23 permutations of{k1, k2, k3, k4}, (A9)

where 5 perms. denotes the following permutations of the displayed term [1 ↔ 3], [1 ↔ 4], [2 ↔ 3], [2 ↔ 4] and
[1 ↔ 3, 2 ↔ 4].
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APPENDIX B: DEFINITIONS OF THE Fi FUNCTIONS

In this Appendix, we present the definitions and the analytical expressions of the four Fi functions (with i = 1, . . . , 4)
that appear in the main text.

Because there are only four different types of double time integrals over the mode functions, we define four Fi

functions (with i = 1, . . . , 4). Their explicit expressions are

F1(k1, k2, k3, k4, k5, k6) =

∫ 0

−∞

dηa(η)

∫ η

−∞

dη̃a(η̃)U∗′

(η, k1)U
∗′

(η, k2)U
∗′

(η, k3)U
∗′

(η̃, k4)U
∗′

(η̃, k5)U
∗′

(η̃, k6)

= −4
N6c6

s

H2
|k1 · · · k6|

1

2

1

A3C3

(

1 + 3
A
C + 6

A2

C2

)

, (B1)

where N is the normalisation of the mode functions given by N = H/
√

2cs, A is defined by the sum of the last
three arguments of the Fi functions as A = k4 + k5 + k6 and C is defined by the sum of all the arguments as
C = k1 + k2 + k3 + k4 + k5 + k6. The remaining functions are

F2(k1, k2, k3, k4, k5, k6) =

∫ 0

−∞

dηa(η)

∫ η

−∞

dη̃a(η̃)U∗′

(η, k1)U
∗(η, k2)U

∗(η, k3)U
∗′

(η̃, k4)U
∗(η̃, k5)U

∗(η̃, k6)

= −N6c2
s

H2

|k1k4|
1

2

|k2k3k5k6|
3

2

1

AC

[

1 +
k5 + k6

A + 2
k5k6

A2

+
1

C

(

k2 + k3 + k5 + k6 +
1

A ((k2 + k3) (k5 + k6) + 2k5k6) + 2
k5k6 (k2 + k3)

A2

)

+
2

C2

(

k5k6 + (k2 + k3) (k5 + k6) + k2k3

+
1

A (k2k3 (k5 + k6) + 2k5k6 (k2 + k3)) + 2
k2k3k5k6

A2

)

+
6

C3

(

k2k3 (k5 + k6) + k5k6 (k2 + k3) + 2
k2k3k5k6

A

)

+ 24
k2k3k5k6

C4

]

, (B2)

F3(k1, k2, k3, k4, k5, k6) =

∫ 0

−∞

dηa(η)

∫ η

−∞

dη̃a(η̃)U∗′

(η, k1)U
∗′

(η, k2)U
∗′

(η, k3)U
∗′

(η̃, k4)U
∗(η̃, k5)U

∗(η̃, k6)

= 2
N6c4

s

H2

|k1k2k3k4|
1

2

|k5k6|
3

2

1

AC3

[

1 +
k5 + k6

A + 2
k5k6

A2
+

3

C

(

k5 + k6 + 2
k5k6

A

)

+ 12
k5k6

C2

]

,

(B3)

F4(k1, k2, k3, k4, k5, k6) =

∫ 0

−∞

dηa(η)

∫ η

−∞

dη̃a(η̃)U∗′

(η, k1)U
∗(η, k2)U

∗(η, k3)U
∗′

(η̃, k4)U
∗′

(η̃, k5)U
∗′

(η̃, k6)

= 2
N6c4

s

H2

|k1k4k5k6|
1

2

|k2k3|
3

2

1

A3C

[

1 +
A
C +

A2

C2
+

k2 + k3

C + 2
A (k2 + k3) + k2k3

C2

+3
A
C3

(A (k2 + k3) + 2k2k3) + 12k2k3
A2

C4

]

, (B4)

where the function U(η, k) is a modified mode function given by

U(η, k) = N
1

|k| 32
(1 + ikcsη) e−ikcsη. (B5)

If the sign of the argument k of U is positive then U is equal to the mode function, if the sign is negative then U
equals the complex conjugate of the mode function.
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APPENDIX C: THE SCALAR EXCHANGE TRISPECTRUM IN THE EQUILATERAL LIMIT

In this Appendix, we present the scalar exchange trispectrum of the primordial curvature perturbation R in the
equilateral configuration. These analytical expressions can be derived from the general expression for the scalar
exchange trispectrum, Eq. (43). We will use these simpler equations to study the shape dependence of the trispectrum
and to calculate the non-linearity parameter τNL in subsection VB.

At leading order in the small sound speed and in the slow-roll expansion, the scalar exchange trispectrum is

〈Ω|R(0,k1)R(0,k2)R(0,k3)R(0,k4)|Ω〉SE = 〈Ω|R(0,k1)R(0,k2)R(0,k3)R(0,k4)|Ω〉SE
4σ

+〈Ω|R(0,k1)R(0,k2)R(0,k3)R(0,k4)|Ω〉SE
σσss

+〈Ω|R(0,Rk1)R(0,k2)R(0,k3)R(0,k4)|Ω〉SE
4s, (C1)

where the three different contributions come from the terms in Eq. (43) that are coming from the purely adiabatic,
mixed and purely entropy components.

Explicitly, they are given by

〈Ω|R(0,k1)R(0,k2)R(0,k3)R(0,k4)|Ω〉SE
4σ = (2π)3δ(3)(K)

1

c4
s

1

(1 + T 2
RS)3

D1(k12/k)P̃2
R∗(k)P̃R∗(k12) + 2 perms,

(C2)

〈Ω|R(0,k1)R(0,k2)R(0,k3)R(0,k4)|Ω〉SE
σσss = (2π)3δ(3)(K)

T 2
RS

(1 + T 2
RS)3

1

c4
s

D2(k12/k)P̃2
R∗(k)P̃R∗(k12) + 2 perms,

(C3)

〈Ω|R(0,k1)R(0,k2)R(0,k3)R(0,k4)|Ω〉SE
4s = (2π)3δ(3)(K)

T 4
RS

(1 + T 2
RS)3

1

c4
s

D3(k12/k)P̃2
R∗(k)P̃R∗(k12) + 2 perms,

(C4)

where we have defined three Di(x) functions, with i = 1, 2, 3, as

D1(x) =
x4(61952 + 48384x− 10240x2 − 20832x3 − 5184x4 + 1412x5 + 824x6 + 103x7)

29(x + 2)4
,

D2(x) =
x4(31232 + 23744x− 6272x2 − 10496x3 − 1248x4 + 1904x5 + 824x6 + 103x7)

28(x + 2)4
,

D3(x) =
x4(512 − 896x − 2304x2 − 160x3 + 2688x4 + 2396x5 + 824x6 + 103x7)

29(x + 2)4
, (C5)

where k12 = k
√

2(1 + cos θ3), k13 = k
√

2(1 + cos θ2) and k14 = k
√

2(1 + cos θ1). k denotes the common amplitude

of all four momentum vectors kj , with j = 1, . . . , 4 and the rescaled power spectrum is P̃R∗(k) = H2/(4ǫcsk
3) that

should be evaluated at sound horizon crossing.
It is worth mentioning that from Eqs. (37) and (44), the following relation holds,

D2 = D1 + D3. (C6)
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